1690 lines
70 KiB
C++
1690 lines
70 KiB
C++
/*
|
|
* Copyright (C) 2008 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ART_RUNTIME_GC_HEAP_H_
|
|
#define ART_RUNTIME_GC_HEAP_H_
|
|
|
|
#include <iosfwd>
|
|
#include <string>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
#include <android-base/logging.h>
|
|
|
|
#include "allocator_type.h"
|
|
#include "base/atomic.h"
|
|
#include "base/histogram.h"
|
|
#include "base/macros.h"
|
|
#include "base/mutex.h"
|
|
#include "base/runtime_debug.h"
|
|
#include "base/safe_map.h"
|
|
#include "base/time_utils.h"
|
|
#include "gc/collector/gc_type.h"
|
|
#include "gc/collector/iteration.h"
|
|
#include "gc/collector_type.h"
|
|
#include "gc/gc_cause.h"
|
|
#include "gc/space/large_object_space.h"
|
|
#include "handle.h"
|
|
#include "obj_ptr.h"
|
|
#include "offsets.h"
|
|
#include "process_state.h"
|
|
#include "read_barrier_config.h"
|
|
#include "runtime_globals.h"
|
|
#include "verify_object.h"
|
|
|
|
namespace art {
|
|
|
|
class ConditionVariable;
|
|
enum class InstructionSet;
|
|
class IsMarkedVisitor;
|
|
class Mutex;
|
|
class ReflectiveValueVisitor;
|
|
class RootVisitor;
|
|
class StackVisitor;
|
|
class Thread;
|
|
class ThreadPool;
|
|
class TimingLogger;
|
|
class VariableSizedHandleScope;
|
|
|
|
namespace mirror {
|
|
class Class;
|
|
class Object;
|
|
} // namespace mirror
|
|
|
|
namespace gc {
|
|
|
|
class AllocationListener;
|
|
class AllocRecordObjectMap;
|
|
class GcPauseListener;
|
|
class HeapTask;
|
|
class ReferenceProcessor;
|
|
class TaskProcessor;
|
|
class Verification;
|
|
|
|
namespace accounting {
|
|
template <typename T> class AtomicStack;
|
|
typedef AtomicStack<mirror::Object> ObjectStack;
|
|
class CardTable;
|
|
class HeapBitmap;
|
|
class ModUnionTable;
|
|
class ReadBarrierTable;
|
|
class RememberedSet;
|
|
} // namespace accounting
|
|
|
|
namespace collector {
|
|
class ConcurrentCopying;
|
|
class GarbageCollector;
|
|
class MarkSweep;
|
|
class SemiSpace;
|
|
} // namespace collector
|
|
|
|
namespace allocator {
|
|
class RosAlloc;
|
|
} // namespace allocator
|
|
|
|
namespace space {
|
|
class AllocSpace;
|
|
class BumpPointerSpace;
|
|
class ContinuousMemMapAllocSpace;
|
|
class DiscontinuousSpace;
|
|
class DlMallocSpace;
|
|
class ImageSpace;
|
|
class LargeObjectSpace;
|
|
class MallocSpace;
|
|
class RegionSpace;
|
|
class RosAllocSpace;
|
|
class Space;
|
|
class ZygoteSpace;
|
|
} // namespace space
|
|
|
|
enum HomogeneousSpaceCompactResult {
|
|
// Success.
|
|
kSuccess,
|
|
// Reject due to disabled moving GC.
|
|
kErrorReject,
|
|
// Unsupported due to the current configuration.
|
|
kErrorUnsupported,
|
|
// System is shutting down.
|
|
kErrorVMShuttingDown,
|
|
};
|
|
|
|
// If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
|
|
static constexpr bool kUseRosAlloc = true;
|
|
|
|
// If true, use thread-local allocation stack.
|
|
static constexpr bool kUseThreadLocalAllocationStack = true;
|
|
|
|
class Heap {
|
|
public:
|
|
// How much we grow the TLAB if we can do it.
|
|
static constexpr size_t kPartialTlabSize = 16 * KB;
|
|
static constexpr bool kUsePartialTlabs = true;
|
|
|
|
static constexpr size_t kDefaultStartingSize = kPageSize;
|
|
static constexpr size_t kDefaultInitialSize = 2 * MB;
|
|
static constexpr size_t kDefaultMaximumSize = 256 * MB;
|
|
static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB;
|
|
static constexpr size_t kDefaultMaxFree = 2 * MB;
|
|
static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
|
|
static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
|
|
static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);
|
|
static constexpr size_t kDefaultTLABSize = 32 * KB;
|
|
static constexpr double kDefaultTargetUtilization = 0.75;
|
|
static constexpr double kDefaultHeapGrowthMultiplier = 2.0;
|
|
// Primitive arrays larger than this size are put in the large object space.
|
|
static constexpr size_t kMinLargeObjectThreshold = 3 * kPageSize;
|
|
static constexpr size_t kDefaultLargeObjectThreshold = kMinLargeObjectThreshold;
|
|
// Whether or not parallel GC is enabled. If not, then we never create the thread pool.
|
|
static constexpr bool kDefaultEnableParallelGC = false;
|
|
static uint8_t* const kPreferredAllocSpaceBegin;
|
|
|
|
// Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR
|
|
// since this means that we have to use the slow msync loop in MemMap::MapAnonymous.
|
|
static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType =
|
|
USE_ART_LOW_4G_ALLOCATOR ?
|
|
space::LargeObjectSpaceType::kFreeList
|
|
: space::LargeObjectSpaceType::kMap;
|
|
|
|
// Used so that we don't overflow the allocation time atomic integer.
|
|
static constexpr size_t kTimeAdjust = 1024;
|
|
|
|
// Client should call NotifyNativeAllocation every kNotifyNativeInterval allocations.
|
|
// Should be chosen so that time_to_call_mallinfo / kNotifyNativeInterval is on the same order
|
|
// as object allocation time. time_to_call_mallinfo seems to be on the order of 1 usec
|
|
// on Android.
|
|
#ifdef __ANDROID__
|
|
static constexpr uint32_t kNotifyNativeInterval = 32;
|
|
#else
|
|
// Some host mallinfo() implementations are slow. And memory is less scarce.
|
|
static constexpr uint32_t kNotifyNativeInterval = 384;
|
|
#endif
|
|
|
|
// RegisterNativeAllocation checks immediately whether GC is needed if size exceeds the
|
|
// following. kCheckImmediatelyThreshold * kNotifyNativeInterval should be small enough to
|
|
// make it safe to allocate that many bytes between checks.
|
|
static constexpr size_t kCheckImmediatelyThreshold = 300000;
|
|
|
|
// How often we allow heap trimming to happen (nanoseconds).
|
|
static constexpr uint64_t kHeapTrimWait = MsToNs(5000);
|
|
// How long we wait after a transition request to perform a collector transition (nanoseconds).
|
|
static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000);
|
|
// Whether the transition-wait applies or not. Zero wait will stress the
|
|
// transition code and collector, but increases jank probability.
|
|
DECLARE_RUNTIME_DEBUG_FLAG(kStressCollectorTransition);
|
|
|
|
// Create a heap with the requested sizes. The possible empty
|
|
// image_file_names names specify Spaces to load based on
|
|
// ImageWriter output.
|
|
Heap(size_t initial_size,
|
|
size_t growth_limit,
|
|
size_t min_free,
|
|
size_t max_free,
|
|
double target_utilization,
|
|
double foreground_heap_growth_multiplier,
|
|
size_t stop_for_native_allocs,
|
|
size_t capacity,
|
|
size_t non_moving_space_capacity,
|
|
const std::vector<std::string>& boot_class_path,
|
|
const std::vector<std::string>& boot_class_path_locations,
|
|
const std::string& image_file_name,
|
|
InstructionSet image_instruction_set,
|
|
CollectorType foreground_collector_type,
|
|
CollectorType background_collector_type,
|
|
space::LargeObjectSpaceType large_object_space_type,
|
|
size_t large_object_threshold,
|
|
size_t parallel_gc_threads,
|
|
size_t conc_gc_threads,
|
|
bool low_memory_mode,
|
|
size_t long_pause_threshold,
|
|
size_t long_gc_threshold,
|
|
bool ignore_target_footprint,
|
|
bool always_log_explicit_gcs,
|
|
bool use_tlab,
|
|
bool verify_pre_gc_heap,
|
|
bool verify_pre_sweeping_heap,
|
|
bool verify_post_gc_heap,
|
|
bool verify_pre_gc_rosalloc,
|
|
bool verify_pre_sweeping_rosalloc,
|
|
bool verify_post_gc_rosalloc,
|
|
bool gc_stress_mode,
|
|
bool measure_gc_performance,
|
|
bool use_homogeneous_space_compaction,
|
|
bool use_generational_cc,
|
|
uint64_t min_interval_homogeneous_space_compaction_by_oom,
|
|
bool dump_region_info_before_gc,
|
|
bool dump_region_info_after_gc);
|
|
|
|
~Heap();
|
|
|
|
// Allocates and initializes storage for an object instance.
|
|
template <bool kInstrumented = true, typename PreFenceVisitor>
|
|
mirror::Object* AllocObject(Thread* self,
|
|
ObjPtr<mirror::Class> klass,
|
|
size_t num_bytes,
|
|
const PreFenceVisitor& pre_fence_visitor)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!*gc_complete_lock_,
|
|
!*pending_task_lock_,
|
|
!*backtrace_lock_,
|
|
!process_state_update_lock_,
|
|
!Roles::uninterruptible_) {
|
|
return AllocObjectWithAllocator<kInstrumented>(self,
|
|
klass,
|
|
num_bytes,
|
|
GetCurrentAllocator(),
|
|
pre_fence_visitor);
|
|
}
|
|
|
|
template <bool kInstrumented = true, typename PreFenceVisitor>
|
|
mirror::Object* AllocNonMovableObject(Thread* self,
|
|
ObjPtr<mirror::Class> klass,
|
|
size_t num_bytes,
|
|
const PreFenceVisitor& pre_fence_visitor)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!*gc_complete_lock_,
|
|
!*pending_task_lock_,
|
|
!*backtrace_lock_,
|
|
!process_state_update_lock_,
|
|
!Roles::uninterruptible_) {
|
|
mirror::Object* obj = AllocObjectWithAllocator<kInstrumented>(self,
|
|
klass,
|
|
num_bytes,
|
|
GetCurrentNonMovingAllocator(),
|
|
pre_fence_visitor);
|
|
// Java Heap Profiler check and sample allocation.
|
|
JHPCheckNonTlabSampleAllocation(self, obj, num_bytes);
|
|
return obj;
|
|
}
|
|
|
|
template <bool kInstrumented = true, bool kCheckLargeObject = true, typename PreFenceVisitor>
|
|
ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self,
|
|
ObjPtr<mirror::Class> klass,
|
|
size_t byte_count,
|
|
AllocatorType allocator,
|
|
const PreFenceVisitor& pre_fence_visitor)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!*gc_complete_lock_,
|
|
!*pending_task_lock_,
|
|
!*backtrace_lock_,
|
|
!process_state_update_lock_,
|
|
!Roles::uninterruptible_);
|
|
|
|
AllocatorType GetCurrentAllocator() const {
|
|
return current_allocator_;
|
|
}
|
|
|
|
AllocatorType GetCurrentNonMovingAllocator() const {
|
|
return current_non_moving_allocator_;
|
|
}
|
|
|
|
AllocatorType GetUpdatedAllocator(AllocatorType old_allocator) {
|
|
return (old_allocator == kAllocatorTypeNonMoving) ?
|
|
GetCurrentNonMovingAllocator() : GetCurrentAllocator();
|
|
}
|
|
|
|
// Visit all of the live objects in the heap.
|
|
template <typename Visitor>
|
|
ALWAYS_INLINE void VisitObjects(Visitor&& visitor)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
|
|
template <typename Visitor>
|
|
ALWAYS_INLINE void VisitObjectsPaused(Visitor&& visitor)
|
|
REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
|
|
|
|
void VisitReflectiveTargets(ReflectiveValueVisitor* visitor)
|
|
REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
|
|
|
|
void CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count)
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Inform the garbage collector of a non-malloc allocated native memory that might become
|
|
// reclaimable in the future as a result of Java garbage collection.
|
|
void RegisterNativeAllocation(JNIEnv* env, size_t bytes)
|
|
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
|
|
void RegisterNativeFree(JNIEnv* env, size_t bytes);
|
|
|
|
// Notify the garbage collector of malloc allocations that might be reclaimable
|
|
// as a result of Java garbage collection. Each such call represents approximately
|
|
// kNotifyNativeInterval such allocations.
|
|
void NotifyNativeAllocations(JNIEnv* env)
|
|
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
|
|
|
|
uint32_t GetNotifyNativeInterval() {
|
|
return kNotifyNativeInterval;
|
|
}
|
|
|
|
// Change the allocator, updates entrypoints.
|
|
void ChangeAllocator(AllocatorType allocator)
|
|
REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_);
|
|
|
|
// Change the collector to be one of the possible options (MS, CMS, SS).
|
|
void ChangeCollector(CollectorType collector_type)
|
|
REQUIRES(Locks::mutator_lock_);
|
|
|
|
// The given reference is believed to be to an object in the Java heap, check the soundness of it.
|
|
// TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a
|
|
// proper lock ordering for it.
|
|
void VerifyObjectBody(ObjPtr<mirror::Object> o) NO_THREAD_SAFETY_ANALYSIS;
|
|
|
|
// Consistency check of all live references.
|
|
void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_);
|
|
// Returns how many failures occured.
|
|
size_t VerifyHeapReferences(bool verify_referents = true)
|
|
REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
|
|
bool VerifyMissingCardMarks()
|
|
REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
|
|
|
|
// A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
|
|
// and doesn't abort on error, allowing the caller to report more
|
|
// meaningful diagnostics.
|
|
bool IsValidObjectAddress(const void* obj) const REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Faster alternative to IsHeapAddress since finding if an object is in the large object space is
|
|
// very slow.
|
|
bool IsNonDiscontinuousSpaceHeapAddress(const void* addr) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
|
|
// Requires the heap lock to be held.
|
|
bool IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
|
|
bool search_allocation_stack = true,
|
|
bool search_live_stack = true,
|
|
bool sorted = false)
|
|
REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
|
|
|
|
// Returns true if there is any chance that the object (obj) will move.
|
|
bool IsMovableObject(ObjPtr<mirror::Object> obj) const REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Enables us to compacting GC until objects are released.
|
|
void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
|
|
void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
|
|
|
|
// Temporarily disable thread flip for JNI critical calls.
|
|
void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
|
|
void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
|
|
void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_);
|
|
void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_);
|
|
|
|
// Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits.
|
|
// Mutator lock is required for GetContinuousSpaces.
|
|
void ClearMarkedObjects()
|
|
REQUIRES(Locks::heap_bitmap_lock_)
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Initiates an explicit garbage collection. Guarantees that a GC started after this call has
|
|
// completed.
|
|
void CollectGarbage(bool clear_soft_references, GcCause cause = kGcCauseExplicit)
|
|
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
|
|
|
|
// Does a concurrent GC, provided the GC numbered requested_gc_num has not already been
|
|
// completed. Should only be called by the GC daemon thread through runtime.
|
|
void ConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t requested_gc_num)
|
|
REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_,
|
|
!*pending_task_lock_, !process_state_update_lock_);
|
|
|
|
// Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
|
|
// The boolean decides whether to use IsAssignableFrom or == when comparing classes.
|
|
void CountInstances(const std::vector<Handle<mirror::Class>>& classes,
|
|
bool use_is_assignable_from,
|
|
uint64_t* counts)
|
|
REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
|
|
// implement dalvik.system.VMRuntime.clearGrowthLimit.
|
|
void ClearGrowthLimit();
|
|
|
|
// Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces
|
|
// which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit.
|
|
void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_);
|
|
|
|
// Target ideal heap utilization ratio, implements
|
|
// dalvik.system.VMRuntime.getTargetHeapUtilization.
|
|
double GetTargetHeapUtilization() const {
|
|
return target_utilization_;
|
|
}
|
|
|
|
// Data structure memory usage tracking.
|
|
void RegisterGCAllocation(size_t bytes);
|
|
void RegisterGCDeAllocation(size_t bytes);
|
|
|
|
// Set the heap's private space pointers to be the same as the space based on it's type. Public
|
|
// due to usage by tests.
|
|
void SetSpaceAsDefault(space::ContinuousSpace* continuous_space)
|
|
REQUIRES(!Locks::heap_bitmap_lock_);
|
|
void AddSpace(space::Space* space)
|
|
REQUIRES(!Locks::heap_bitmap_lock_)
|
|
REQUIRES(Locks::mutator_lock_);
|
|
void RemoveSpace(space::Space* space)
|
|
REQUIRES(!Locks::heap_bitmap_lock_)
|
|
REQUIRES(Locks::mutator_lock_);
|
|
|
|
double GetPreGcWeightedAllocatedBytes() const {
|
|
return pre_gc_weighted_allocated_bytes_;
|
|
}
|
|
|
|
double GetPostGcWeightedAllocatedBytes() const {
|
|
return post_gc_weighted_allocated_bytes_;
|
|
}
|
|
|
|
void CalculatePreGcWeightedAllocatedBytes();
|
|
void CalculatePostGcWeightedAllocatedBytes();
|
|
uint64_t GetTotalGcCpuTime();
|
|
|
|
uint64_t GetProcessCpuStartTime() const {
|
|
return process_cpu_start_time_ns_;
|
|
}
|
|
|
|
uint64_t GetPostGCLastProcessCpuTime() const {
|
|
return post_gc_last_process_cpu_time_ns_;
|
|
}
|
|
|
|
// Set target ideal heap utilization ratio, implements
|
|
// dalvik.system.VMRuntime.setTargetHeapUtilization.
|
|
void SetTargetHeapUtilization(float target);
|
|
|
|
// For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
|
|
// from the system. Doesn't allow the space to exceed its growth limit.
|
|
void SetIdealFootprint(size_t max_allowed_footprint);
|
|
|
|
// Blocks the caller until the garbage collector becomes idle and returns the type of GC we
|
|
// waited for. Only waits for running collections, ignoring a requested but unstarted GC. Only
|
|
// heuristic, since a new GC may have started by the time we return.
|
|
collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) REQUIRES(!*gc_complete_lock_);
|
|
|
|
// Update the heap's process state to a new value, may cause compaction to occur.
|
|
void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state)
|
|
REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_);
|
|
|
|
bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS {
|
|
// No lock since vector empty is thread safe.
|
|
return !continuous_spaces_.empty();
|
|
}
|
|
|
|
const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return continuous_spaces_;
|
|
}
|
|
|
|
const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
|
|
return discontinuous_spaces_;
|
|
}
|
|
|
|
const collector::Iteration* GetCurrentGcIteration() const {
|
|
return ¤t_gc_iteration_;
|
|
}
|
|
collector::Iteration* GetCurrentGcIteration() {
|
|
return ¤t_gc_iteration_;
|
|
}
|
|
|
|
// Enable verification of object references when the runtime is sufficiently initialized.
|
|
void EnableObjectValidation() {
|
|
verify_object_mode_ = kVerifyObjectSupport;
|
|
if (verify_object_mode_ > kVerifyObjectModeDisabled) {
|
|
VerifyHeap();
|
|
}
|
|
}
|
|
|
|
// Disable object reference verification for image writing.
|
|
void DisableObjectValidation() {
|
|
verify_object_mode_ = kVerifyObjectModeDisabled;
|
|
}
|
|
|
|
// Other checks may be performed if we know the heap should be in a healthy state.
|
|
bool IsObjectValidationEnabled() const {
|
|
return verify_object_mode_ > kVerifyObjectModeDisabled;
|
|
}
|
|
|
|
// Returns true if low memory mode is enabled.
|
|
bool IsLowMemoryMode() const {
|
|
return low_memory_mode_;
|
|
}
|
|
|
|
// Returns the heap growth multiplier, this affects how much we grow the heap after a GC.
|
|
// Scales heap growth, min free, and max free.
|
|
double HeapGrowthMultiplier() const;
|
|
|
|
// Freed bytes can be negative in cases where we copy objects from a compacted space to a
|
|
// free-list backed space.
|
|
void RecordFree(uint64_t freed_objects, int64_t freed_bytes);
|
|
|
|
// Record the bytes freed by thread-local buffer revoke.
|
|
void RecordFreeRevoke();
|
|
|
|
accounting::CardTable* GetCardTable() const {
|
|
return card_table_.get();
|
|
}
|
|
|
|
accounting::ReadBarrierTable* GetReadBarrierTable() const {
|
|
return rb_table_.get();
|
|
}
|
|
|
|
void AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object);
|
|
|
|
// Returns the number of bytes currently allocated.
|
|
// The result should be treated as an approximation, if it is being concurrently updated.
|
|
size_t GetBytesAllocated() const {
|
|
return num_bytes_allocated_.load(std::memory_order_relaxed);
|
|
}
|
|
|
|
bool GetUseGenerationalCC() const {
|
|
return use_generational_cc_;
|
|
}
|
|
|
|
// Returns the number of objects currently allocated.
|
|
size_t GetObjectsAllocated() const
|
|
REQUIRES(!Locks::heap_bitmap_lock_);
|
|
|
|
// Returns the total number of objects allocated since the heap was created.
|
|
uint64_t GetObjectsAllocatedEver() const;
|
|
|
|
// Returns the total number of bytes allocated since the heap was created.
|
|
uint64_t GetBytesAllocatedEver() const;
|
|
|
|
// Returns the total number of objects freed since the heap was created.
|
|
// With default memory order, this should be viewed only as a hint.
|
|
uint64_t GetObjectsFreedEver(std::memory_order mo = std::memory_order_relaxed) const {
|
|
return total_objects_freed_ever_.load(mo);
|
|
}
|
|
|
|
// Returns the total number of bytes freed since the heap was created.
|
|
// With default memory order, this should be viewed only as a hint.
|
|
uint64_t GetBytesFreedEver(std::memory_order mo = std::memory_order_relaxed) const {
|
|
return total_bytes_freed_ever_.load(mo);
|
|
}
|
|
|
|
space::RegionSpace* GetRegionSpace() const {
|
|
return region_space_;
|
|
}
|
|
|
|
// Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
|
|
// consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
|
|
// were specified. Android apps start with a growth limit (small heap size) which is
|
|
// cleared/extended for large apps.
|
|
size_t GetMaxMemory() const {
|
|
// There are some race conditions in the allocation code that can cause bytes allocated to
|
|
// become larger than growth_limit_ in rare cases.
|
|
return std::max(GetBytesAllocated(), growth_limit_);
|
|
}
|
|
|
|
// Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently
|
|
// consumed by an application.
|
|
size_t GetTotalMemory() const;
|
|
|
|
// Returns approximately how much free memory we have until the next GC happens.
|
|
size_t GetFreeMemoryUntilGC() const {
|
|
return UnsignedDifference(target_footprint_.load(std::memory_order_relaxed),
|
|
GetBytesAllocated());
|
|
}
|
|
|
|
// Returns approximately how much free memory we have until the next OOME happens.
|
|
size_t GetFreeMemoryUntilOOME() const {
|
|
return UnsignedDifference(growth_limit_, GetBytesAllocated());
|
|
}
|
|
|
|
// Returns how much free memory we have until we need to grow the heap to perform an allocation.
|
|
// Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory.
|
|
size_t GetFreeMemory() const {
|
|
return UnsignedDifference(GetTotalMemory(),
|
|
num_bytes_allocated_.load(std::memory_order_relaxed));
|
|
}
|
|
|
|
// Get the space that corresponds to an object's address. Current implementation searches all
|
|
// spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
|
|
// TODO: consider using faster data structure like binary tree.
|
|
space::ContinuousSpace* FindContinuousSpaceFromObject(ObjPtr<mirror::Object>, bool fail_ok) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
space::ContinuousSpace* FindContinuousSpaceFromAddress(const mirror::Object* addr) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object>,
|
|
bool fail_ok) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
space::Space* FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
space::Space* FindSpaceFromAddress(const void* ptr) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
std::string DumpSpaceNameFromAddress(const void* addr) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_);
|
|
|
|
// Do a pending collector transition.
|
|
void DoPendingCollectorTransition()
|
|
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
|
|
|
|
// Deflate monitors, ... and trim the spaces.
|
|
void Trim(Thread* self) REQUIRES(!*gc_complete_lock_);
|
|
|
|
void RevokeThreadLocalBuffers(Thread* thread);
|
|
void RevokeRosAllocThreadLocalBuffers(Thread* thread);
|
|
void RevokeAllThreadLocalBuffers();
|
|
void AssertThreadLocalBuffersAreRevoked(Thread* thread);
|
|
void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
|
|
void RosAllocVerification(TimingLogger* timings, const char* name)
|
|
REQUIRES(Locks::mutator_lock_);
|
|
|
|
accounting::HeapBitmap* GetLiveBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
|
|
return live_bitmap_.get();
|
|
}
|
|
|
|
accounting::HeapBitmap* GetMarkBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
|
|
return mark_bitmap_.get();
|
|
}
|
|
|
|
accounting::ObjectStack* GetLiveStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
|
|
return live_stack_.get();
|
|
}
|
|
|
|
void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;
|
|
|
|
// Mark and empty stack.
|
|
void FlushAllocStack()
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(Locks::heap_bitmap_lock_);
|
|
|
|
// Revoke all the thread-local allocation stacks.
|
|
void RevokeAllThreadLocalAllocationStacks(Thread* self)
|
|
REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_);
|
|
|
|
// Mark all the objects in the allocation stack in the specified bitmap.
|
|
// TODO: Refactor?
|
|
void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1,
|
|
accounting::SpaceBitmap<kObjectAlignment>* bitmap2,
|
|
accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects,
|
|
accounting::ObjectStack* stack)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(Locks::heap_bitmap_lock_);
|
|
|
|
// Mark the specified allocation stack as live.
|
|
void MarkAllocStackAsLive(accounting::ObjectStack* stack)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(Locks::heap_bitmap_lock_);
|
|
|
|
// Unbind any bound bitmaps.
|
|
void UnBindBitmaps()
|
|
REQUIRES(Locks::heap_bitmap_lock_)
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Returns the boot image spaces. There may be multiple boot image spaces.
|
|
const std::vector<space::ImageSpace*>& GetBootImageSpaces() const {
|
|
return boot_image_spaces_;
|
|
}
|
|
|
|
bool ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
bool IsInBootImageOatFile(const void* p) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Get the start address of the boot images if any; otherwise returns 0.
|
|
uint32_t GetBootImagesStartAddress() const {
|
|
return boot_images_start_address_;
|
|
}
|
|
|
|
// Get the size of all boot images, including the heap and oat areas.
|
|
uint32_t GetBootImagesSize() const {
|
|
return boot_images_size_;
|
|
}
|
|
|
|
// Check if a pointer points to a boot image.
|
|
bool IsBootImageAddress(const void* p) const {
|
|
return reinterpret_cast<uintptr_t>(p) - boot_images_start_address_ < boot_images_size_;
|
|
}
|
|
|
|
space::DlMallocSpace* GetDlMallocSpace() const {
|
|
return dlmalloc_space_;
|
|
}
|
|
|
|
space::RosAllocSpace* GetRosAllocSpace() const {
|
|
return rosalloc_space_;
|
|
}
|
|
|
|
// Return the corresponding rosalloc space.
|
|
space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
space::MallocSpace* GetNonMovingSpace() const {
|
|
return non_moving_space_;
|
|
}
|
|
|
|
space::LargeObjectSpace* GetLargeObjectsSpace() const {
|
|
return large_object_space_;
|
|
}
|
|
|
|
// Returns the free list space that may contain movable objects (the
|
|
// one that's not the non-moving space), either rosalloc_space_ or
|
|
// dlmalloc_space_.
|
|
space::MallocSpace* GetPrimaryFreeListSpace() {
|
|
if (kUseRosAlloc) {
|
|
DCHECK(rosalloc_space_ != nullptr);
|
|
// reinterpret_cast is necessary as the space class hierarchy
|
|
// isn't known (#included) yet here.
|
|
return reinterpret_cast<space::MallocSpace*>(rosalloc_space_);
|
|
} else {
|
|
DCHECK(dlmalloc_space_ != nullptr);
|
|
return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_);
|
|
}
|
|
}
|
|
|
|
void DumpSpaces(std::ostream& stream) const REQUIRES_SHARED(Locks::mutator_lock_);
|
|
std::string DumpSpaces() const REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// GC performance measuring
|
|
void DumpGcPerformanceInfo(std::ostream& os)
|
|
REQUIRES(!*gc_complete_lock_);
|
|
void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_);
|
|
|
|
// Thread pool.
|
|
void CreateThreadPool();
|
|
void DeleteThreadPool();
|
|
ThreadPool* GetThreadPool() {
|
|
return thread_pool_.get();
|
|
}
|
|
size_t GetParallelGCThreadCount() const {
|
|
return parallel_gc_threads_;
|
|
}
|
|
size_t GetConcGCThreadCount() const {
|
|
return conc_gc_threads_;
|
|
}
|
|
accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
|
|
void AddModUnionTable(accounting::ModUnionTable* mod_union_table);
|
|
|
|
accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space);
|
|
void AddRememberedSet(accounting::RememberedSet* remembered_set);
|
|
// Also deletes the remebered set.
|
|
void RemoveRememberedSet(space::Space* space);
|
|
|
|
bool IsCompilingBoot() const;
|
|
bool HasBootImageSpace() const {
|
|
return !boot_image_spaces_.empty();
|
|
}
|
|
|
|
ReferenceProcessor* GetReferenceProcessor() {
|
|
return reference_processor_.get();
|
|
}
|
|
TaskProcessor* GetTaskProcessor() {
|
|
return task_processor_.get();
|
|
}
|
|
|
|
bool HasZygoteSpace() const {
|
|
return zygote_space_ != nullptr;
|
|
}
|
|
|
|
// Returns the active concurrent copying collector.
|
|
collector::ConcurrentCopying* ConcurrentCopyingCollector() {
|
|
collector::ConcurrentCopying* active_collector =
|
|
active_concurrent_copying_collector_.load(std::memory_order_relaxed);
|
|
if (use_generational_cc_) {
|
|
DCHECK((active_collector == concurrent_copying_collector_) ||
|
|
(active_collector == young_concurrent_copying_collector_))
|
|
<< "active_concurrent_copying_collector: " << active_collector
|
|
<< " young_concurrent_copying_collector: " << young_concurrent_copying_collector_
|
|
<< " concurrent_copying_collector: " << concurrent_copying_collector_;
|
|
} else {
|
|
DCHECK_EQ(active_collector, concurrent_copying_collector_);
|
|
}
|
|
return active_collector;
|
|
}
|
|
|
|
CollectorType CurrentCollectorType() {
|
|
return collector_type_;
|
|
}
|
|
|
|
bool IsGcConcurrentAndMoving() const {
|
|
if (IsGcConcurrent() && IsMovingGc(collector_type_)) {
|
|
// Assume no transition when a concurrent moving collector is used.
|
|
DCHECK_EQ(collector_type_, foreground_collector_type_);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) {
|
|
MutexLock mu(self, *gc_complete_lock_);
|
|
return disable_moving_gc_count_ > 0;
|
|
}
|
|
|
|
// Request an asynchronous trim.
|
|
void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_);
|
|
|
|
// Retrieve the current GC number, i.e. the number n such that we completed n GCs so far.
|
|
// Provides acquire ordering, so that if we read this first, and then check whether a GC is
|
|
// required, we know that the GC number read actually preceded the test.
|
|
uint32_t GetCurrentGcNum() {
|
|
return gcs_completed_.load(std::memory_order_acquire);
|
|
}
|
|
|
|
// Request asynchronous GC. Observed_gc_num is the value of GetCurrentGcNum() when we started to
|
|
// evaluate the GC triggering condition. If a GC has been completed since then, we consider our
|
|
// job done. If we return true, then we ensured that gcs_completed_ will eventually be
|
|
// incremented beyond observed_gc_num. We return false only in corner cases in which we cannot
|
|
// ensure that.
|
|
bool RequestConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t observed_gc_num)
|
|
REQUIRES(!*pending_task_lock_);
|
|
|
|
// Whether or not we may use a garbage collector, used so that we only create collectors we need.
|
|
bool MayUseCollector(CollectorType type) const;
|
|
|
|
// Used by tests to reduce timinig-dependent flakiness in OOME behavior.
|
|
void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) {
|
|
min_interval_homogeneous_space_compaction_by_oom_ = interval;
|
|
}
|
|
|
|
// Helpers for android.os.Debug.getRuntimeStat().
|
|
uint64_t GetGcCount() const;
|
|
uint64_t GetGcTime() const;
|
|
uint64_t GetBlockingGcCount() const;
|
|
uint64_t GetBlockingGcTime() const;
|
|
void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
|
|
void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
|
|
uint64_t GetTotalTimeWaitingForGC() const {
|
|
return total_wait_time_;
|
|
}
|
|
|
|
// Perfetto Art Heap Profiler Support.
|
|
HeapSampler& GetHeapSampler() {
|
|
return heap_sampler_;
|
|
}
|
|
|
|
void InitPerfettoJavaHeapProf();
|
|
int CheckPerfettoJHPEnabled();
|
|
// In NonTlab case: Check whether we should report a sample allocation and if so report it.
|
|
// Also update state (bytes_until_sample).
|
|
// By calling JHPCheckNonTlabSampleAllocation from different functions for Large allocations and
|
|
// non-moving allocations we are able to use the stack to identify these allocations separately.
|
|
void JHPCheckNonTlabSampleAllocation(Thread* self,
|
|
mirror::Object* ret,
|
|
size_t alloc_size);
|
|
// In Tlab case: Calculate the next tlab size (location of next sample point) and whether
|
|
// a sample should be taken.
|
|
size_t JHPCalculateNextTlabSize(Thread* self,
|
|
size_t jhp_def_tlab_size,
|
|
size_t alloc_size,
|
|
bool* take_sample,
|
|
size_t* bytes_until_sample);
|
|
// Reduce the number of bytes to the next sample position by this adjustment.
|
|
void AdjustSampleOffset(size_t adjustment);
|
|
|
|
// Allocation tracking support
|
|
// Callers to this function use double-checked locking to ensure safety on allocation_records_
|
|
bool IsAllocTrackingEnabled() const {
|
|
return alloc_tracking_enabled_.load(std::memory_order_relaxed);
|
|
}
|
|
|
|
void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) {
|
|
alloc_tracking_enabled_.store(enabled, std::memory_order_relaxed);
|
|
}
|
|
|
|
// Return the current stack depth of allocation records.
|
|
size_t GetAllocTrackerStackDepth() const {
|
|
return alloc_record_depth_;
|
|
}
|
|
|
|
// Return the current stack depth of allocation records.
|
|
void SetAllocTrackerStackDepth(size_t alloc_record_depth) {
|
|
alloc_record_depth_ = alloc_record_depth;
|
|
}
|
|
|
|
AllocRecordObjectMap* GetAllocationRecords() const REQUIRES(Locks::alloc_tracker_lock_) {
|
|
return allocation_records_.get();
|
|
}
|
|
|
|
void SetAllocationRecords(AllocRecordObjectMap* records)
|
|
REQUIRES(Locks::alloc_tracker_lock_);
|
|
|
|
void VisitAllocationRecords(RootVisitor* visitor) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!Locks::alloc_tracker_lock_);
|
|
|
|
void SweepAllocationRecords(IsMarkedVisitor* visitor) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!Locks::alloc_tracker_lock_);
|
|
|
|
void DisallowNewAllocationRecords() const
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!Locks::alloc_tracker_lock_);
|
|
|
|
void AllowNewAllocationRecords() const
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!Locks::alloc_tracker_lock_);
|
|
|
|
void BroadcastForNewAllocationRecords() const
|
|
REQUIRES(!Locks::alloc_tracker_lock_);
|
|
|
|
void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_);
|
|
|
|
// Create a new alloc space and compact default alloc space to it.
|
|
HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact()
|
|
REQUIRES(!*gc_complete_lock_, !process_state_update_lock_);
|
|
bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const;
|
|
|
|
// Install an allocation listener.
|
|
void SetAllocationListener(AllocationListener* l);
|
|
// Remove an allocation listener. Note: the listener must not be deleted, as for performance
|
|
// reasons, we assume it stays valid when we read it (so that we don't require a lock).
|
|
void RemoveAllocationListener();
|
|
|
|
// Install a gc pause listener.
|
|
void SetGcPauseListener(GcPauseListener* l);
|
|
// Get the currently installed gc pause listener, or null.
|
|
GcPauseListener* GetGcPauseListener() {
|
|
return gc_pause_listener_.load(std::memory_order_acquire);
|
|
}
|
|
// Remove a gc pause listener. Note: the listener must not be deleted, as for performance
|
|
// reasons, we assume it stays valid when we read it (so that we don't require a lock).
|
|
void RemoveGcPauseListener();
|
|
|
|
const Verification* GetVerification() const;
|
|
|
|
void PostForkChildAction(Thread* self);
|
|
|
|
void TraceHeapSize(size_t heap_size);
|
|
|
|
bool AddHeapTask(gc::HeapTask* task);
|
|
|
|
private:
|
|
class ConcurrentGCTask;
|
|
class CollectorTransitionTask;
|
|
class HeapTrimTask;
|
|
class TriggerPostForkCCGcTask;
|
|
|
|
// Compact source space to target space. Returns the collector used.
|
|
collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space,
|
|
space::ContinuousMemMapAllocSpace* source_space,
|
|
GcCause gc_cause)
|
|
REQUIRES(Locks::mutator_lock_);
|
|
|
|
void LogGC(GcCause gc_cause, collector::GarbageCollector* collector);
|
|
void StartGC(Thread* self, GcCause cause, CollectorType collector_type)
|
|
REQUIRES(!*gc_complete_lock_);
|
|
void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_);
|
|
|
|
double CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,
|
|
uint64_t current_process_cpu_time) const;
|
|
|
|
// Create a mem map with a preferred base address.
|
|
static MemMap MapAnonymousPreferredAddress(const char* name,
|
|
uint8_t* request_begin,
|
|
size_t capacity,
|
|
std::string* out_error_str);
|
|
|
|
bool SupportHSpaceCompaction() const {
|
|
// Returns true if we can do hspace compaction
|
|
return main_space_backup_ != nullptr;
|
|
}
|
|
|
|
// Size_t saturating arithmetic
|
|
static ALWAYS_INLINE size_t UnsignedDifference(size_t x, size_t y) {
|
|
return x > y ? x - y : 0;
|
|
}
|
|
static ALWAYS_INLINE size_t UnsignedSum(size_t x, size_t y) {
|
|
return x + y >= x ? x + y : std::numeric_limits<size_t>::max();
|
|
}
|
|
|
|
static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
|
|
return
|
|
allocator_type != kAllocatorTypeRegionTLAB &&
|
|
allocator_type != kAllocatorTypeBumpPointer &&
|
|
allocator_type != kAllocatorTypeTLAB &&
|
|
allocator_type != kAllocatorTypeRegion;
|
|
}
|
|
static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) {
|
|
if (kUseReadBarrier) {
|
|
// Read barrier may have the TLAB allocator but is always concurrent. TODO: clean this up.
|
|
return true;
|
|
}
|
|
return
|
|
allocator_type != kAllocatorTypeTLAB &&
|
|
allocator_type != kAllocatorTypeBumpPointer;
|
|
}
|
|
static bool IsMovingGc(CollectorType collector_type) {
|
|
return
|
|
collector_type == kCollectorTypeCC ||
|
|
collector_type == kCollectorTypeSS ||
|
|
collector_type == kCollectorTypeCCBackground ||
|
|
collector_type == kCollectorTypeHomogeneousSpaceCompact;
|
|
}
|
|
bool ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Checks whether we should garbage collect:
|
|
ALWAYS_INLINE bool ShouldConcurrentGCForJava(size_t new_num_bytes_allocated);
|
|
float NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent);
|
|
void CheckGCForNative(Thread* self)
|
|
REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_);
|
|
|
|
accounting::ObjectStack* GetMarkStack() {
|
|
return mark_stack_.get();
|
|
}
|
|
|
|
// We don't force this to be inlined since it is a slow path.
|
|
template <bool kInstrumented, typename PreFenceVisitor>
|
|
mirror::Object* AllocLargeObject(Thread* self,
|
|
ObjPtr<mirror::Class>* klass,
|
|
size_t byte_count,
|
|
const PreFenceVisitor& pre_fence_visitor)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_,
|
|
!*backtrace_lock_, !process_state_update_lock_);
|
|
|
|
// Handles Allocate()'s slow allocation path with GC involved after an initial allocation
|
|
// attempt failed.
|
|
// Called with thread suspension disallowed, but re-enables it, and may suspend, internally.
|
|
// Returns null if instrumentation or the allocator changed.
|
|
mirror::Object* AllocateInternalWithGc(Thread* self,
|
|
AllocatorType allocator,
|
|
bool instrumented,
|
|
size_t num_bytes,
|
|
size_t* bytes_allocated,
|
|
size_t* usable_size,
|
|
size_t* bytes_tl_bulk_allocated,
|
|
ObjPtr<mirror::Class>* klass)
|
|
REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_)
|
|
REQUIRES(Roles::uninterruptible_)
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Allocate into a specific space.
|
|
mirror::Object* AllocateInto(Thread* self,
|
|
space::AllocSpace* space,
|
|
ObjPtr<mirror::Class> c,
|
|
size_t bytes)
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
|
|
// wrong space.
|
|
void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
|
|
// that the switch statement is constant optimized in the entrypoints.
|
|
template <const bool kInstrumented, const bool kGrow>
|
|
ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self,
|
|
AllocatorType allocator_type,
|
|
size_t alloc_size,
|
|
size_t* bytes_allocated,
|
|
size_t* usable_size,
|
|
size_t* bytes_tl_bulk_allocated)
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
mirror::Object* AllocWithNewTLAB(Thread* self,
|
|
AllocatorType allocator_type,
|
|
size_t alloc_size,
|
|
bool grow,
|
|
size_t* bytes_allocated,
|
|
size_t* usable_size,
|
|
size_t* bytes_tl_bulk_allocated)
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type)
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Are we out of memory, and thus should force a GC or fail?
|
|
// For concurrent collectors, out of memory is defined by growth_limit_.
|
|
// For nonconcurrent collectors it is defined by target_footprint_ unless grow is
|
|
// set. If grow is set, the limit is growth_limit_ and we adjust target_footprint_
|
|
// to accomodate the allocation.
|
|
ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type,
|
|
size_t alloc_size,
|
|
bool grow);
|
|
|
|
// Run the finalizers. If timeout is non zero, then we use the VMRuntime version.
|
|
void RunFinalization(JNIEnv* env, uint64_t timeout);
|
|
|
|
// Blocks the caller until the garbage collector becomes idle and returns the type of GC we
|
|
// waited for.
|
|
collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self)
|
|
REQUIRES(gc_complete_lock_);
|
|
|
|
void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time)
|
|
REQUIRES(!*pending_task_lock_);
|
|
|
|
void RequestConcurrentGCAndSaveObject(Thread* self,
|
|
bool force_full,
|
|
uint32_t observed_gc_num,
|
|
ObjPtr<mirror::Object>* obj)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!*pending_task_lock_);
|
|
|
|
static constexpr uint32_t GC_NUM_ANY = std::numeric_limits<uint32_t>::max();
|
|
|
|
// Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
|
|
// which type of Gc was actually run.
|
|
// We pass in the intended GC sequence number to ensure that multiple approximately concurrent
|
|
// requests result in a single GC; clearly redundant request will be pruned. A requested_gc_num
|
|
// of GC_NUM_ANY indicates that we should not prune redundant requests. (In the unlikely case
|
|
// that gcs_completed_ gets this big, we just accept a potential extra GC or two.)
|
|
collector::GcType CollectGarbageInternal(collector::GcType gc_plan,
|
|
GcCause gc_cause,
|
|
bool clear_soft_references,
|
|
uint32_t requested_gc_num)
|
|
REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_,
|
|
!*pending_task_lock_, !process_state_update_lock_);
|
|
|
|
void PreGcVerification(collector::GarbageCollector* gc)
|
|
REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
|
|
void PreGcVerificationPaused(collector::GarbageCollector* gc)
|
|
REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
|
|
void PrePauseRosAllocVerification(collector::GarbageCollector* gc)
|
|
REQUIRES(Locks::mutator_lock_);
|
|
void PreSweepingGcVerification(collector::GarbageCollector* gc)
|
|
REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
|
|
void PostGcVerification(collector::GarbageCollector* gc)
|
|
REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
|
|
void PostGcVerificationPaused(collector::GarbageCollector* gc)
|
|
REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
|
|
|
|
// Find a collector based on GC type.
|
|
collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type);
|
|
|
|
// Create the main free list malloc space, either a RosAlloc space or DlMalloc space.
|
|
void CreateMainMallocSpace(MemMap&& mem_map,
|
|
size_t initial_size,
|
|
size_t growth_limit,
|
|
size_t capacity);
|
|
|
|
// Create a malloc space based on a mem map. Does not set the space as default.
|
|
space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap&& mem_map,
|
|
size_t initial_size,
|
|
size_t growth_limit,
|
|
size_t capacity,
|
|
const char* name,
|
|
bool can_move_objects);
|
|
|
|
// Given the current contents of the alloc space, increase the allowed heap footprint to match
|
|
// the target utilization ratio. This should only be called immediately after a full garbage
|
|
// collection. bytes_allocated_before_gc is used to measure bytes / second for the period which
|
|
// the GC was run.
|
|
void GrowForUtilization(collector::GarbageCollector* collector_ran,
|
|
size_t bytes_allocated_before_gc = 0)
|
|
REQUIRES(!process_state_update_lock_);
|
|
|
|
size_t GetPercentFree();
|
|
|
|
// Swap the allocation stack with the live stack.
|
|
void SwapStacks() REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Clear cards and update the mod union table. When process_alloc_space_cards is true,
|
|
// if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do
|
|
// not process the alloc space if process_alloc_space_cards is false.
|
|
void ProcessCards(TimingLogger* timings,
|
|
bool use_rem_sets,
|
|
bool process_alloc_space_cards,
|
|
bool clear_alloc_space_cards)
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
// Push an object onto the allocation stack.
|
|
void PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
|
|
void PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
|
|
void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, ObjPtr<mirror::Object>* obj)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_);
|
|
|
|
void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_);
|
|
void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_);
|
|
|
|
// What kind of concurrency behavior is the runtime after? Currently true for concurrent mark
|
|
// sweep GC, false for other GC types.
|
|
bool IsGcConcurrent() const ALWAYS_INLINE {
|
|
return collector_type_ == kCollectorTypeCC ||
|
|
collector_type_ == kCollectorTypeCMS ||
|
|
collector_type_ == kCollectorTypeCCBackground;
|
|
}
|
|
|
|
// Trim the managed and native spaces by releasing unused memory back to the OS.
|
|
void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_);
|
|
|
|
// Trim 0 pages at the end of reference tables.
|
|
void TrimIndirectReferenceTables(Thread* self);
|
|
|
|
template <typename Visitor>
|
|
ALWAYS_INLINE void VisitObjectsInternal(Visitor&& visitor)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
|
|
template <typename Visitor>
|
|
ALWAYS_INLINE void VisitObjectsInternalRegionSpace(Visitor&& visitor)
|
|
REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
|
|
|
|
void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_);
|
|
|
|
// GC stress mode attempts to do one GC per unique backtrace.
|
|
void CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
REQUIRES(!*gc_complete_lock_, !*pending_task_lock_,
|
|
!*backtrace_lock_, !process_state_update_lock_);
|
|
|
|
collector::GcType NonStickyGcType() const {
|
|
return HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
|
|
}
|
|
|
|
// Return the amount of space we allow for native memory when deciding whether to
|
|
// collect. We collect when a weighted sum of Java memory plus native memory exceeds
|
|
// the similarly weighted sum of the Java heap size target and this value.
|
|
ALWAYS_INLINE size_t NativeAllocationGcWatermark() const {
|
|
// We keep the traditional limit of max_free_ in place for small heaps,
|
|
// but allow it to be adjusted upward for large heaps to limit GC overhead.
|
|
return target_footprint_.load(std::memory_order_relaxed) / 8 + max_free_;
|
|
}
|
|
|
|
ALWAYS_INLINE void IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke);
|
|
|
|
// On switching app from background to foreground, grow the heap size
|
|
// to incorporate foreground heap growth multiplier.
|
|
void GrowHeapOnJankPerceptibleSwitch() REQUIRES(!process_state_update_lock_);
|
|
|
|
// Update *_freed_ever_ counters to reflect current GC values.
|
|
void IncrementFreedEver();
|
|
|
|
// Remove a vlog code from heap-inl.h which is transitively included in half the world.
|
|
static void VlogHeapGrowth(size_t max_allowed_footprint, size_t new_footprint, size_t alloc_size);
|
|
|
|
// Return our best approximation of the number of bytes of native memory that
|
|
// are currently in use, and could possibly be reclaimed as an indirect result
|
|
// of a garbage collection.
|
|
size_t GetNativeBytes();
|
|
|
|
// All-known continuous spaces, where objects lie within fixed bounds.
|
|
std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
|
|
|
|
// All-known discontinuous spaces, where objects may be placed throughout virtual memory.
|
|
std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
|
|
|
|
// All-known alloc spaces, where objects may be or have been allocated.
|
|
std::vector<space::AllocSpace*> alloc_spaces_;
|
|
|
|
// A space where non-movable objects are allocated, when compaction is enabled it contains
|
|
// Classes, ArtMethods, ArtFields, and non moving objects.
|
|
space::MallocSpace* non_moving_space_;
|
|
|
|
// Space which we use for the kAllocatorTypeROSAlloc.
|
|
space::RosAllocSpace* rosalloc_space_;
|
|
|
|
// Space which we use for the kAllocatorTypeDlMalloc.
|
|
space::DlMallocSpace* dlmalloc_space_;
|
|
|
|
// The main space is the space which the GC copies to and from on process state updates. This
|
|
// space is typically either the dlmalloc_space_ or the rosalloc_space_.
|
|
space::MallocSpace* main_space_;
|
|
|
|
// The large object space we are currently allocating into.
|
|
space::LargeObjectSpace* large_object_space_;
|
|
|
|
// The card table, dirtied by the write barrier.
|
|
std::unique_ptr<accounting::CardTable> card_table_;
|
|
|
|
std::unique_ptr<accounting::ReadBarrierTable> rb_table_;
|
|
|
|
// A mod-union table remembers all of the references from the it's space to other spaces.
|
|
AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap>
|
|
mod_union_tables_;
|
|
|
|
// A remembered set remembers all of the references from the it's space to the target space.
|
|
AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap>
|
|
remembered_sets_;
|
|
|
|
// The current collector type.
|
|
CollectorType collector_type_;
|
|
// Which collector we use when the app is in the foreground.
|
|
CollectorType foreground_collector_type_;
|
|
// Which collector we will use when the app is notified of a transition to background.
|
|
CollectorType background_collector_type_;
|
|
// Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_.
|
|
CollectorType desired_collector_type_;
|
|
|
|
// Lock which guards pending tasks.
|
|
Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
|
|
|
|
// How many GC threads we may use for paused parts of garbage collection.
|
|
const size_t parallel_gc_threads_;
|
|
|
|
// How many GC threads we may use for unpaused parts of garbage collection.
|
|
const size_t conc_gc_threads_;
|
|
|
|
// Boolean for if we are in low memory mode.
|
|
const bool low_memory_mode_;
|
|
|
|
// If we get a pause longer than long pause log threshold, then we print out the GC after it
|
|
// finishes.
|
|
const size_t long_pause_log_threshold_;
|
|
|
|
// If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
|
|
const size_t long_gc_log_threshold_;
|
|
|
|
// Starting time of the new process; meant to be used for measuring total process CPU time.
|
|
uint64_t process_cpu_start_time_ns_;
|
|
|
|
// Last time (before and after) GC started; meant to be used to measure the
|
|
// duration between two GCs.
|
|
uint64_t pre_gc_last_process_cpu_time_ns_;
|
|
uint64_t post_gc_last_process_cpu_time_ns_;
|
|
|
|
// allocated_bytes * (current_process_cpu_time - [pre|post]_gc_last_process_cpu_time)
|
|
double pre_gc_weighted_allocated_bytes_;
|
|
double post_gc_weighted_allocated_bytes_;
|
|
|
|
// If we ignore the target footprint it lets the heap grow until it hits the heap capacity, this
|
|
// is useful for benchmarking since it reduces time spent in GC to a low %.
|
|
const bool ignore_target_footprint_;
|
|
|
|
// If we are running tests or some other configurations we might not actually
|
|
// want logs for explicit gcs since they can get spammy.
|
|
const bool always_log_explicit_gcs_;
|
|
|
|
// Lock which guards zygote space creation.
|
|
Mutex zygote_creation_lock_;
|
|
|
|
// Non-null iff we have a zygote space. Doesn't contain the large objects allocated before
|
|
// zygote space creation.
|
|
space::ZygoteSpace* zygote_space_;
|
|
|
|
// Minimum allocation size of large object.
|
|
size_t large_object_threshold_;
|
|
|
|
// Guards access to the state of GC, associated conditional variable is used to signal when a GC
|
|
// completes.
|
|
Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
|
|
std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
|
|
|
|
// Used to synchronize between JNI critical calls and the thread flip of the CC collector.
|
|
Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
|
|
std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_);
|
|
// This counter keeps track of how many threads are currently in a JNI critical section. This is
|
|
// incremented once per thread even with nested enters.
|
|
size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_);
|
|
bool thread_flip_running_ GUARDED_BY(thread_flip_lock_);
|
|
|
|
// Reference processor;
|
|
std::unique_ptr<ReferenceProcessor> reference_processor_;
|
|
|
|
// Task processor, proxies heap trim requests to the daemon threads.
|
|
std::unique_ptr<TaskProcessor> task_processor_;
|
|
|
|
// Collector type of the running GC.
|
|
volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_);
|
|
|
|
// Cause of the last running GC.
|
|
volatile GcCause last_gc_cause_ GUARDED_BY(gc_complete_lock_);
|
|
|
|
// The thread currently running the GC.
|
|
volatile Thread* thread_running_gc_ GUARDED_BY(gc_complete_lock_);
|
|
|
|
// Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
|
|
volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
|
|
collector::GcType next_gc_type_;
|
|
|
|
// Maximum size that the heap can reach.
|
|
size_t capacity_;
|
|
|
|
// The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
|
|
// programs it is "cleared" making it the same as capacity.
|
|
// Only weakly enforced for simultaneous allocations.
|
|
size_t growth_limit_;
|
|
|
|
// Target size (as in maximum allocatable bytes) for the heap. Weakly enforced as a limit for
|
|
// non-concurrent GC. Used as a guideline for computing concurrent_start_bytes_ in the
|
|
// concurrent GC case.
|
|
Atomic<size_t> target_footprint_;
|
|
|
|
// Computed with foreground-multiplier in GrowForUtilization() when run in
|
|
// jank non-perceptible state. On update to process state from background to
|
|
// foreground we set target_footprint_ to this value.
|
|
Mutex process_state_update_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
|
|
size_t min_foreground_target_footprint_ GUARDED_BY(process_state_update_lock_);
|
|
|
|
// When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
|
|
// it completes ahead of an allocation failing.
|
|
// A multiple of this is also used to determine when to trigger a GC in response to native
|
|
// allocation.
|
|
size_t concurrent_start_bytes_;
|
|
|
|
// Since the heap was created, how many bytes have been freed.
|
|
std::atomic<uint64_t> total_bytes_freed_ever_;
|
|
|
|
// Since the heap was created, how many objects have been freed.
|
|
std::atomic<uint64_t> total_objects_freed_ever_;
|
|
|
|
// Number of bytes currently allocated and not yet reclaimed. Includes active
|
|
// TLABS in their entirety, even if they have not yet been parceled out.
|
|
Atomic<size_t> num_bytes_allocated_;
|
|
|
|
// Number of registered native bytes allocated. Adjusted after each RegisterNativeAllocation and
|
|
// RegisterNativeFree. Used to help determine when to trigger GC for native allocations. Should
|
|
// not include bytes allocated through the system malloc, since those are implicitly included.
|
|
Atomic<size_t> native_bytes_registered_;
|
|
|
|
// Approximately the smallest value of GetNativeBytes() we've seen since the last GC.
|
|
Atomic<size_t> old_native_bytes_allocated_;
|
|
|
|
// Total number of native objects of which we were notified since the beginning of time, mod 2^32.
|
|
// Allows us to check for GC only roughly every kNotifyNativeInterval allocations.
|
|
Atomic<uint32_t> native_objects_notified_;
|
|
|
|
// Number of bytes freed by thread local buffer revokes. This will
|
|
// cancel out the ahead-of-time bulk counting of bytes allocated in
|
|
// rosalloc thread-local buffers. It is temporarily accumulated
|
|
// here to be subtracted from num_bytes_allocated_ later at the next
|
|
// GC.
|
|
Atomic<size_t> num_bytes_freed_revoke_;
|
|
|
|
// Info related to the current or previous GC iteration.
|
|
collector::Iteration current_gc_iteration_;
|
|
|
|
// Heap verification flags.
|
|
const bool verify_missing_card_marks_;
|
|
const bool verify_system_weaks_;
|
|
const bool verify_pre_gc_heap_;
|
|
const bool verify_pre_sweeping_heap_;
|
|
const bool verify_post_gc_heap_;
|
|
const bool verify_mod_union_table_;
|
|
bool verify_pre_gc_rosalloc_;
|
|
bool verify_pre_sweeping_rosalloc_;
|
|
bool verify_post_gc_rosalloc_;
|
|
const bool gc_stress_mode_;
|
|
|
|
// RAII that temporarily disables the rosalloc verification during
|
|
// the zygote fork.
|
|
class ScopedDisableRosAllocVerification {
|
|
private:
|
|
Heap* const heap_;
|
|
const bool orig_verify_pre_gc_;
|
|
const bool orig_verify_pre_sweeping_;
|
|
const bool orig_verify_post_gc_;
|
|
|
|
public:
|
|
explicit ScopedDisableRosAllocVerification(Heap* heap)
|
|
: heap_(heap),
|
|
orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_),
|
|
orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_),
|
|
orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) {
|
|
heap_->verify_pre_gc_rosalloc_ = false;
|
|
heap_->verify_pre_sweeping_rosalloc_ = false;
|
|
heap_->verify_post_gc_rosalloc_ = false;
|
|
}
|
|
~ScopedDisableRosAllocVerification() {
|
|
heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_;
|
|
heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_;
|
|
heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_;
|
|
}
|
|
};
|
|
|
|
// Parallel GC data structures.
|
|
std::unique_ptr<ThreadPool> thread_pool_;
|
|
|
|
// A bitmap that is set corresponding to the known live objects since the last GC cycle.
|
|
std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
|
|
// A bitmap that is set corresponding to the marked objects in the current GC cycle.
|
|
std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
|
|
|
|
// Mark stack that we reuse to avoid re-allocating the mark stack.
|
|
std::unique_ptr<accounting::ObjectStack> mark_stack_;
|
|
|
|
// Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
|
|
// to use the live bitmap as the old mark bitmap.
|
|
const size_t max_allocation_stack_size_;
|
|
std::unique_ptr<accounting::ObjectStack> allocation_stack_;
|
|
|
|
// Second allocation stack so that we can process allocation with the heap unlocked.
|
|
std::unique_ptr<accounting::ObjectStack> live_stack_;
|
|
|
|
// Allocator type.
|
|
AllocatorType current_allocator_;
|
|
const AllocatorType current_non_moving_allocator_;
|
|
|
|
// Which GCs we run in order when an allocation fails.
|
|
std::vector<collector::GcType> gc_plan_;
|
|
|
|
// Bump pointer spaces.
|
|
space::BumpPointerSpace* bump_pointer_space_;
|
|
// Temp space is the space which the semispace collector copies to.
|
|
space::BumpPointerSpace* temp_space_;
|
|
|
|
// Region space, used by the concurrent collector.
|
|
space::RegionSpace* region_space_;
|
|
|
|
// Minimum free guarantees that you always have at least min_free_ free bytes after growing for
|
|
// utilization, regardless of target utilization ratio.
|
|
const size_t min_free_;
|
|
|
|
// The ideal maximum free size, when we grow the heap for utilization.
|
|
const size_t max_free_;
|
|
|
|
// Target ideal heap utilization ratio.
|
|
double target_utilization_;
|
|
|
|
// How much more we grow the heap when we are a foreground app instead of background.
|
|
double foreground_heap_growth_multiplier_;
|
|
|
|
// The amount of native memory allocation since the last GC required to cause us to wait for a
|
|
// collection as a result of native allocation. Very large values can cause the device to run
|
|
// out of memory, due to lack of finalization to reclaim native memory. Making it too small can
|
|
// cause jank in apps like launcher that intentionally allocate large amounts of memory in rapid
|
|
// succession. (b/122099093) 1/4 to 1/3 of physical memory seems to be a good number.
|
|
const size_t stop_for_native_allocs_;
|
|
|
|
// Total time which mutators are paused or waiting for GC to complete.
|
|
uint64_t total_wait_time_;
|
|
|
|
// The current state of heap verification, may be enabled or disabled.
|
|
VerifyObjectMode verify_object_mode_;
|
|
|
|
// Compacting GC disable count, prevents compacting GC from running iff > 0.
|
|
size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_);
|
|
|
|
std::vector<collector::GarbageCollector*> garbage_collectors_;
|
|
collector::SemiSpace* semi_space_collector_;
|
|
Atomic<collector::ConcurrentCopying*> active_concurrent_copying_collector_;
|
|
collector::ConcurrentCopying* young_concurrent_copying_collector_;
|
|
collector::ConcurrentCopying* concurrent_copying_collector_;
|
|
|
|
const bool is_running_on_memory_tool_;
|
|
const bool use_tlab_;
|
|
|
|
// Pointer to the space which becomes the new main space when we do homogeneous space compaction.
|
|
// Use unique_ptr since the space is only added during the homogeneous compaction phase.
|
|
std::unique_ptr<space::MallocSpace> main_space_backup_;
|
|
|
|
// Minimal interval allowed between two homogeneous space compactions caused by OOM.
|
|
uint64_t min_interval_homogeneous_space_compaction_by_oom_;
|
|
|
|
// Times of the last homogeneous space compaction caused by OOM.
|
|
uint64_t last_time_homogeneous_space_compaction_by_oom_;
|
|
|
|
// Saved OOMs by homogeneous space compaction.
|
|
Atomic<size_t> count_delayed_oom_;
|
|
|
|
// Count for requested homogeneous space compaction.
|
|
Atomic<size_t> count_requested_homogeneous_space_compaction_;
|
|
|
|
// Count for ignored homogeneous space compaction.
|
|
Atomic<size_t> count_ignored_homogeneous_space_compaction_;
|
|
|
|
// Count for performed homogeneous space compaction.
|
|
Atomic<size_t> count_performed_homogeneous_space_compaction_;
|
|
|
|
// The number of garbage collections (either young or full, not trims or the like) we have
|
|
// completed since heap creation. We include requests that turned out to be impossible
|
|
// because they were disabled. We guard against wrapping, though that's unlikely.
|
|
// Increment is guarded by gc_complete_lock_.
|
|
Atomic<uint32_t> gcs_completed_;
|
|
|
|
// The number of the last garbage collection that has been requested. A value of gcs_completed
|
|
// + 1 indicates that another collection is needed or in progress. A value of gcs_completed_ or
|
|
// (logically) less means that no new GC has been requested.
|
|
Atomic<uint32_t> max_gc_requested_;
|
|
|
|
// Active tasks which we can modify (change target time, desired collector type, etc..).
|
|
CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_);
|
|
HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_);
|
|
|
|
// Whether or not we use homogeneous space compaction to avoid OOM errors.
|
|
bool use_homogeneous_space_compaction_for_oom_;
|
|
|
|
// If true, enable generational collection when using the Concurrent Copying
|
|
// (CC) collector, i.e. use sticky-bit CC for minor collections and (full) CC
|
|
// for major collections. Set in Heap constructor.
|
|
const bool use_generational_cc_;
|
|
|
|
// True if the currently running collection has made some thread wait.
|
|
bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_);
|
|
// The number of blocking GC runs.
|
|
uint64_t blocking_gc_count_;
|
|
// The total duration of blocking GC runs.
|
|
uint64_t blocking_gc_time_;
|
|
// The duration of the window for the GC count rate histograms.
|
|
static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000); // 10s.
|
|
// Maximum number of missed histogram windows for which statistics will be collected.
|
|
static constexpr uint64_t kGcCountRateHistogramMaxNumMissedWindows = 100;
|
|
// The last time when the GC count rate histograms were updated.
|
|
// This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s).
|
|
uint64_t last_update_time_gc_count_rate_histograms_;
|
|
// The running count of GC runs in the last window.
|
|
uint64_t gc_count_last_window_;
|
|
// The running count of blocking GC runs in the last window.
|
|
uint64_t blocking_gc_count_last_window_;
|
|
// The maximum number of buckets in the GC count rate histograms.
|
|
static constexpr size_t kGcCountRateMaxBucketCount = 200;
|
|
// The histogram of the number of GC invocations per window duration.
|
|
Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
|
|
// The histogram of the number of blocking GC invocations per window duration.
|
|
Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
|
|
|
|
// Allocation tracking support
|
|
Atomic<bool> alloc_tracking_enabled_;
|
|
std::unique_ptr<AllocRecordObjectMap> allocation_records_;
|
|
size_t alloc_record_depth_;
|
|
|
|
// Perfetto Java Heap Profiler support.
|
|
HeapSampler heap_sampler_;
|
|
|
|
// GC stress related data structures.
|
|
Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
|
|
// Debugging variables, seen backtraces vs unique backtraces.
|
|
Atomic<uint64_t> seen_backtrace_count_;
|
|
Atomic<uint64_t> unique_backtrace_count_;
|
|
// Stack trace hashes that we already saw,
|
|
std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_);
|
|
|
|
// We disable GC when we are shutting down the runtime in case there are daemon threads still
|
|
// allocating.
|
|
bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_);
|
|
|
|
// Turned on by -XX:DumpRegionInfoBeforeGC and -XX:DumpRegionInfoAfterGC to
|
|
// emit region info before and after each GC cycle.
|
|
bool dump_region_info_before_gc_;
|
|
bool dump_region_info_after_gc_;
|
|
|
|
// Boot image spaces.
|
|
std::vector<space::ImageSpace*> boot_image_spaces_;
|
|
|
|
// Boot image address range. Includes images and oat files.
|
|
uint32_t boot_images_start_address_;
|
|
uint32_t boot_images_size_;
|
|
|
|
// An installed allocation listener.
|
|
Atomic<AllocationListener*> alloc_listener_;
|
|
// An installed GC Pause listener.
|
|
Atomic<GcPauseListener*> gc_pause_listener_;
|
|
|
|
std::unique_ptr<Verification> verification_;
|
|
|
|
friend class CollectorTransitionTask;
|
|
friend class collector::GarbageCollector;
|
|
friend class collector::ConcurrentCopying;
|
|
friend class collector::MarkSweep;
|
|
friend class collector::SemiSpace;
|
|
friend class GCCriticalSection;
|
|
friend class ReferenceQueue;
|
|
friend class ScopedGCCriticalSection;
|
|
friend class ScopedInterruptibleGCCriticalSection;
|
|
friend class VerifyReferenceCardVisitor;
|
|
friend class VerifyReferenceVisitor;
|
|
friend class VerifyObjectVisitor;
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
|
|
};
|
|
|
|
} // namespace gc
|
|
} // namespace art
|
|
|
|
#endif // ART_RUNTIME_GC_HEAP_H_
|