/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_SENSOR_DEVICE_H #define ANDROID_SENSOR_DEVICE_H #include "SensorDeviceUtils.h" #include "SensorService.h" #include "SensorServiceUtils.h" #include "ISensorsWrapper.h" #include #include #include #include #include #include #include #include #include #include #include #include //std::max std::min #include "RingBuffer.h" // --------------------------------------------------------------------------- namespace android { // --------------------------------------------------------------------------- class SensorsHalDeathReceivier : public android::hardware::hidl_death_recipient { virtual void serviceDied(uint64_t cookie, const wp<::android::hidl::base::V1_0::IBase>& service) override; }; class SensorDevice : public Singleton, public SensorServiceUtil::Dumpable { public: class HidlTransportErrorLog { public: HidlTransportErrorLog() { mTs = 0; mCount = 0; } HidlTransportErrorLog(time_t ts, int count) { mTs = ts; mCount = count; } String8 toString() const { String8 result; struct tm *timeInfo = localtime(&mTs); result.appendFormat("%02d:%02d:%02d :: %d", timeInfo->tm_hour, timeInfo->tm_min, timeInfo->tm_sec, mCount); return result; } private: time_t mTs; // timestamp of the error int mCount; // number of transport errors observed }; ~SensorDevice(); void prepareForReconnect(); void reconnect(); ssize_t getSensorList(sensor_t const** list); void handleDynamicSensorConnection(int handle, bool connected); status_t initCheck() const; int getHalDeviceVersion() const; ssize_t poll(sensors_event_t* buffer, size_t count); void writeWakeLockHandled(uint32_t count); status_t activate(void* ident, int handle, int enabled); status_t batch(void* ident, int handle, int flags, int64_t samplingPeriodNs, int64_t maxBatchReportLatencyNs); // Call batch with timeout zero instead of calling setDelay() for newer devices. status_t setDelay(void* ident, int handle, int64_t ns); status_t flush(void* ident, int handle); status_t setMode(uint32_t mode); bool isDirectReportSupported() const; int32_t registerDirectChannel(const sensors_direct_mem_t *memory); void unregisterDirectChannel(int32_t channelHandle); int32_t configureDirectChannel(int32_t sensorHandle, int32_t channelHandle, const struct sensors_direct_cfg_t *config); void disableAllSensors(); void enableAllSensors(); void autoDisable(void *ident, int handle); status_t injectSensorData(const sensors_event_t *event); void notifyConnectionDestroyed(void *ident); using Result = ::android::hardware::sensors::V1_0::Result; hardware::Return onDynamicSensorsConnected( const hardware::hidl_vec &dynamicSensorsAdded); hardware::Return onDynamicSensorsDisconnected( const hardware::hidl_vec &dynamicSensorHandlesRemoved); void setUidStateForConnection(void* ident, SensorService::UidState state); bool isReconnecting() const { return mReconnecting; } bool isSensorActive(int handle) const; // To update the BatchParams of a SensorEventConnection when the mic toggle changes its state // while the Sensors Off toggle is on. void onMicSensorAccessChanged(void* ident, int handle, nsecs_t samplingPeriodNs); // Dumpable virtual std::string dump() const override; virtual void dump(util::ProtoOutputStream* proto) const override; private: friend class Singleton; sp<::android::hardware::sensors::V2_1::implementation::ISensorsWrapperBase> mSensors; Vector mSensorList; std::unordered_map mConnectedDynamicSensors; // A bug in the Sensors HIDL spec which marks onDynamicSensorsConnected as oneway causes dynamic // meta events and onDynamicSensorsConnected to be received out of order. This mutex + CV are // used to block meta event processing until onDynamicSensorsConnected is received to simplify // HAL implementations. std::mutex mDynamicSensorsMutex; std::condition_variable mDynamicSensorsCv; static constexpr std::chrono::seconds MAX_DYN_SENSOR_WAIT{5}; static const nsecs_t MINIMUM_EVENTS_PERIOD = 1000000; // 1000 Hz mutable Mutex mLock; // protect mActivationCount[].batchParams // fixed-size array after construction // Struct to store all the parameters(samplingPeriod, maxBatchReportLatency and flags) from // batch call. For continous mode clients, maxBatchReportLatency is set to zero. struct BatchParams { nsecs_t mTSample, mTBatch; BatchParams() : mTSample(INT64_MAX), mTBatch(INT64_MAX) {} BatchParams(nsecs_t tSample, nsecs_t tBatch): mTSample(tSample), mTBatch(tBatch) {} bool operator != (const BatchParams& other) { return !(mTSample == other.mTSample && mTBatch == other.mTBatch); } // Merge another parameter with this one. The updated mTSample will be the min of the two. // The update mTBatch will be the min of original mTBatch and the apparent batch period // of the other. the apparent batch is the maximum of mTBatch and mTSample, void merge(const BatchParams &other) { mTSample = std::min(mTSample, other.mTSample); mTBatch = std::min(mTBatch, std::max(other.mTBatch, other.mTSample)); } }; // Store batch parameters in the KeyedVector and the optimal batch_rate and timeout in // bestBatchParams. For every batch() call corresponding params are stored in batchParams // vector. A continuous mode request is batch(... timeout=0 ..) followed by activate(). A batch // mode request is batch(... timeout > 0 ...) followed by activate(). // Info is a per-sensor data structure which contains the batch parameters for each client that // has registered for this sensor. struct Info { BatchParams bestBatchParams; // Key is the unique identifier(ident) for each client, value is the batch parameters // requested by the client. KeyedVector batchParams; // Flag to track if the sensor is active bool isActive = false; // Sets batch parameters for this ident. Returns error if this ident is not already present // in the KeyedVector above. status_t setBatchParamsForIdent(void* ident, int flags, int64_t samplingPeriodNs, int64_t maxBatchReportLatencyNs); // Finds the optimal parameters for batching and stores them in bestBatchParams variable. void selectBatchParams(); // Removes batchParams for an ident and re-computes bestBatchParams. Returns the index of // the removed ident. If index >=0, ident is present and successfully removed. ssize_t removeBatchParamsForIdent(void* ident); bool hasBatchParamsForIdent(void* ident) const { return batchParams.indexOfKey(ident) >= 0; } /** * @return The number of active clients of this sensor. */ int numActiveClients() const; }; DefaultKeyedVector mActivationCount; // Keep track of any hidl transport failures SensorServiceUtil::RingBuffer mHidlTransportErrors; int mTotalHidlTransportErrors; /** * Enums describing the reason why a client was disabled. */ enum DisabledReason : uint8_t { // UID becomes idle (e.g. app goes to background). DISABLED_REASON_UID_IDLE = 0, // Sensors are restricted for all clients. DISABLED_REASON_SERVICE_RESTRICTED, DISABLED_REASON_MAX, }; static_assert(DisabledReason::DISABLED_REASON_MAX < sizeof(uint8_t) * CHAR_BIT); // Use this map to determine which client is activated or deactivated. std::unordered_map mDisabledClients; void addDisabledReasonForIdentLocked(void* ident, DisabledReason reason); void removeDisabledReasonForIdentLocked(void* ident, DisabledReason reason); SensorDevice(); bool connectHidlService(); void initializeSensorList(); void reactivateSensors(const DefaultKeyedVector& previousActivations); static bool sensorHandlesChanged(const Vector& oldSensorList, const Vector& newSensorList); static bool sensorIsEquivalent(const sensor_t& prevSensor, const sensor_t& newSensor); enum HalConnectionStatus { CONNECTED, // Successfully connected to the HAL DOES_NOT_EXIST, // Could not find the HAL FAILED_TO_CONNECT, // Found the HAL but failed to connect/initialize UNKNOWN, }; HalConnectionStatus connectHidlServiceV1_0(); HalConnectionStatus connectHidlServiceV2_0(); HalConnectionStatus connectHidlServiceV2_1(); HalConnectionStatus initializeHidlServiceV2_X(); ssize_t pollHal(sensors_event_t* buffer, size_t count); ssize_t pollFmq(sensors_event_t* buffer, size_t count); status_t activateLocked(void* ident, int handle, int enabled); status_t batchLocked(void* ident, int handle, int flags, int64_t samplingPeriodNs, int64_t maxBatchReportLatencyNs); status_t updateBatchParamsLocked(int handle, Info& info); status_t doActivateHardwareLocked(int handle, bool enable); void handleHidlDeath(const std::string &detail); template void checkReturn(const Return& ret) { if (!ret.isOk()) { handleHidlDeath(ret.description()); } } status_t checkReturnAndGetStatus(const Return& ret); //TODO(b/67425500): remove waiter after bug is resolved. sp mRestartWaiter; bool isClientDisabled(void* ident) const; bool isClientDisabledLocked(void* ident) const; std::vector getDisabledClientsLocked() const; bool clientHasNoAccessLocked(void* ident) const; using Event = hardware::sensors::V2_1::Event; using SensorInfo = hardware::sensors::V2_1::SensorInfo; void convertToSensorEvent(const Event &src, sensors_event_t *dst); void convertToSensorEventsAndQuantize( const hardware::hidl_vec &src, const hardware::hidl_vec &dynamicSensorsAdded, sensors_event_t *dst); float getResolutionForSensor(int sensorHandle); bool mIsDirectReportSupported; typedef hardware::MessageQueue WakeLockQueue; std::unique_ptr mWakeLockQueue; hardware::EventFlag* mEventQueueFlag; hardware::EventFlag* mWakeLockQueueFlag; std::array mEventBuffer; sp mSensorsHalDeathReceiver; std::atomic_bool mReconnecting; }; // --------------------------------------------------------------------------- }; // namespace android #endif // ANDROID_SENSOR_DEVICE_H