3325 lines
127 KiB
C++
3325 lines
127 KiB
C++
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "runtime.h"
|
|
|
|
// sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
|
|
#include <sys/mount.h>
|
|
#ifdef __linux__
|
|
#include <linux/fs.h>
|
|
#include <sys/prctl.h>
|
|
#endif
|
|
|
|
#include <fcntl.h>
|
|
#include <signal.h>
|
|
#include <sys/syscall.h>
|
|
|
|
#if defined(__APPLE__)
|
|
#include <crt_externs.h> // for _NSGetEnviron
|
|
#endif
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <limits>
|
|
#include <string.h>
|
|
#include <thread>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
#include "android-base/strings.h"
|
|
|
|
#include "aot_class_linker.h"
|
|
#include "arch/arm/registers_arm.h"
|
|
#include "arch/arm64/registers_arm64.h"
|
|
#include "arch/context.h"
|
|
#include "arch/instruction_set_features.h"
|
|
#include "arch/x86/registers_x86.h"
|
|
#include "arch/x86_64/registers_x86_64.h"
|
|
#include "art_field-inl.h"
|
|
#include "art_method-inl.h"
|
|
#include "asm_support.h"
|
|
#include "base/aborting.h"
|
|
#include "base/arena_allocator.h"
|
|
#include "base/atomic.h"
|
|
#include "base/dumpable.h"
|
|
#include "base/enums.h"
|
|
#include "base/file_utils.h"
|
|
#include "base/flags.h"
|
|
#include "base/malloc_arena_pool.h"
|
|
#include "base/mem_map_arena_pool.h"
|
|
#include "base/memory_tool.h"
|
|
#include "base/mutex.h"
|
|
#include "base/os.h"
|
|
#include "base/quasi_atomic.h"
|
|
#include "base/sdk_version.h"
|
|
#include "base/stl_util.h"
|
|
#include "base/systrace.h"
|
|
#include "base/unix_file/fd_file.h"
|
|
#include "base/utils.h"
|
|
#include "class_linker-inl.h"
|
|
#include "class_root-inl.h"
|
|
#include "compiler_callbacks.h"
|
|
#include "debugger.h"
|
|
#include "dex/art_dex_file_loader.h"
|
|
#include "dex/dex_file_loader.h"
|
|
#include "elf_file.h"
|
|
#include "entrypoints/runtime_asm_entrypoints.h"
|
|
#include "experimental_flags.h"
|
|
#include "fault_handler.h"
|
|
#include "gc/accounting/card_table-inl.h"
|
|
#include "gc/heap.h"
|
|
#include "gc/scoped_gc_critical_section.h"
|
|
#include "gc/space/image_space.h"
|
|
#include "gc/space/space-inl.h"
|
|
#include "gc/system_weak.h"
|
|
#include "gc/task_processor.h"
|
|
#include "handle_scope-inl.h"
|
|
#include "hidden_api.h"
|
|
#include "image-inl.h"
|
|
#include "instrumentation.h"
|
|
#include "intern_table-inl.h"
|
|
#include "interpreter/interpreter.h"
|
|
#include "jit/jit.h"
|
|
#include "jit/jit_code_cache.h"
|
|
#include "jit/profile_saver.h"
|
|
#include "jni/java_vm_ext.h"
|
|
#include "jni/jni_id_manager.h"
|
|
#include "jni_id_type.h"
|
|
#include "linear_alloc.h"
|
|
#include "memory_representation.h"
|
|
#include "mirror/array.h"
|
|
#include "mirror/class-alloc-inl.h"
|
|
#include "mirror/class-inl.h"
|
|
#include "mirror/class_ext.h"
|
|
#include "mirror/class_loader-inl.h"
|
|
#include "mirror/emulated_stack_frame.h"
|
|
#include "mirror/field.h"
|
|
#include "mirror/method.h"
|
|
#include "mirror/method_handle_impl.h"
|
|
#include "mirror/method_handles_lookup.h"
|
|
#include "mirror/method_type.h"
|
|
#include "mirror/stack_trace_element.h"
|
|
#include "mirror/throwable.h"
|
|
#include "mirror/var_handle.h"
|
|
#include "monitor.h"
|
|
#include "native/dalvik_system_DexFile.h"
|
|
#include "native/dalvik_system_BaseDexClassLoader.h"
|
|
#include "native/dalvik_system_VMDebug.h"
|
|
#include "native/dalvik_system_VMRuntime.h"
|
|
#include "native/dalvik_system_VMStack.h"
|
|
#include "native/dalvik_system_ZygoteHooks.h"
|
|
#include "native/java_lang_Class.h"
|
|
#include "native/java_lang_Object.h"
|
|
#include "native/java_lang_String.h"
|
|
#include "native/java_lang_StringFactory.h"
|
|
#include "native/java_lang_System.h"
|
|
#include "native/java_lang_Thread.h"
|
|
#include "native/java_lang_Throwable.h"
|
|
#include "native/java_lang_VMClassLoader.h"
|
|
#include "native/java_lang_invoke_MethodHandleImpl.h"
|
|
#include "native/java_lang_ref_FinalizerReference.h"
|
|
#include "native/java_lang_ref_Reference.h"
|
|
#include "native/java_lang_reflect_Array.h"
|
|
#include "native/java_lang_reflect_Constructor.h"
|
|
#include "native/java_lang_reflect_Executable.h"
|
|
#include "native/java_lang_reflect_Field.h"
|
|
#include "native/java_lang_reflect_Method.h"
|
|
#include "native/java_lang_reflect_Parameter.h"
|
|
#include "native/java_lang_reflect_Proxy.h"
|
|
#include "native/java_util_concurrent_atomic_AtomicLong.h"
|
|
#include "native/libcore_util_CharsetUtils.h"
|
|
#include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
|
|
#include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
|
|
#include "native/sun_misc_Unsafe.h"
|
|
#include "native_bridge_art_interface.h"
|
|
#include "native_stack_dump.h"
|
|
#include "nativehelper/scoped_local_ref.h"
|
|
#include "oat.h"
|
|
#include "oat_file.h"
|
|
#include "oat_file_manager.h"
|
|
#include "oat_quick_method_header.h"
|
|
#include "object_callbacks.h"
|
|
#include "odr_statslog/odr_statslog.h"
|
|
#include "parsed_options.h"
|
|
#include "quick/quick_method_frame_info.h"
|
|
#include "reflection.h"
|
|
#include "runtime_callbacks.h"
|
|
#include "runtime_common.h"
|
|
#include "runtime_intrinsics.h"
|
|
#include "runtime_options.h"
|
|
#include "scoped_thread_state_change-inl.h"
|
|
#include "sigchain.h"
|
|
#include "signal_catcher.h"
|
|
#include "signal_set.h"
|
|
#include "thread.h"
|
|
#include "thread_list.h"
|
|
#include "ti/agent.h"
|
|
#include "trace.h"
|
|
#include "transaction.h"
|
|
#include "vdex_file.h"
|
|
#include "verifier/class_verifier.h"
|
|
#include "well_known_classes.h"
|
|
|
|
#ifdef ART_TARGET_ANDROID
|
|
#include <android/set_abort_message.h>
|
|
#include "com_android_apex.h"
|
|
namespace apex = com::android::apex;
|
|
|
|
#endif
|
|
|
|
// Static asserts to check the values of generated assembly-support macros.
|
|
#define ASM_DEFINE(NAME, EXPR) static_assert((NAME) == (EXPR), "Unexpected value of " #NAME);
|
|
#include "asm_defines.def"
|
|
#undef ASM_DEFINE
|
|
|
|
namespace art {
|
|
|
|
// If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
|
|
static constexpr bool kEnableJavaStackTraceHandler = false;
|
|
// Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
|
|
// linking.
|
|
static constexpr double kLowMemoryMinLoadFactor = 0.5;
|
|
static constexpr double kLowMemoryMaxLoadFactor = 0.8;
|
|
static constexpr double kNormalMinLoadFactor = 0.4;
|
|
static constexpr double kNormalMaxLoadFactor = 0.7;
|
|
|
|
// Extra added to the default heap growth multiplier. Used to adjust the GC ergonomics for the read
|
|
// barrier config.
|
|
static constexpr double kExtraDefaultHeapGrowthMultiplier = kUseReadBarrier ? 1.0 : 0.0;
|
|
|
|
Runtime* Runtime::instance_ = nullptr;
|
|
|
|
struct TraceConfig {
|
|
Trace::TraceMode trace_mode;
|
|
Trace::TraceOutputMode trace_output_mode;
|
|
std::string trace_file;
|
|
size_t trace_file_size;
|
|
};
|
|
|
|
namespace {
|
|
|
|
#ifdef __APPLE__
|
|
inline char** GetEnviron() {
|
|
// When Google Test is built as a framework on MacOS X, the environ variable
|
|
// is unavailable. Apple's documentation (man environ) recommends using
|
|
// _NSGetEnviron() instead.
|
|
return *_NSGetEnviron();
|
|
}
|
|
#else
|
|
// Some POSIX platforms expect you to declare environ. extern "C" makes
|
|
// it reside in the global namespace.
|
|
extern "C" char** environ;
|
|
inline char** GetEnviron() { return environ; }
|
|
#endif
|
|
|
|
void CheckConstants() {
|
|
CHECK_EQ(mirror::Array::kFirstElementOffset, mirror::Array::FirstElementOffset());
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Runtime::Runtime()
|
|
: resolution_method_(nullptr),
|
|
imt_conflict_method_(nullptr),
|
|
imt_unimplemented_method_(nullptr),
|
|
instruction_set_(InstructionSet::kNone),
|
|
compiler_callbacks_(nullptr),
|
|
is_zygote_(false),
|
|
is_primary_zygote_(false),
|
|
is_system_server_(false),
|
|
must_relocate_(false),
|
|
is_concurrent_gc_enabled_(true),
|
|
is_explicit_gc_disabled_(false),
|
|
image_dex2oat_enabled_(true),
|
|
default_stack_size_(0),
|
|
heap_(nullptr),
|
|
max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
|
|
monitor_list_(nullptr),
|
|
monitor_pool_(nullptr),
|
|
thread_list_(nullptr),
|
|
intern_table_(nullptr),
|
|
class_linker_(nullptr),
|
|
signal_catcher_(nullptr),
|
|
java_vm_(nullptr),
|
|
thread_pool_ref_count_(0u),
|
|
fault_message_(nullptr),
|
|
threads_being_born_(0),
|
|
shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
|
|
shutting_down_(false),
|
|
shutting_down_started_(false),
|
|
started_(false),
|
|
finished_starting_(false),
|
|
vfprintf_(nullptr),
|
|
exit_(nullptr),
|
|
abort_(nullptr),
|
|
stats_enabled_(false),
|
|
is_running_on_memory_tool_(kRunningOnMemoryTool),
|
|
instrumentation_(),
|
|
main_thread_group_(nullptr),
|
|
system_thread_group_(nullptr),
|
|
system_class_loader_(nullptr),
|
|
dump_gc_performance_on_shutdown_(false),
|
|
preinitialization_transactions_(),
|
|
verify_(verifier::VerifyMode::kNone),
|
|
target_sdk_version_(static_cast<uint32_t>(SdkVersion::kUnset)),
|
|
compat_framework_(),
|
|
implicit_null_checks_(false),
|
|
implicit_so_checks_(false),
|
|
implicit_suspend_checks_(false),
|
|
no_sig_chain_(false),
|
|
force_native_bridge_(false),
|
|
is_native_bridge_loaded_(false),
|
|
is_native_debuggable_(false),
|
|
async_exceptions_thrown_(false),
|
|
non_standard_exits_enabled_(false),
|
|
is_java_debuggable_(false),
|
|
monitor_timeout_enable_(false),
|
|
monitor_timeout_ns_(0),
|
|
zygote_max_failed_boots_(0),
|
|
experimental_flags_(ExperimentalFlags::kNone),
|
|
oat_file_manager_(nullptr),
|
|
is_low_memory_mode_(false),
|
|
madvise_willneed_vdex_filesize_(0),
|
|
madvise_willneed_odex_filesize_(0),
|
|
madvise_willneed_art_filesize_(0),
|
|
safe_mode_(false),
|
|
hidden_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
|
|
core_platform_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
|
|
test_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
|
|
dedupe_hidden_api_warnings_(true),
|
|
hidden_api_access_event_log_rate_(0),
|
|
dump_native_stack_on_sig_quit_(true),
|
|
// Initially assume we perceive jank in case the process state is never updated.
|
|
process_state_(kProcessStateJankPerceptible),
|
|
zygote_no_threads_(false),
|
|
verifier_logging_threshold_ms_(100),
|
|
verifier_missing_kthrow_fatal_(false),
|
|
perfetto_hprof_enabled_(false),
|
|
perfetto_javaheapprof_enabled_(false) {
|
|
static_assert(Runtime::kCalleeSaveSize ==
|
|
static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
|
|
CheckConstants();
|
|
|
|
std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
|
|
interpreter::CheckInterpreterAsmConstants();
|
|
callbacks_.reset(new RuntimeCallbacks());
|
|
for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
|
|
deoptimization_counts_[i] = 0u;
|
|
}
|
|
}
|
|
|
|
Runtime::~Runtime() {
|
|
ScopedTrace trace("Runtime shutdown");
|
|
if (is_native_bridge_loaded_) {
|
|
UnloadNativeBridge();
|
|
}
|
|
|
|
Thread* self = Thread::Current();
|
|
const bool attach_shutdown_thread = self == nullptr;
|
|
if (attach_shutdown_thread) {
|
|
// We can only create a peer if the runtime is actually started. This is only not true during
|
|
// some tests. If there is extreme memory pressure the allocation of the thread peer can fail.
|
|
// In this case we will just try again without allocating a peer so that shutdown can continue.
|
|
// Very few things are actually capable of distinguishing between the peer & peerless states so
|
|
// this should be fine.
|
|
bool thread_attached = AttachCurrentThread("Shutdown thread",
|
|
/* as_daemon= */ false,
|
|
GetSystemThreadGroup(),
|
|
/* create_peer= */ IsStarted());
|
|
if (UNLIKELY(!thread_attached)) {
|
|
LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer.";
|
|
CHECK(AttachCurrentThread("Shutdown thread (no java peer)",
|
|
/* as_daemon= */ false,
|
|
/* thread_group=*/ nullptr,
|
|
/* create_peer= */ false));
|
|
}
|
|
self = Thread::Current();
|
|
} else {
|
|
LOG(WARNING) << "Current thread not detached in Runtime shutdown";
|
|
}
|
|
|
|
if (dump_gc_performance_on_shutdown_) {
|
|
heap_->CalculatePreGcWeightedAllocatedBytes();
|
|
uint64_t process_cpu_end_time = ProcessCpuNanoTime();
|
|
ScopedLogSeverity sls(LogSeverity::INFO);
|
|
// This can't be called from the Heap destructor below because it
|
|
// could call RosAlloc::InspectAll() which needs the thread_list
|
|
// to be still alive.
|
|
heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
|
|
|
|
uint64_t process_cpu_time = process_cpu_end_time - heap_->GetProcessCpuStartTime();
|
|
uint64_t gc_cpu_time = heap_->GetTotalGcCpuTime();
|
|
float ratio = static_cast<float>(gc_cpu_time) / process_cpu_time;
|
|
LOG_STREAM(INFO) << "GC CPU time " << PrettyDuration(gc_cpu_time)
|
|
<< " out of process CPU time " << PrettyDuration(process_cpu_time)
|
|
<< " (" << ratio << ")"
|
|
<< "\n";
|
|
double pre_gc_weighted_allocated_bytes =
|
|
heap_->GetPreGcWeightedAllocatedBytes() / process_cpu_time;
|
|
// Here we don't use process_cpu_time for normalization, because VM shutdown is not a real
|
|
// GC. Both numerator and denominator take into account until the end of the last GC,
|
|
// instead of the whole process life time like pre_gc_weighted_allocated_bytes.
|
|
double post_gc_weighted_allocated_bytes =
|
|
heap_->GetPostGcWeightedAllocatedBytes() /
|
|
(heap_->GetPostGCLastProcessCpuTime() - heap_->GetProcessCpuStartTime());
|
|
|
|
LOG_STREAM(INFO) << "Average bytes allocated at GC start, weighted by CPU time between GCs: "
|
|
<< static_cast<uint64_t>(pre_gc_weighted_allocated_bytes)
|
|
<< " (" << PrettySize(pre_gc_weighted_allocated_bytes) << ")";
|
|
LOG_STREAM(INFO) << "Average bytes allocated at GC end, weighted by CPU time between GCs: "
|
|
<< static_cast<uint64_t>(post_gc_weighted_allocated_bytes)
|
|
<< " (" << PrettySize(post_gc_weighted_allocated_bytes) << ")"
|
|
<< "\n";
|
|
}
|
|
|
|
// Wait for the workers of thread pools to be created since there can't be any
|
|
// threads attaching during shutdown.
|
|
WaitForThreadPoolWorkersToStart();
|
|
if (jit_ != nullptr) {
|
|
jit_->WaitForWorkersToBeCreated();
|
|
// Stop the profile saver thread before marking the runtime as shutting down.
|
|
// The saver will try to dump the profiles before being sopped and that
|
|
// requires holding the mutator lock.
|
|
jit_->StopProfileSaver();
|
|
// Delete thread pool before the thread list since we don't want to wait forever on the
|
|
// JIT compiler threads. Also this should be run before marking the runtime
|
|
// as shutting down as some tasks may require mutator access.
|
|
jit_->DeleteThreadPool();
|
|
}
|
|
if (oat_file_manager_ != nullptr) {
|
|
oat_file_manager_->WaitForWorkersToBeCreated();
|
|
}
|
|
|
|
{
|
|
ScopedTrace trace2("Wait for shutdown cond");
|
|
MutexLock mu(self, *Locks::runtime_shutdown_lock_);
|
|
shutting_down_started_ = true;
|
|
while (threads_being_born_ > 0) {
|
|
shutdown_cond_->Wait(self);
|
|
}
|
|
SetShuttingDown();
|
|
}
|
|
// Shutdown and wait for the daemons.
|
|
CHECK(self != nullptr);
|
|
if (IsFinishedStarting()) {
|
|
ScopedTrace trace2("Waiting for Daemons");
|
|
self->ClearException();
|
|
self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
|
|
WellKnownClasses::java_lang_Daemons_stop);
|
|
}
|
|
|
|
// Shutdown any trace running.
|
|
Trace::Shutdown();
|
|
|
|
// Report death. Clients may require a working thread, still, so do it before GC completes and
|
|
// all non-daemon threads are done.
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
|
|
}
|
|
|
|
if (attach_shutdown_thread) {
|
|
DetachCurrentThread();
|
|
self = nullptr;
|
|
}
|
|
|
|
// Make sure to let the GC complete if it is running.
|
|
heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
|
|
heap_->DeleteThreadPool();
|
|
if (oat_file_manager_ != nullptr) {
|
|
oat_file_manager_->DeleteThreadPool();
|
|
}
|
|
DeleteThreadPool();
|
|
CHECK(thread_pool_ == nullptr);
|
|
|
|
// Make sure our internal threads are dead before we start tearing down things they're using.
|
|
GetRuntimeCallbacks()->StopDebugger();
|
|
// Deletion ordering is tricky. Null out everything we've deleted.
|
|
delete signal_catcher_;
|
|
signal_catcher_ = nullptr;
|
|
|
|
// Shutdown metrics reporting.
|
|
metrics_reporter_.reset();
|
|
|
|
// Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
|
|
// Also wait for daemon threads to quiesce, so that in addition to being "suspended", they
|
|
// no longer access monitor and thread list data structures. We leak user daemon threads
|
|
// themselves, since we have no mechanism for shutting them down.
|
|
{
|
|
ScopedTrace trace2("Delete thread list");
|
|
thread_list_->ShutDown();
|
|
}
|
|
|
|
// TODO Maybe do some locking.
|
|
for (auto& agent : agents_) {
|
|
agent->Unload();
|
|
}
|
|
|
|
// TODO Maybe do some locking
|
|
for (auto& plugin : plugins_) {
|
|
plugin.Unload();
|
|
}
|
|
|
|
// Finally delete the thread list.
|
|
// Thread_list_ can be accessed by "suspended" threads, e.g. in InflateThinLocked.
|
|
// We assume that by this point, we've waited long enough for things to quiesce.
|
|
delete thread_list_;
|
|
thread_list_ = nullptr;
|
|
|
|
// Delete the JIT after thread list to ensure that there is no remaining threads which could be
|
|
// accessing the instrumentation when we delete it.
|
|
if (jit_ != nullptr) {
|
|
VLOG(jit) << "Deleting jit";
|
|
jit_.reset(nullptr);
|
|
jit_code_cache_.reset(nullptr);
|
|
}
|
|
|
|
// Shutdown the fault manager if it was initialized.
|
|
fault_manager.Shutdown();
|
|
|
|
ScopedTrace trace2("Delete state");
|
|
delete monitor_list_;
|
|
monitor_list_ = nullptr;
|
|
delete monitor_pool_;
|
|
monitor_pool_ = nullptr;
|
|
delete class_linker_;
|
|
class_linker_ = nullptr;
|
|
delete heap_;
|
|
heap_ = nullptr;
|
|
delete intern_table_;
|
|
intern_table_ = nullptr;
|
|
delete oat_file_manager_;
|
|
oat_file_manager_ = nullptr;
|
|
Thread::Shutdown();
|
|
QuasiAtomic::Shutdown();
|
|
verifier::ClassVerifier::Shutdown();
|
|
|
|
// Destroy allocators before shutting down the MemMap because they may use it.
|
|
java_vm_.reset();
|
|
linear_alloc_.reset();
|
|
low_4gb_arena_pool_.reset();
|
|
arena_pool_.reset();
|
|
jit_arena_pool_.reset();
|
|
protected_fault_page_.Reset();
|
|
MemMap::Shutdown();
|
|
|
|
// TODO: acquire a static mutex on Runtime to avoid racing.
|
|
CHECK(instance_ == nullptr || instance_ == this);
|
|
instance_ = nullptr;
|
|
|
|
// Well-known classes must be deleted or it is impossible to successfully start another Runtime
|
|
// instance. We rely on a small initialization order issue in Runtime::Start() that requires
|
|
// elements of WellKnownClasses to be null, see b/65500943.
|
|
WellKnownClasses::Clear();
|
|
}
|
|
|
|
struct AbortState {
|
|
void Dump(std::ostream& os) const {
|
|
if (gAborting > 1) {
|
|
os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
|
|
DumpRecursiveAbort(os);
|
|
return;
|
|
}
|
|
gAborting++;
|
|
os << "Runtime aborting...\n";
|
|
if (Runtime::Current() == nullptr) {
|
|
os << "(Runtime does not yet exist!)\n";
|
|
DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
|
|
return;
|
|
}
|
|
Thread* self = Thread::Current();
|
|
|
|
// Dump all threads first and then the aborting thread. While this is counter the logical flow,
|
|
// it improves the chance of relevant data surviving in the Android logs.
|
|
|
|
DumpAllThreads(os, self);
|
|
|
|
if (self == nullptr) {
|
|
os << "(Aborting thread was not attached to runtime!)\n";
|
|
DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
|
|
} else {
|
|
os << "Aborting thread:\n";
|
|
if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
|
|
DumpThread(os, self);
|
|
} else {
|
|
if (Locks::mutator_lock_->SharedTryLock(self)) {
|
|
DumpThread(os, self);
|
|
Locks::mutator_lock_->SharedUnlock(self);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// No thread-safety analysis as we do explicitly test for holding the mutator lock.
|
|
void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
|
|
DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
|
|
self->Dump(os);
|
|
if (self->IsExceptionPending()) {
|
|
mirror::Throwable* exception = self->GetException();
|
|
os << "Pending exception " << exception->Dump();
|
|
}
|
|
}
|
|
|
|
void DumpAllThreads(std::ostream& os, Thread* self) const {
|
|
Runtime* runtime = Runtime::Current();
|
|
if (runtime != nullptr) {
|
|
ThreadList* thread_list = runtime->GetThreadList();
|
|
if (thread_list != nullptr) {
|
|
// Dump requires ThreadListLock and ThreadSuspendCountLock to not be held (they will be
|
|
// grabbed).
|
|
// TODO(b/134167395): Change Dump to work with the locks held, and have a loop with timeout
|
|
// acquiring the locks.
|
|
bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
|
|
bool tscl_already_held = Locks::thread_suspend_count_lock_->IsExclusiveHeld(self);
|
|
if (tll_already_held || tscl_already_held) {
|
|
os << "Skipping all-threads dump as locks are held:"
|
|
<< (tll_already_held ? "" : " thread_list_lock")
|
|
<< (tscl_already_held ? "" : " thread_suspend_count_lock")
|
|
<< "\n";
|
|
return;
|
|
}
|
|
bool ml_already_exlusively_held = Locks::mutator_lock_->IsExclusiveHeld(self);
|
|
if (ml_already_exlusively_held) {
|
|
os << "Skipping all-threads dump as mutator lock is exclusively held.";
|
|
return;
|
|
}
|
|
bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
|
|
if (!ml_already_held) {
|
|
os << "Dumping all threads without mutator lock held\n";
|
|
}
|
|
os << "All threads:\n";
|
|
thread_list->Dump(os);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For recursive aborts.
|
|
void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
|
|
// The only thing we'll attempt is dumping the native stack of the current thread. We will only
|
|
// try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
|
|
// die.
|
|
// Note: as we're using a global counter for the recursive abort detection, there is a potential
|
|
// race here and it is not OK to just print when the counter is "2" (one from
|
|
// Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
|
|
static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
|
|
if (gAborting < kOnlyPrintWhenRecursionLessThan) {
|
|
gAborting++;
|
|
DumpNativeStack(os, GetTid());
|
|
}
|
|
}
|
|
};
|
|
|
|
void Runtime::Abort(const char* msg) {
|
|
auto old_value = gAborting.fetch_add(1); // set before taking any locks
|
|
|
|
// Only set the first abort message.
|
|
if (old_value == 0) {
|
|
#ifdef ART_TARGET_ANDROID
|
|
android_set_abort_message(msg);
|
|
#else
|
|
// Set the runtime fault message in case our unexpected-signal code will run.
|
|
Runtime* current = Runtime::Current();
|
|
if (current != nullptr) {
|
|
current->SetFaultMessage(msg);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// May be coming from an unattached thread.
|
|
if (Thread::Current() == nullptr) {
|
|
Runtime* current = Runtime::Current();
|
|
if (current != nullptr && current->IsStarted() && !current->IsShuttingDownUnsafe()) {
|
|
// We do not flag this to the unexpected-signal handler so that that may dump the stack.
|
|
abort();
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
{
|
|
// Ensure that we don't have multiple threads trying to abort at once,
|
|
// which would result in significantly worse diagnostics.
|
|
ScopedThreadStateChange tsc(Thread::Current(), kNativeForAbort);
|
|
Locks::abort_lock_->ExclusiveLock(Thread::Current());
|
|
}
|
|
|
|
// Get any pending output out of the way.
|
|
fflush(nullptr);
|
|
|
|
// Many people have difficulty distinguish aborts from crashes,
|
|
// so be explicit.
|
|
// Note: use cerr on the host to print log lines immediately, so we get at least some output
|
|
// in case of recursive aborts. We lose annotation with the source file and line number
|
|
// here, which is a minor issue. The same is significantly more complicated on device,
|
|
// which is why we ignore the issue there.
|
|
AbortState state;
|
|
if (kIsTargetBuild) {
|
|
LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
|
|
} else {
|
|
std::cerr << Dumpable<AbortState>(state);
|
|
}
|
|
|
|
// Sometimes we dump long messages, and the Android abort message only retains the first line.
|
|
// In those cases, just log the message again, to avoid logcat limits.
|
|
if (msg != nullptr && strchr(msg, '\n') != nullptr) {
|
|
LOG(FATAL_WITHOUT_ABORT) << msg;
|
|
}
|
|
|
|
FlagRuntimeAbort();
|
|
|
|
// Call the abort hook if we have one.
|
|
if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
|
|
LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
|
|
Runtime::Current()->abort_();
|
|
// notreached
|
|
LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
|
|
}
|
|
|
|
abort();
|
|
// notreached
|
|
}
|
|
|
|
void Runtime::PreZygoteFork() {
|
|
if (GetJit() != nullptr) {
|
|
GetJit()->PreZygoteFork();
|
|
}
|
|
heap_->PreZygoteFork();
|
|
PreZygoteForkNativeBridge();
|
|
}
|
|
|
|
void Runtime::PostZygoteFork() {
|
|
jit::Jit* jit = GetJit();
|
|
if (jit != nullptr) {
|
|
jit->PostZygoteFork();
|
|
// Ensure that the threads in the JIT pool have been created with the right
|
|
// priority.
|
|
if (kIsDebugBuild && jit->GetThreadPool() != nullptr) {
|
|
jit->GetThreadPool()->CheckPthreadPriority(jit->GetThreadPoolPthreadPriority());
|
|
}
|
|
}
|
|
// Reset all stats.
|
|
ResetStats(0xFFFFFFFF);
|
|
}
|
|
|
|
void Runtime::CallExitHook(jint status) {
|
|
if (exit_ != nullptr) {
|
|
ScopedThreadStateChange tsc(Thread::Current(), kNative);
|
|
exit_(status);
|
|
LOG(WARNING) << "Exit hook returned instead of exiting!";
|
|
}
|
|
}
|
|
|
|
void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
|
|
GetInternTable()->SweepInternTableWeaks(visitor);
|
|
GetMonitorList()->SweepMonitorList(visitor);
|
|
GetJavaVM()->SweepJniWeakGlobals(visitor);
|
|
GetHeap()->SweepAllocationRecords(visitor);
|
|
if (GetJit() != nullptr) {
|
|
// Visit JIT literal tables. Objects in these tables are classes and strings
|
|
// and only classes can be affected by class unloading. The strings always
|
|
// stay alive as they are strongly interned.
|
|
// TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
|
|
// from mutators. See b/32167580.
|
|
GetJit()->GetCodeCache()->SweepRootTables(visitor);
|
|
}
|
|
thread_list_->SweepInterpreterCaches(visitor);
|
|
|
|
// All other generic system-weak holders.
|
|
for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
|
|
holder->Sweep(visitor);
|
|
}
|
|
}
|
|
|
|
bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
|
|
bool ignore_unrecognized,
|
|
RuntimeArgumentMap* runtime_options) {
|
|
Locks::Init();
|
|
InitLogging(/* argv= */ nullptr, Abort); // Calls Locks::Init() as a side effect.
|
|
bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
|
|
if (!parsed) {
|
|
LOG(ERROR) << "Failed to parse options";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Callback to check whether it is safe to call Abort (e.g., to use a call to
|
|
// LOG(FATAL)). It is only safe to call Abort if the runtime has been created,
|
|
// properly initialized, and has not shut down.
|
|
static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
|
|
Runtime* runtime = Runtime::Current();
|
|
return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
|
|
}
|
|
|
|
bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
|
|
// TODO: acquire a static mutex on Runtime to avoid racing.
|
|
if (Runtime::instance_ != nullptr) {
|
|
return false;
|
|
}
|
|
instance_ = new Runtime;
|
|
Locks::SetClientCallback(IsSafeToCallAbort);
|
|
if (!instance_->Init(std::move(runtime_options))) {
|
|
// TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
|
|
// leak memory, instead. Fix the destructor. b/19100793.
|
|
// delete instance_;
|
|
instance_ = nullptr;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
|
|
RuntimeArgumentMap runtime_options;
|
|
return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
|
|
Create(std::move(runtime_options));
|
|
}
|
|
|
|
static jobject CreateSystemClassLoader(Runtime* runtime) {
|
|
if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
|
|
return nullptr;
|
|
}
|
|
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
ClassLinker* cl = Runtime::Current()->GetClassLinker();
|
|
auto pointer_size = cl->GetImagePointerSize();
|
|
|
|
StackHandleScope<2> hs(soa.Self());
|
|
Handle<mirror::Class> class_loader_class(
|
|
hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader)));
|
|
CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
|
|
|
|
ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
|
|
"getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
|
|
CHECK(getSystemClassLoader != nullptr);
|
|
CHECK(getSystemClassLoader->IsStatic());
|
|
|
|
JValue result = InvokeWithJValues(soa,
|
|
nullptr,
|
|
getSystemClassLoader,
|
|
nullptr);
|
|
JNIEnv* env = soa.Self()->GetJniEnv();
|
|
ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
|
|
CHECK(system_class_loader.get() != nullptr);
|
|
|
|
soa.Self()->SetClassLoaderOverride(system_class_loader.get());
|
|
|
|
Handle<mirror::Class> thread_class(
|
|
hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread)));
|
|
CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
|
|
|
|
ArtField* contextClassLoader =
|
|
thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
|
|
CHECK(contextClassLoader != nullptr);
|
|
|
|
// We can't run in a transaction yet.
|
|
contextClassLoader->SetObject<false>(
|
|
soa.Self()->GetPeer(),
|
|
soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr());
|
|
|
|
return env->NewGlobalRef(system_class_loader.get());
|
|
}
|
|
|
|
std::string Runtime::GetCompilerExecutable() const {
|
|
if (!compiler_executable_.empty()) {
|
|
return compiler_executable_;
|
|
}
|
|
std::string compiler_executable = GetArtBinDir() + "/dex2oat";
|
|
if (kIsDebugBuild) {
|
|
compiler_executable += 'd';
|
|
}
|
|
if (kIsTargetBuild) {
|
|
compiler_executable += Is64BitInstructionSet(kRuntimeISA) ? "64" : "32";
|
|
}
|
|
return compiler_executable;
|
|
}
|
|
|
|
void Runtime::RunRootClinits(Thread* self) {
|
|
class_linker_->RunRootClinits(self);
|
|
|
|
GcRoot<mirror::Throwable>* exceptions[] = {
|
|
&pre_allocated_OutOfMemoryError_when_throwing_exception_,
|
|
// &pre_allocated_OutOfMemoryError_when_throwing_oome_, // Same class as above.
|
|
// &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_, // Same class as above.
|
|
&pre_allocated_NoClassDefFoundError_,
|
|
};
|
|
for (GcRoot<mirror::Throwable>* exception : exceptions) {
|
|
StackHandleScope<1> hs(self);
|
|
Handle<mirror::Class> klass = hs.NewHandle<mirror::Class>(exception->Read()->GetClass());
|
|
class_linker_->EnsureInitialized(self, klass, true, true);
|
|
self->AssertNoPendingException();
|
|
}
|
|
}
|
|
|
|
bool Runtime::Start() {
|
|
VLOG(startup) << "Runtime::Start entering";
|
|
|
|
CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
|
|
|
|
// If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
|
|
// Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
|
|
#if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
|
|
if (kIsDebugBuild) {
|
|
if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) != 0) {
|
|
PLOG(WARNING) << "Failed setting PR_SET_PTRACER to PR_SET_PTRACER_ANY";
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Restore main thread state to kNative as expected by native code.
|
|
Thread* self = Thread::Current();
|
|
|
|
self->TransitionFromRunnableToSuspended(kNative);
|
|
|
|
DoAndMaybeSwitchInterpreter([=](){ started_ = true; });
|
|
|
|
if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
|
|
ScopedObjectAccess soa(self);
|
|
StackHandleScope<3> hs(soa.Self());
|
|
|
|
ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
|
|
auto class_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::Class>(class_roots)));
|
|
auto string_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::String>(class_roots)));
|
|
auto field_class(hs.NewHandle<mirror::Class>(GetClassRoot<mirror::Field>(class_roots)));
|
|
|
|
class_linker_->EnsureInitialized(soa.Self(), class_class, true, true);
|
|
class_linker_->EnsureInitialized(soa.Self(), string_class, true, true);
|
|
self->AssertNoPendingException();
|
|
// Field class is needed for register_java_net_InetAddress in libcore, b/28153851.
|
|
class_linker_->EnsureInitialized(soa.Self(), field_class, true, true);
|
|
self->AssertNoPendingException();
|
|
}
|
|
|
|
// InitNativeMethods needs to be after started_ so that the classes
|
|
// it touches will have methods linked to the oat file if necessary.
|
|
{
|
|
ScopedTrace trace2("InitNativeMethods");
|
|
InitNativeMethods();
|
|
}
|
|
|
|
// IntializeIntrinsics needs to be called after the WellKnownClasses::Init in InitNativeMethods
|
|
// because in checking the invocation types of intrinsic methods ArtMethod::GetInvokeType()
|
|
// needs the SignaturePolymorphic annotation class which is initialized in WellKnownClasses::Init.
|
|
InitializeIntrinsics();
|
|
|
|
// InitializeCorePlatformApiPrivateFields() needs to be called after well known class
|
|
// initializtion in InitNativeMethods().
|
|
art::hiddenapi::InitializeCorePlatformApiPrivateFields();
|
|
|
|
// Initialize well known thread group values that may be accessed threads while attaching.
|
|
InitThreadGroups(self);
|
|
|
|
Thread::FinishStartup();
|
|
|
|
// Create the JIT either if we have to use JIT compilation or save profiling info. This is
|
|
// done after FinishStartup as the JIT pool needs Java thread peers, which require the main
|
|
// ThreadGroup to exist.
|
|
//
|
|
// TODO(calin): We use the JIT class as a proxy for JIT compilation and for
|
|
// recoding profiles. Maybe we should consider changing the name to be more clear it's
|
|
// not only about compiling. b/28295073.
|
|
if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
|
|
// Try to load compiler pre zygote to reduce PSS. b/27744947
|
|
std::string error_msg;
|
|
if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
|
|
LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
|
|
}
|
|
CreateJitCodeCache(/*rwx_memory_allowed=*/true);
|
|
CreateJit();
|
|
}
|
|
|
|
// Send the start phase event. We have to wait till here as this is when the main thread peer
|
|
// has just been generated, important root clinits have been run and JNI is completely functional.
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
|
|
}
|
|
|
|
system_class_loader_ = CreateSystemClassLoader(this);
|
|
|
|
if (!is_zygote_) {
|
|
if (is_native_bridge_loaded_) {
|
|
PreInitializeNativeBridge(".");
|
|
}
|
|
NativeBridgeAction action = force_native_bridge_
|
|
? NativeBridgeAction::kInitialize
|
|
: NativeBridgeAction::kUnload;
|
|
InitNonZygoteOrPostFork(self->GetJniEnv(),
|
|
/* is_system_server= */ false,
|
|
/* is_child_zygote= */ false,
|
|
action,
|
|
GetInstructionSetString(kRuntimeISA));
|
|
}
|
|
|
|
StartDaemonThreads();
|
|
|
|
// Make sure the environment is still clean (no lingering local refs from starting daemon
|
|
// threads).
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
self->GetJniEnv()->AssertLocalsEmpty();
|
|
}
|
|
|
|
// Send the initialized phase event. Send it after starting the Daemon threads so that agents
|
|
// cannot delay the daemon threads from starting forever.
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
|
|
}
|
|
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
self->GetJniEnv()->AssertLocalsEmpty();
|
|
}
|
|
|
|
VLOG(startup) << "Runtime::Start exiting";
|
|
finished_starting_ = true;
|
|
|
|
if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
|
|
ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
|
|
Trace::Start(trace_config_->trace_file.c_str(),
|
|
static_cast<int>(trace_config_->trace_file_size),
|
|
0,
|
|
trace_config_->trace_output_mode,
|
|
trace_config_->trace_mode,
|
|
0);
|
|
}
|
|
|
|
// In case we have a profile path passed as a command line argument,
|
|
// register the current class path for profiling now. Note that we cannot do
|
|
// this before we create the JIT and having it here is the most convenient way.
|
|
// This is used when testing profiles with dalvikvm command as there is no
|
|
// framework to register the dex files for profiling.
|
|
if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() &&
|
|
!jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
|
|
std::vector<std::string> dex_filenames;
|
|
Split(class_path_string_, ':', &dex_filenames);
|
|
|
|
// We pass "" as the package name because at this point we don't know it. It could be the
|
|
// Zygote or it could be a dalvikvm cmd line execution. The package name will be re-set during
|
|
// post-fork or during RegisterAppInfo.
|
|
//
|
|
// Also, it's ok to pass "" to the ref profile filename. It indicates we don't have
|
|
// a reference profile.
|
|
RegisterAppInfo(
|
|
/*package_name=*/ "",
|
|
dex_filenames,
|
|
jit_options_->GetProfileSaverOptions().GetProfilePath(),
|
|
/*ref_profile_filename=*/ "",
|
|
kVMRuntimePrimaryApk);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
|
|
DCHECK_GT(threads_being_born_, 0U);
|
|
threads_being_born_--;
|
|
if (shutting_down_started_ && threads_being_born_ == 0) {
|
|
shutdown_cond_->Broadcast(Thread::Current());
|
|
}
|
|
}
|
|
|
|
void Runtime::InitNonZygoteOrPostFork(
|
|
JNIEnv* env,
|
|
bool is_system_server,
|
|
// This is true when we are initializing a child-zygote. It requires
|
|
// native bridge initialization to be able to run guest native code in
|
|
// doPreload().
|
|
bool is_child_zygote,
|
|
NativeBridgeAction action,
|
|
const char* isa,
|
|
bool profile_system_server) {
|
|
if (is_native_bridge_loaded_) {
|
|
switch (action) {
|
|
case NativeBridgeAction::kUnload:
|
|
UnloadNativeBridge();
|
|
is_native_bridge_loaded_ = false;
|
|
break;
|
|
case NativeBridgeAction::kInitialize:
|
|
InitializeNativeBridge(env, isa);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (is_child_zygote) {
|
|
// If creating a child-zygote we only initialize native bridge. The rest of
|
|
// runtime post-fork logic would spin up threads for Binder and JDWP.
|
|
// Instead, the Java side of the child process will call a static main in a
|
|
// class specified by the parent.
|
|
return;
|
|
}
|
|
|
|
DCHECK(!IsZygote());
|
|
|
|
if (is_system_server) {
|
|
// Register the system server code paths.
|
|
// TODO: Ideally this should be done by the VMRuntime#RegisterAppInfo. However, right now
|
|
// the method is only called when we set up the profile. It should be called all the time
|
|
// (simillar to the apps). Once that's done this manual registration can be removed.
|
|
const char* system_server_classpath = getenv("SYSTEMSERVERCLASSPATH");
|
|
if (system_server_classpath == nullptr || (strlen(system_server_classpath) == 0)) {
|
|
LOG(WARNING) << "System server class path not set";
|
|
} else {
|
|
std::vector<std::string> jars = android::base::Split(system_server_classpath, ":");
|
|
app_info_.RegisterAppInfo("android",
|
|
jars,
|
|
/*cur_profile_path=*/ "",
|
|
/*ref_profile_path=*/ "",
|
|
AppInfo::CodeType::kPrimaryApk);
|
|
}
|
|
|
|
// Set the system server package name to "android".
|
|
// This is used to tell the difference between samples provided by system server
|
|
// and samples generated by other apps when processing boot image profiles.
|
|
SetProcessPackageName("android");
|
|
if (profile_system_server) {
|
|
jit_options_->SetWaitForJitNotificationsToSaveProfile(false);
|
|
VLOG(profiler) << "Enabling system server profiles";
|
|
}
|
|
}
|
|
|
|
// Create the thread pools.
|
|
heap_->CreateThreadPool();
|
|
// Avoid creating the runtime thread pool for system server since it will not be used and would
|
|
// waste memory.
|
|
if (!is_system_server) {
|
|
ScopedTrace timing("CreateThreadPool");
|
|
constexpr size_t kStackSize = 64 * KB;
|
|
constexpr size_t kMaxRuntimeWorkers = 4u;
|
|
const size_t num_workers =
|
|
std::min(static_cast<size_t>(std::thread::hardware_concurrency()), kMaxRuntimeWorkers);
|
|
MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
|
|
CHECK(thread_pool_ == nullptr);
|
|
thread_pool_.reset(new ThreadPool("Runtime", num_workers, /*create_peers=*/false, kStackSize));
|
|
thread_pool_->StartWorkers(Thread::Current());
|
|
}
|
|
|
|
// Reset the gc performance data and metrics at zygote fork so that the events from
|
|
// before fork aren't attributed to an app.
|
|
heap_->ResetGcPerformanceInfo();
|
|
GetMetrics()->Reset();
|
|
|
|
if (metrics_reporter_ != nullptr) {
|
|
// Now that we know if we are an app or system server, reload the metrics reporter config
|
|
// in case there are any difference.
|
|
metrics::ReportingConfig metrics_config =
|
|
metrics::ReportingConfig::FromFlags(is_system_server);
|
|
|
|
metrics_reporter_->ReloadConfig(metrics_config);
|
|
|
|
metrics::SessionData session_data{metrics::SessionData::CreateDefault()};
|
|
// Start the session id from 1 to avoid clashes with the default value.
|
|
// (better for debugability)
|
|
session_data.session_id = GetRandomNumber<int64_t>(1, std::numeric_limits<int64_t>::max());
|
|
// TODO: set session_data.compilation_reason and session_data.compiler_filter
|
|
metrics_reporter_->MaybeStartBackgroundThread(session_data);
|
|
// Also notify about any updates to the app info.
|
|
metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
|
|
}
|
|
|
|
StartSignalCatcher();
|
|
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
if (IsPerfettoHprofEnabled() &&
|
|
(Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
|
|
Runtime::Current()->IsSystemServer())) {
|
|
std::string err;
|
|
ScopedTrace tr("perfetto_hprof init.");
|
|
ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
|
|
if (!EnsurePerfettoPlugin(&err)) {
|
|
LOG(WARNING) << "Failed to load perfetto_hprof: " << err;
|
|
}
|
|
}
|
|
if (IsPerfettoJavaHeapStackProfEnabled() &&
|
|
(Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
|
|
Runtime::Current()->IsSystemServer())) {
|
|
// Marker used for dev tracing similar to above markers.
|
|
ScopedTrace tr("perfetto_javaheapprof init.");
|
|
}
|
|
if (Runtime::Current()->IsSystemServer()) {
|
|
std::string err;
|
|
ScopedTrace tr("odrefresh stats logging");
|
|
ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
|
|
// Report stats if available. This should be moved into ART Services when they are ready.
|
|
if (!odrefresh::UploadStatsIfAvailable(&err)) {
|
|
LOG(WARNING) << "Failed to upload odrefresh metrics: " << err;
|
|
}
|
|
}
|
|
|
|
if (LIKELY(automatically_set_jni_ids_indirection_) && CanSetJniIdType()) {
|
|
if (IsJavaDebuggable()) {
|
|
SetJniIdType(JniIdType::kIndices);
|
|
} else {
|
|
SetJniIdType(JniIdType::kPointer);
|
|
}
|
|
}
|
|
ATraceIntegerValue(
|
|
"profilebootclasspath",
|
|
static_cast<int>(jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()));
|
|
// Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
|
|
// this will pause the runtime (in the internal debugger implementation), so we probably want
|
|
// this to come last.
|
|
GetRuntimeCallbacks()->StartDebugger();
|
|
}
|
|
|
|
void Runtime::StartSignalCatcher() {
|
|
if (!is_zygote_) {
|
|
signal_catcher_ = new SignalCatcher();
|
|
}
|
|
}
|
|
|
|
bool Runtime::IsShuttingDown(Thread* self) {
|
|
MutexLock mu(self, *Locks::runtime_shutdown_lock_);
|
|
return IsShuttingDownLocked();
|
|
}
|
|
|
|
void Runtime::StartDaemonThreads() {
|
|
ScopedTrace trace(__FUNCTION__);
|
|
VLOG(startup) << "Runtime::StartDaemonThreads entering";
|
|
|
|
Thread* self = Thread::Current();
|
|
|
|
// Must be in the kNative state for calling native methods.
|
|
CHECK_EQ(self->GetState(), kNative);
|
|
|
|
JNIEnv* env = self->GetJniEnv();
|
|
env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
|
|
WellKnownClasses::java_lang_Daemons_start);
|
|
if (env->ExceptionCheck()) {
|
|
env->ExceptionDescribe();
|
|
LOG(FATAL) << "Error starting java.lang.Daemons";
|
|
}
|
|
|
|
VLOG(startup) << "Runtime::StartDaemonThreads exiting";
|
|
}
|
|
|
|
static size_t OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,
|
|
ArrayRef<const std::string> dex_locations,
|
|
std::vector<std::unique_ptr<const DexFile>>* dex_files) {
|
|
DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
|
|
size_t failure_count = 0;
|
|
const ArtDexFileLoader dex_file_loader;
|
|
for (size_t i = 0; i < dex_filenames.size(); i++) {
|
|
const char* dex_filename = dex_filenames[i].c_str();
|
|
const char* dex_location = dex_locations[i].c_str();
|
|
static constexpr bool kVerifyChecksum = true;
|
|
std::string error_msg;
|
|
if (!OS::FileExists(dex_filename)) {
|
|
LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
|
|
continue;
|
|
}
|
|
bool verify = Runtime::Current()->IsVerificationEnabled();
|
|
if (!dex_file_loader.Open(dex_filename,
|
|
dex_location,
|
|
verify,
|
|
kVerifyChecksum,
|
|
&error_msg,
|
|
dex_files)) {
|
|
LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
|
|
++failure_count;
|
|
}
|
|
}
|
|
return failure_count;
|
|
}
|
|
|
|
void Runtime::SetSentinel(ObjPtr<mirror::Object> sentinel) {
|
|
CHECK(sentinel_.Read() == nullptr);
|
|
CHECK(sentinel != nullptr);
|
|
CHECK(!heap_->IsMovableObject(sentinel));
|
|
sentinel_ = GcRoot<mirror::Object>(sentinel);
|
|
}
|
|
|
|
GcRoot<mirror::Object> Runtime::GetSentinel() {
|
|
return sentinel_;
|
|
}
|
|
|
|
static inline void CreatePreAllocatedException(Thread* self,
|
|
Runtime* runtime,
|
|
GcRoot<mirror::Throwable>* exception,
|
|
const char* exception_class_descriptor,
|
|
const char* msg)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK_EQ(self, Thread::Current());
|
|
ClassLinker* class_linker = runtime->GetClassLinker();
|
|
// Allocate an object without initializing the class to allow non-trivial Throwable.<clinit>().
|
|
ObjPtr<mirror::Class> klass = class_linker->FindSystemClass(self, exception_class_descriptor);
|
|
CHECK(klass != nullptr);
|
|
gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator();
|
|
ObjPtr<mirror::Throwable> exception_object = ObjPtr<mirror::Throwable>::DownCast(
|
|
klass->Alloc(self, allocator_type));
|
|
CHECK(exception_object != nullptr);
|
|
*exception = GcRoot<mirror::Throwable>(exception_object);
|
|
// Initialize the "detailMessage" field.
|
|
ObjPtr<mirror::String> message = mirror::String::AllocFromModifiedUtf8(self, msg);
|
|
CHECK(message != nullptr);
|
|
ObjPtr<mirror::Class> throwable = GetClassRoot<mirror::Throwable>(class_linker);
|
|
ArtField* detailMessageField =
|
|
throwable->FindDeclaredInstanceField("detailMessage", "Ljava/lang/String;");
|
|
CHECK(detailMessageField != nullptr);
|
|
detailMessageField->SetObject</* kTransactionActive= */ false>(exception->Read(), message);
|
|
}
|
|
|
|
void Runtime::InitializeApexVersions() {
|
|
std::vector<std::string_view> bcp_apexes;
|
|
for (std::string_view jar : Runtime::Current()->GetBootClassPathLocations()) {
|
|
if (LocationIsOnApex(jar)) {
|
|
size_t start = jar.find('/', 1);
|
|
if (start == std::string::npos) {
|
|
continue;
|
|
}
|
|
size_t end = jar.find('/', start + 1);
|
|
if (end == std::string::npos) {
|
|
continue;
|
|
}
|
|
std::string_view apex = jar.substr(start + 1, end - start - 1);
|
|
bcp_apexes.push_back(apex);
|
|
}
|
|
}
|
|
std::string result;
|
|
static const char* kApexFileName = "/apex/apex-info-list.xml";
|
|
// When running on host or chroot, we just encode empty markers.
|
|
if (!kIsTargetBuild || !OS::FileExists(kApexFileName)) {
|
|
for (uint32_t i = 0; i < bcp_apexes.size(); ++i) {
|
|
result += '/';
|
|
}
|
|
} else {
|
|
#ifdef ART_TARGET_ANDROID
|
|
auto info_list = apex::readApexInfoList(kApexFileName);
|
|
CHECK(info_list.has_value());
|
|
std::map<std::string_view, const apex::ApexInfo*> apex_infos;
|
|
for (const apex::ApexInfo& info : info_list->getApexInfo()) {
|
|
if (info.getIsActive()) {
|
|
apex_infos.emplace(info.getModuleName(), &info);
|
|
}
|
|
}
|
|
for (const std::string_view& str : bcp_apexes) {
|
|
auto info = apex_infos.find(str);
|
|
if (info == apex_infos.end() || info->second->getIsFactory()) {
|
|
result += '/';
|
|
} else {
|
|
// In case lastUpdateMillis field is populated in apex-info-list.xml, we
|
|
// prefer to use it as version scheme. If the field is missing we
|
|
// fallback to the version code of the APEX.
|
|
uint64_t version = info->second->hasLastUpdateMillis()
|
|
? info->second->getLastUpdateMillis()
|
|
: info->second->getVersionCode();
|
|
android::base::StringAppendF(&result, "/%" PRIu64, version);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
apex_versions_ = result;
|
|
}
|
|
|
|
void Runtime::ReloadAllFlags(const std::string& caller) {
|
|
FlagBase::ReloadAllFlags(caller);
|
|
}
|
|
|
|
bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
|
|
// (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
|
|
// Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
|
|
env_snapshot_.TakeSnapshot();
|
|
|
|
using Opt = RuntimeArgumentMap;
|
|
Opt runtime_options(std::move(runtime_options_in));
|
|
ScopedTrace trace(__FUNCTION__);
|
|
CHECK_EQ(static_cast<size_t>(sysconf(_SC_PAGE_SIZE)), kPageSize);
|
|
|
|
// Reload all the flags value (from system properties and device configs).
|
|
ReloadAllFlags(__FUNCTION__);
|
|
|
|
deny_art_apex_data_files_ = runtime_options.Exists(Opt::DenyArtApexDataFiles);
|
|
if (deny_art_apex_data_files_) {
|
|
// We will run slower without those files if the system has taken an ART APEX update.
|
|
LOG(WARNING) << "ART APEX data files are untrusted.";
|
|
}
|
|
|
|
// Early override for logging output.
|
|
if (runtime_options.Exists(Opt::UseStderrLogger)) {
|
|
android::base::SetLogger(android::base::StderrLogger);
|
|
}
|
|
|
|
MemMap::Init();
|
|
|
|
verifier_missing_kthrow_fatal_ = runtime_options.GetOrDefault(Opt::VerifierMissingKThrowFatal);
|
|
force_java_zygote_fork_loop_ = runtime_options.GetOrDefault(Opt::ForceJavaZygoteForkLoop);
|
|
perfetto_hprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoHprof);
|
|
perfetto_javaheapprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoJavaHeapStackProf);
|
|
|
|
// Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
|
|
// If we cannot reserve it, log a warning.
|
|
// Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
|
|
// is out-of-the-way enough that it should not collide with boot image mapping.
|
|
// Note: Don't request an error message. That will lead to a maps dump in the case of failure,
|
|
// leading to logspam.
|
|
{
|
|
constexpr uintptr_t kSentinelAddr =
|
|
RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), kPageSize);
|
|
protected_fault_page_ = MemMap::MapAnonymous("Sentinel fault page",
|
|
reinterpret_cast<uint8_t*>(kSentinelAddr),
|
|
kPageSize,
|
|
PROT_NONE,
|
|
/*low_4gb=*/ true,
|
|
/*reuse=*/ false,
|
|
/*reservation=*/ nullptr,
|
|
/*error_msg=*/ nullptr);
|
|
if (!protected_fault_page_.IsValid()) {
|
|
LOG(WARNING) << "Could not reserve sentinel fault page";
|
|
} else if (reinterpret_cast<uintptr_t>(protected_fault_page_.Begin()) != kSentinelAddr) {
|
|
LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
|
|
protected_fault_page_.Reset();
|
|
}
|
|
}
|
|
|
|
VLOG(startup) << "Runtime::Init -verbose:startup enabled";
|
|
|
|
QuasiAtomic::Startup();
|
|
|
|
oat_file_manager_ = new OatFileManager;
|
|
|
|
jni_id_manager_.reset(new jni::JniIdManager);
|
|
|
|
Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
|
|
Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
|
|
runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
|
|
|
|
image_location_ = runtime_options.GetOrDefault(Opt::Image);
|
|
|
|
SetInstructionSet(runtime_options.GetOrDefault(Opt::ImageInstructionSet));
|
|
boot_class_path_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
|
|
boot_class_path_locations_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathLocations);
|
|
DCHECK(boot_class_path_locations_.empty() ||
|
|
boot_class_path_locations_.size() == boot_class_path_.size());
|
|
if (boot_class_path_.empty()) {
|
|
// Try to extract the boot class path from the system boot image.
|
|
if (image_location_.empty()) {
|
|
LOG(ERROR) << "Empty boot class path, cannot continue without image.";
|
|
return false;
|
|
}
|
|
std::string system_oat_filename = ImageHeader::GetOatLocationFromImageLocation(
|
|
GetSystemImageFilename(image_location_.c_str(), instruction_set_));
|
|
std::string system_oat_location = ImageHeader::GetOatLocationFromImageLocation(
|
|
image_location_);
|
|
|
|
if (deny_art_apex_data_files_ && (LocationIsOnArtApexData(system_oat_filename) ||
|
|
LocationIsOnArtApexData(system_oat_location))) {
|
|
// This code path exists for completeness, but we don't expect it to be hit.
|
|
//
|
|
// `deny_art_apex_data_files` defaults to false unless set at the command-line. The image
|
|
// locations come from the -Ximage argument and it would need to be specified as being on
|
|
// the ART APEX data directory. This combination of flags would say apexdata is compromised,
|
|
// use apexdata to load image files, which is obviously not a good idea.
|
|
LOG(ERROR) << "Could not open boot oat file from untrusted location: " << system_oat_filename;
|
|
return false;
|
|
}
|
|
|
|
std::string error_msg;
|
|
std::unique_ptr<OatFile> oat_file(OatFile::Open(/*zip_fd=*/ -1,
|
|
system_oat_filename,
|
|
system_oat_location,
|
|
/*executable=*/ false,
|
|
/*low_4gb=*/ false,
|
|
&error_msg));
|
|
if (oat_file == nullptr) {
|
|
LOG(ERROR) << "Could not open boot oat file for extracting boot class path: " << error_msg;
|
|
return false;
|
|
}
|
|
const OatHeader& oat_header = oat_file->GetOatHeader();
|
|
const char* oat_boot_class_path = oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
|
|
if (oat_boot_class_path != nullptr) {
|
|
Split(oat_boot_class_path, ':', &boot_class_path_);
|
|
}
|
|
if (boot_class_path_.empty()) {
|
|
LOG(ERROR) << "Boot class path missing from boot image oat file " << oat_file->GetLocation();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
|
|
properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
|
|
|
|
compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
|
|
must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
|
|
is_zygote_ = runtime_options.Exists(Opt::Zygote);
|
|
is_primary_zygote_ = runtime_options.Exists(Opt::PrimaryZygote);
|
|
is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
|
|
image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
|
|
dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
|
|
|
|
vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
|
|
exit_ = runtime_options.GetOrDefault(Opt::HookExit);
|
|
abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
|
|
|
|
default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
|
|
|
|
compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
|
|
compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
|
|
for (const std::string& option : Runtime::Current()->GetCompilerOptions()) {
|
|
if (option == "--debuggable") {
|
|
SetJavaDebuggable(true);
|
|
break;
|
|
}
|
|
}
|
|
image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
|
|
|
|
finalizer_timeout_ms_ = runtime_options.GetOrDefault(Opt::FinalizerTimeoutMs);
|
|
max_spins_before_thin_lock_inflation_ =
|
|
runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
|
|
|
|
monitor_list_ = new MonitorList;
|
|
monitor_pool_ = MonitorPool::Create();
|
|
thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
|
|
intern_table_ = new InternTable;
|
|
|
|
monitor_timeout_enable_ = runtime_options.GetOrDefault(Opt::MonitorTimeoutEnable);
|
|
int monitor_timeout_ms = runtime_options.GetOrDefault(Opt::MonitorTimeout);
|
|
if (monitor_timeout_ms < Monitor::kMonitorTimeoutMinMs) {
|
|
LOG(WARNING) << "Monitor timeout too short: Increasing";
|
|
monitor_timeout_ms = Monitor::kMonitorTimeoutMinMs;
|
|
}
|
|
if (monitor_timeout_ms >= Monitor::kMonitorTimeoutMaxMs) {
|
|
LOG(WARNING) << "Monitor timeout too long: Decreasing";
|
|
monitor_timeout_ms = Monitor::kMonitorTimeoutMaxMs - 1;
|
|
}
|
|
monitor_timeout_ns_ = MsToNs(monitor_timeout_ms);
|
|
|
|
verify_ = runtime_options.GetOrDefault(Opt::Verify);
|
|
|
|
target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion);
|
|
|
|
// Set hidden API enforcement policy. The checks are disabled by default and
|
|
// we only enable them if:
|
|
// (a) runtime was started with a command line flag that enables the checks, or
|
|
// (b) Zygote forked a new process that is not exempt (see ZygoteHooks).
|
|
hidden_api_policy_ = runtime_options.GetOrDefault(Opt::HiddenApiPolicy);
|
|
DCHECK(!is_zygote_ || hidden_api_policy_ == hiddenapi::EnforcementPolicy::kDisabled);
|
|
|
|
// Set core platform API enforcement policy. The checks are disabled by default and
|
|
// can be enabled with a command line flag. AndroidRuntime will pass the flag if
|
|
// a system property is set.
|
|
core_platform_api_policy_ = runtime_options.GetOrDefault(Opt::CorePlatformApiPolicy);
|
|
if (core_platform_api_policy_ != hiddenapi::EnforcementPolicy::kDisabled) {
|
|
LOG(INFO) << "Core platform API reporting enabled, enforcing="
|
|
<< (core_platform_api_policy_ == hiddenapi::EnforcementPolicy::kEnabled ? "true" : "false");
|
|
}
|
|
|
|
no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
|
|
force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
|
|
|
|
Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
|
|
|
|
fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
|
|
|
|
if (runtime_options.GetOrDefault(Opt::Interpret)) {
|
|
GetInstrumentation()->ForceInterpretOnly();
|
|
}
|
|
|
|
zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
|
|
experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
|
|
is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
|
|
madvise_random_access_ = runtime_options.GetOrDefault(Opt::MadviseRandomAccess);
|
|
madvise_willneed_vdex_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedVdexFileSize);
|
|
madvise_willneed_odex_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedOdexFileSize);
|
|
madvise_willneed_art_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedArtFileSize);
|
|
|
|
jni_ids_indirection_ = runtime_options.GetOrDefault(Opt::OpaqueJniIds);
|
|
automatically_set_jni_ids_indirection_ =
|
|
runtime_options.GetOrDefault(Opt::AutoPromoteOpaqueJniIds);
|
|
|
|
plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
|
|
agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
|
|
// TODO Add back in -agentlib
|
|
// for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
|
|
// agents_.push_back(lib);
|
|
// }
|
|
|
|
float foreground_heap_growth_multiplier;
|
|
if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
|
|
// If low memory mode, use 1.0 as the multiplier by default.
|
|
foreground_heap_growth_multiplier = 1.0f;
|
|
} else {
|
|
foreground_heap_growth_multiplier =
|
|
runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) +
|
|
kExtraDefaultHeapGrowthMultiplier;
|
|
}
|
|
XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
|
|
|
|
// Generational CC collection is currently only compatible with Baker read barriers.
|
|
bool use_generational_cc = kUseBakerReadBarrier && xgc_option.generational_cc;
|
|
|
|
heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
|
|
runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
|
|
runtime_options.GetOrDefault(Opt::HeapMinFree),
|
|
runtime_options.GetOrDefault(Opt::HeapMaxFree),
|
|
runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
|
|
foreground_heap_growth_multiplier,
|
|
runtime_options.GetOrDefault(Opt::StopForNativeAllocs),
|
|
runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
|
|
runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
|
|
GetBootClassPath(),
|
|
GetBootClassPathLocations(),
|
|
image_location_,
|
|
instruction_set_,
|
|
// Override the collector type to CC if the read barrier config.
|
|
kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
|
|
kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
|
|
: runtime_options.GetOrDefault(Opt::BackgroundGc),
|
|
runtime_options.GetOrDefault(Opt::LargeObjectSpace),
|
|
runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
|
|
runtime_options.GetOrDefault(Opt::ParallelGCThreads),
|
|
runtime_options.GetOrDefault(Opt::ConcGCThreads),
|
|
runtime_options.Exists(Opt::LowMemoryMode),
|
|
runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
|
|
runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
|
|
runtime_options.Exists(Opt::IgnoreMaxFootprint),
|
|
runtime_options.GetOrDefault(Opt::AlwaysLogExplicitGcs),
|
|
runtime_options.GetOrDefault(Opt::UseTLAB),
|
|
xgc_option.verify_pre_gc_heap_,
|
|
xgc_option.verify_pre_sweeping_heap_,
|
|
xgc_option.verify_post_gc_heap_,
|
|
xgc_option.verify_pre_gc_rosalloc_,
|
|
xgc_option.verify_pre_sweeping_rosalloc_,
|
|
xgc_option.verify_post_gc_rosalloc_,
|
|
xgc_option.gcstress_,
|
|
xgc_option.measure_,
|
|
runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
|
|
use_generational_cc,
|
|
runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs),
|
|
runtime_options.Exists(Opt::DumpRegionInfoBeforeGC),
|
|
runtime_options.Exists(Opt::DumpRegionInfoAfterGC));
|
|
|
|
dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
|
|
|
|
bool has_explicit_jdwp_options = runtime_options.Get(Opt::JdwpOptions) != nullptr;
|
|
jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions);
|
|
jdwp_provider_ = CanonicalizeJdwpProvider(runtime_options.GetOrDefault(Opt::JdwpProvider),
|
|
IsJavaDebuggable());
|
|
switch (jdwp_provider_) {
|
|
case JdwpProvider::kNone: {
|
|
VLOG(jdwp) << "Disabling all JDWP support.";
|
|
if (!jdwp_options_.empty()) {
|
|
bool has_transport = jdwp_options_.find("transport") != std::string::npos;
|
|
std::string adb_connection_args =
|
|
std::string(" -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_;
|
|
if (has_explicit_jdwp_options) {
|
|
LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable "
|
|
<< "jdwp with one of:" << std::endl
|
|
<< " -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so "
|
|
<< "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl
|
|
<< (has_transport ? "" : adb_connection_args);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case JdwpProvider::kAdbConnection: {
|
|
constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so"
|
|
: "libadbconnection.so";
|
|
plugins_.push_back(Plugin::Create(plugin_name));
|
|
break;
|
|
}
|
|
case JdwpProvider::kUnset: {
|
|
LOG(FATAL) << "Illegal jdwp provider " << jdwp_provider_ << " was not filtered out!";
|
|
}
|
|
}
|
|
callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
|
|
|
|
jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
|
|
if (IsAotCompiler()) {
|
|
// If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
|
|
// this case.
|
|
// If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
|
|
// null and we don't create the jit.
|
|
jit_options_->SetUseJitCompilation(false);
|
|
jit_options_->SetSaveProfilingInfo(false);
|
|
}
|
|
|
|
// Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
|
|
// can't be trimmed as easily.
|
|
const bool use_malloc = IsAotCompiler();
|
|
if (use_malloc) {
|
|
arena_pool_.reset(new MallocArenaPool());
|
|
jit_arena_pool_.reset(new MallocArenaPool());
|
|
} else {
|
|
arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false));
|
|
jit_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false, "CompilerMetadata"));
|
|
}
|
|
|
|
if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
|
|
// 4gb, no malloc. Explanation in header.
|
|
low_4gb_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ true));
|
|
}
|
|
linear_alloc_.reset(CreateLinearAlloc());
|
|
|
|
BlockSignals();
|
|
InitPlatformSignalHandlers();
|
|
|
|
// Change the implicit checks flags based on runtime architecture.
|
|
switch (kRuntimeISA) {
|
|
case InstructionSet::kArm:
|
|
case InstructionSet::kThumb2:
|
|
case InstructionSet::kX86:
|
|
case InstructionSet::kArm64:
|
|
case InstructionSet::kX86_64:
|
|
implicit_null_checks_ = true;
|
|
// Historical note: Installing stack protection was not playing well with Valgrind.
|
|
implicit_so_checks_ = true;
|
|
break;
|
|
default:
|
|
// Keep the defaults.
|
|
break;
|
|
}
|
|
|
|
if (!no_sig_chain_) {
|
|
// Dex2Oat's Runtime does not need the signal chain or the fault handler.
|
|
if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
|
|
fault_manager.Init();
|
|
|
|
// These need to be in a specific order. The null point check handler must be
|
|
// after the suspend check and stack overflow check handlers.
|
|
//
|
|
// Note: the instances attach themselves to the fault manager and are handled by it. The
|
|
// manager will delete the instance on Shutdown().
|
|
if (implicit_suspend_checks_) {
|
|
new SuspensionHandler(&fault_manager);
|
|
}
|
|
|
|
if (implicit_so_checks_) {
|
|
new StackOverflowHandler(&fault_manager);
|
|
}
|
|
|
|
if (implicit_null_checks_) {
|
|
new NullPointerHandler(&fault_manager);
|
|
}
|
|
|
|
if (kEnableJavaStackTraceHandler) {
|
|
new JavaStackTraceHandler(&fault_manager);
|
|
}
|
|
}
|
|
}
|
|
|
|
verifier_logging_threshold_ms_ = runtime_options.GetOrDefault(Opt::VerifierLoggingThreshold);
|
|
|
|
std::string error_msg;
|
|
java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
|
|
if (java_vm_.get() == nullptr) {
|
|
LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
|
|
return false;
|
|
}
|
|
|
|
// Add the JniEnv handler.
|
|
// TODO Refactor this stuff.
|
|
java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
|
|
|
|
Thread::Startup();
|
|
|
|
// ClassLinker needs an attached thread, but we can't fully attach a thread without creating
|
|
// objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
|
|
// thread, we do not get a java peer.
|
|
Thread* self = Thread::Attach("main", false, nullptr, false);
|
|
CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
|
|
CHECK(self != nullptr);
|
|
|
|
self->SetIsRuntimeThread(IsAotCompiler());
|
|
|
|
// Set us to runnable so tools using a runtime can allocate and GC by default
|
|
self->TransitionFromSuspendedToRunnable();
|
|
|
|
// Now we're attached, we can take the heap locks and validate the heap.
|
|
GetHeap()->EnableObjectValidation();
|
|
|
|
CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
|
|
|
|
if (UNLIKELY(IsAotCompiler())) {
|
|
class_linker_ = new AotClassLinker(intern_table_);
|
|
} else {
|
|
class_linker_ = new ClassLinker(
|
|
intern_table_,
|
|
runtime_options.GetOrDefault(Opt::FastClassNotFoundException));
|
|
}
|
|
if (GetHeap()->HasBootImageSpace()) {
|
|
bool result = class_linker_->InitFromBootImage(&error_msg);
|
|
if (!result) {
|
|
LOG(ERROR) << "Could not initialize from image: " << error_msg;
|
|
return false;
|
|
}
|
|
if (kIsDebugBuild) {
|
|
for (auto image_space : GetHeap()->GetBootImageSpaces()) {
|
|
image_space->VerifyImageAllocations();
|
|
}
|
|
}
|
|
{
|
|
ScopedTrace trace2("AddImageStringsToTable");
|
|
for (gc::space::ImageSpace* image_space : heap_->GetBootImageSpaces()) {
|
|
GetInternTable()->AddImageStringsToTable(image_space, VoidFunctor());
|
|
}
|
|
}
|
|
|
|
const size_t total_components = gc::space::ImageSpace::GetNumberOfComponents(
|
|
ArrayRef<gc::space::ImageSpace* const>(heap_->GetBootImageSpaces()));
|
|
if (total_components != GetBootClassPath().size()) {
|
|
// The boot image did not contain all boot class path components. Load the rest.
|
|
CHECK_LT(total_components, GetBootClassPath().size());
|
|
size_t start = total_components;
|
|
DCHECK_LT(start, GetBootClassPath().size());
|
|
std::vector<std::unique_ptr<const DexFile>> extra_boot_class_path;
|
|
if (runtime_options.Exists(Opt::BootClassPathDexList)) {
|
|
extra_boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
|
|
} else {
|
|
OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()).SubArray(start),
|
|
ArrayRef<const std::string>(GetBootClassPathLocations()).SubArray(start),
|
|
&extra_boot_class_path);
|
|
}
|
|
class_linker_->AddExtraBootDexFiles(self, std::move(extra_boot_class_path));
|
|
}
|
|
if (IsJavaDebuggable() || jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()) {
|
|
// Deoptimize the boot image if debuggable as the code may have been compiled non-debuggable.
|
|
// Also deoptimize if we are profiling the boot class path.
|
|
ScopedThreadSuspension sts(self, ThreadState::kNative);
|
|
ScopedSuspendAll ssa(__FUNCTION__);
|
|
DeoptimizeBootImage();
|
|
}
|
|
} else {
|
|
std::vector<std::unique_ptr<const DexFile>> boot_class_path;
|
|
if (runtime_options.Exists(Opt::BootClassPathDexList)) {
|
|
boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
|
|
} else {
|
|
OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()),
|
|
ArrayRef<const std::string>(GetBootClassPathLocations()),
|
|
&boot_class_path);
|
|
}
|
|
if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
|
|
LOG(ERROR) << "Could not initialize without image: " << error_msg;
|
|
return false;
|
|
}
|
|
|
|
// TODO: Should we move the following to InitWithoutImage?
|
|
SetInstructionSet(instruction_set_);
|
|
for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
|
|
CalleeSaveType type = CalleeSaveType(i);
|
|
if (!HasCalleeSaveMethod(type)) {
|
|
SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that the boot image space is set, cache the boot classpath checksums,
|
|
// to be used when validating oat files.
|
|
ArrayRef<gc::space::ImageSpace* const> image_spaces(GetHeap()->GetBootImageSpaces());
|
|
ArrayRef<const DexFile* const> bcp_dex_files(GetClassLinker()->GetBootClassPath());
|
|
boot_class_path_checksums_ = gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces,
|
|
bcp_dex_files);
|
|
|
|
// Cache the apex versions.
|
|
InitializeApexVersions();
|
|
|
|
CHECK(class_linker_ != nullptr);
|
|
|
|
verifier::ClassVerifier::Init(class_linker_);
|
|
|
|
if (runtime_options.Exists(Opt::MethodTrace)) {
|
|
trace_config_.reset(new TraceConfig());
|
|
trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
|
|
trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
|
|
trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
|
|
trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
|
|
Trace::TraceOutputMode::kStreaming :
|
|
Trace::TraceOutputMode::kFile;
|
|
}
|
|
|
|
// TODO: move this to just be an Trace::Start argument
|
|
Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
|
|
|
|
if (GetHeap()->HasBootImageSpace()) {
|
|
const ImageHeader& image_header = GetHeap()->GetBootImageSpaces()[0]->GetImageHeader();
|
|
ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
|
|
ObjPtr<mirror::ObjectArray<mirror::Object>>::DownCast(
|
|
image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects));
|
|
pre_allocated_OutOfMemoryError_when_throwing_exception_ = GcRoot<mirror::Throwable>(
|
|
boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingException)->AsThrowable());
|
|
DCHECK(pre_allocated_OutOfMemoryError_when_throwing_exception_.Read()->GetClass()
|
|
->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
|
|
pre_allocated_OutOfMemoryError_when_throwing_oome_ = GcRoot<mirror::Throwable>(
|
|
boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingOome)->AsThrowable());
|
|
DCHECK(pre_allocated_OutOfMemoryError_when_throwing_oome_.Read()->GetClass()
|
|
->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
|
|
pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ = GcRoot<mirror::Throwable>(
|
|
boot_image_live_objects->Get(ImageHeader::kOomeWhenHandlingStackOverflow)->AsThrowable());
|
|
DCHECK(pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read()->GetClass()
|
|
->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
|
|
pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(
|
|
boot_image_live_objects->Get(ImageHeader::kNoClassDefFoundError)->AsThrowable());
|
|
DCHECK(pre_allocated_NoClassDefFoundError_.Read()->GetClass()
|
|
->DescriptorEquals("Ljava/lang/NoClassDefFoundError;"));
|
|
} else {
|
|
// Pre-allocate an OutOfMemoryError for the case when we fail to
|
|
// allocate the exception to be thrown.
|
|
CreatePreAllocatedException(self,
|
|
this,
|
|
&pre_allocated_OutOfMemoryError_when_throwing_exception_,
|
|
"Ljava/lang/OutOfMemoryError;",
|
|
"OutOfMemoryError thrown while trying to throw an exception; "
|
|
"no stack trace available");
|
|
// Pre-allocate an OutOfMemoryError for the double-OOME case.
|
|
CreatePreAllocatedException(self,
|
|
this,
|
|
&pre_allocated_OutOfMemoryError_when_throwing_oome_,
|
|
"Ljava/lang/OutOfMemoryError;",
|
|
"OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
|
|
"no stack trace available");
|
|
// Pre-allocate an OutOfMemoryError for the case when we fail to
|
|
// allocate while handling a stack overflow.
|
|
CreatePreAllocatedException(self,
|
|
this,
|
|
&pre_allocated_OutOfMemoryError_when_handling_stack_overflow_,
|
|
"Ljava/lang/OutOfMemoryError;",
|
|
"OutOfMemoryError thrown while trying to handle a stack overflow; "
|
|
"no stack trace available");
|
|
|
|
// Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
|
|
// ahead of checking the application's class loader.
|
|
CreatePreAllocatedException(self,
|
|
this,
|
|
&pre_allocated_NoClassDefFoundError_,
|
|
"Ljava/lang/NoClassDefFoundError;",
|
|
"Class not found using the boot class loader; "
|
|
"no stack trace available");
|
|
}
|
|
|
|
// Class-roots are setup, we can now finish initializing the JniIdManager.
|
|
GetJniIdManager()->Init(self);
|
|
|
|
InitMetrics();
|
|
|
|
// Runtime initialization is largely done now.
|
|
// We load plugins first since that can modify the runtime state slightly.
|
|
// Load all plugins
|
|
{
|
|
// The init method of plugins expect the state of the thread to be non runnable.
|
|
ScopedThreadSuspension sts(self, ThreadState::kNative);
|
|
for (auto& plugin : plugins_) {
|
|
std::string err;
|
|
if (!plugin.Load(&err)) {
|
|
LOG(FATAL) << plugin << " failed to load: " << err;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for a native bridge.
|
|
//
|
|
// The intended flow here is, in the case of a running system:
|
|
//
|
|
// Runtime::Init() (zygote):
|
|
// LoadNativeBridge -> dlopen from cmd line parameter.
|
|
// |
|
|
// V
|
|
// Runtime::Start() (zygote):
|
|
// No-op wrt native bridge.
|
|
// |
|
|
// | start app
|
|
// V
|
|
// DidForkFromZygote(action)
|
|
// action = kUnload -> dlclose native bridge.
|
|
// action = kInitialize -> initialize library
|
|
//
|
|
//
|
|
// The intended flow here is, in the case of a simple dalvikvm call:
|
|
//
|
|
// Runtime::Init():
|
|
// LoadNativeBridge -> dlopen from cmd line parameter.
|
|
// |
|
|
// V
|
|
// Runtime::Start():
|
|
// DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
|
|
// No-op wrt native bridge.
|
|
{
|
|
std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
|
|
is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
|
|
}
|
|
|
|
// Startup agents
|
|
// TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
|
|
for (auto& agent_spec : agent_specs_) {
|
|
// TODO Check err
|
|
int res = 0;
|
|
std::string err = "";
|
|
ti::LoadError error;
|
|
std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err);
|
|
|
|
if (agent != nullptr) {
|
|
agents_.push_back(std::move(agent));
|
|
continue;
|
|
}
|
|
|
|
switch (error) {
|
|
case ti::LoadError::kInitializationError:
|
|
LOG(FATAL) << "Unable to initialize agent!";
|
|
UNREACHABLE();
|
|
|
|
case ti::LoadError::kLoadingError:
|
|
LOG(ERROR) << "Unable to load an agent: " << err;
|
|
continue;
|
|
|
|
case ti::LoadError::kNoError:
|
|
break;
|
|
}
|
|
LOG(FATAL) << "Unreachable";
|
|
UNREACHABLE();
|
|
}
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
|
|
}
|
|
|
|
if (IsZygote() && IsPerfettoHprofEnabled()) {
|
|
constexpr const char* plugin_name = kIsDebugBuild ?
|
|
"libperfetto_hprofd.so" : "libperfetto_hprof.so";
|
|
// Load eagerly in Zygote to improve app startup times. This will make
|
|
// subsequent dlopens for the library no-ops.
|
|
dlopen(plugin_name, RTLD_NOW | RTLD_LOCAL);
|
|
}
|
|
|
|
VLOG(startup) << "Runtime::Init exiting";
|
|
|
|
// Set OnlyUseTrustedOatFiles only after the boot classpath has been set up.
|
|
if (runtime_options.Exists(Opt::OnlyUseTrustedOatFiles)) {
|
|
oat_file_manager_->SetOnlyUseTrustedOatFiles();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Runtime::InitMetrics() {
|
|
metrics::ReportingConfig metrics_config = metrics::ReportingConfig::FromFlags();
|
|
metrics_reporter_ = metrics::MetricsReporter::Create(metrics_config, this);
|
|
}
|
|
|
|
void Runtime::RequestMetricsReport(bool synchronous) {
|
|
if (metrics_reporter_) {
|
|
metrics_reporter_->RequestMetricsReport(synchronous);
|
|
}
|
|
}
|
|
|
|
bool Runtime::EnsurePluginLoaded(const char* plugin_name, std::string* error_msg) {
|
|
// Is the plugin already loaded?
|
|
for (const Plugin& p : plugins_) {
|
|
if (p.GetLibrary() == plugin_name) {
|
|
return true;
|
|
}
|
|
}
|
|
Plugin new_plugin = Plugin::Create(plugin_name);
|
|
|
|
if (!new_plugin.Load(error_msg)) {
|
|
return false;
|
|
}
|
|
plugins_.push_back(std::move(new_plugin));
|
|
return true;
|
|
}
|
|
|
|
bool Runtime::EnsurePerfettoPlugin(std::string* error_msg) {
|
|
constexpr const char* plugin_name = kIsDebugBuild ?
|
|
"libperfetto_hprofd.so" : "libperfetto_hprof.so";
|
|
return EnsurePluginLoaded(plugin_name, error_msg);
|
|
}
|
|
|
|
static bool EnsureJvmtiPlugin(Runtime* runtime,
|
|
std::string* error_msg) {
|
|
// TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed.
|
|
DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable())
|
|
<< "Being debuggable requires that jdwp (i.e. debugging) is allowed.";
|
|
// Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are
|
|
// specifically allowed.
|
|
if (!Dbg::IsJdwpAllowed()) {
|
|
*error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable";
|
|
return false;
|
|
}
|
|
|
|
constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
|
|
return runtime->EnsurePluginLoaded(plugin_name, error_msg);
|
|
}
|
|
|
|
// Attach a new agent and add it to the list of runtime agents
|
|
//
|
|
// TODO: once we decide on the threading model for agents,
|
|
// revisit this and make sure we're doing this on the right thread
|
|
// (and we synchronize access to any shared data structures like "agents_")
|
|
//
|
|
void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) {
|
|
std::string error_msg;
|
|
if (!EnsureJvmtiPlugin(this, &error_msg)) {
|
|
LOG(WARNING) << "Could not load plugin: " << error_msg;
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
ThrowIOException("%s", error_msg.c_str());
|
|
return;
|
|
}
|
|
|
|
ti::AgentSpec agent_spec(agent_arg);
|
|
|
|
int res = 0;
|
|
ti::LoadError error;
|
|
std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg);
|
|
|
|
if (agent != nullptr) {
|
|
agents_.push_back(std::move(agent));
|
|
} else {
|
|
LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg;
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
ThrowIOException("%s", error_msg.c_str());
|
|
}
|
|
}
|
|
|
|
void Runtime::InitNativeMethods() {
|
|
VLOG(startup) << "Runtime::InitNativeMethods entering";
|
|
Thread* self = Thread::Current();
|
|
JNIEnv* env = self->GetJniEnv();
|
|
|
|
// Must be in the kNative state for calling native methods (JNI_OnLoad code).
|
|
CHECK_EQ(self->GetState(), kNative);
|
|
|
|
// Set up the native methods provided by the runtime itself.
|
|
RegisterRuntimeNativeMethods(env);
|
|
|
|
// Initialize classes used in JNI. The initialization requires runtime native
|
|
// methods to be loaded first.
|
|
WellKnownClasses::Init(env);
|
|
|
|
// Then set up libjavacore / libopenjdk / libicu_jni ,which are just
|
|
// a regular JNI libraries with a regular JNI_OnLoad. Most JNI libraries can
|
|
// just use System.loadLibrary, but libcore can't because it's the library
|
|
// that implements System.loadLibrary!
|
|
//
|
|
// By setting calling class to java.lang.Object, the caller location for these
|
|
// JNI libs is core-oj.jar in the ART APEX, and hence they are loaded from the
|
|
// com_android_art linker namespace.
|
|
|
|
// libicu_jni has to be initialized before libopenjdk{d} due to runtime dependency from
|
|
// libopenjdk{d} to Icu4cMetadata native methods in libicu_jni. See http://b/143888405
|
|
{
|
|
std::string error_msg;
|
|
if (!java_vm_->LoadNativeLibrary(
|
|
env, "libicu_jni.so", nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
|
|
LOG(FATAL) << "LoadNativeLibrary failed for \"libicu_jni.so\": " << error_msg;
|
|
}
|
|
}
|
|
{
|
|
std::string error_msg;
|
|
if (!java_vm_->LoadNativeLibrary(
|
|
env, "libjavacore.so", nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
|
|
LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
|
|
}
|
|
}
|
|
{
|
|
constexpr const char* kOpenJdkLibrary = kIsDebugBuild
|
|
? "libopenjdkd.so"
|
|
: "libopenjdk.so";
|
|
std::string error_msg;
|
|
if (!java_vm_->LoadNativeLibrary(
|
|
env, kOpenJdkLibrary, nullptr, WellKnownClasses::java_lang_Object, &error_msg)) {
|
|
LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
|
|
}
|
|
}
|
|
|
|
// Initialize well known classes that may invoke runtime native methods.
|
|
WellKnownClasses::LateInit(env);
|
|
|
|
VLOG(startup) << "Runtime::InitNativeMethods exiting";
|
|
}
|
|
|
|
void Runtime::ReclaimArenaPoolMemory() {
|
|
arena_pool_->LockReclaimMemory();
|
|
}
|
|
|
|
void Runtime::InitThreadGroups(Thread* self) {
|
|
JNIEnvExt* env = self->GetJniEnv();
|
|
ScopedJniEnvLocalRefState env_state(env);
|
|
main_thread_group_ =
|
|
env->NewGlobalRef(env->GetStaticObjectField(
|
|
WellKnownClasses::java_lang_ThreadGroup,
|
|
WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
|
|
CHECK(main_thread_group_ != nullptr || IsAotCompiler());
|
|
system_thread_group_ =
|
|
env->NewGlobalRef(env->GetStaticObjectField(
|
|
WellKnownClasses::java_lang_ThreadGroup,
|
|
WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
|
|
CHECK(system_thread_group_ != nullptr || IsAotCompiler());
|
|
}
|
|
|
|
jobject Runtime::GetMainThreadGroup() const {
|
|
CHECK(main_thread_group_ != nullptr || IsAotCompiler());
|
|
return main_thread_group_;
|
|
}
|
|
|
|
jobject Runtime::GetSystemThreadGroup() const {
|
|
CHECK(system_thread_group_ != nullptr || IsAotCompiler());
|
|
return system_thread_group_;
|
|
}
|
|
|
|
jobject Runtime::GetSystemClassLoader() const {
|
|
CHECK(system_class_loader_ != nullptr || IsAotCompiler());
|
|
return system_class_loader_;
|
|
}
|
|
|
|
void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
|
|
register_dalvik_system_DexFile(env);
|
|
register_dalvik_system_BaseDexClassLoader(env);
|
|
register_dalvik_system_VMDebug(env);
|
|
register_dalvik_system_VMRuntime(env);
|
|
register_dalvik_system_VMStack(env);
|
|
register_dalvik_system_ZygoteHooks(env);
|
|
register_java_lang_Class(env);
|
|
register_java_lang_Object(env);
|
|
register_java_lang_invoke_MethodHandleImpl(env);
|
|
register_java_lang_ref_FinalizerReference(env);
|
|
register_java_lang_reflect_Array(env);
|
|
register_java_lang_reflect_Constructor(env);
|
|
register_java_lang_reflect_Executable(env);
|
|
register_java_lang_reflect_Field(env);
|
|
register_java_lang_reflect_Method(env);
|
|
register_java_lang_reflect_Parameter(env);
|
|
register_java_lang_reflect_Proxy(env);
|
|
register_java_lang_ref_Reference(env);
|
|
register_java_lang_String(env);
|
|
register_java_lang_StringFactory(env);
|
|
register_java_lang_System(env);
|
|
register_java_lang_Thread(env);
|
|
register_java_lang_Throwable(env);
|
|
register_java_lang_VMClassLoader(env);
|
|
register_java_util_concurrent_atomic_AtomicLong(env);
|
|
register_libcore_util_CharsetUtils(env);
|
|
register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
|
|
register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
|
|
register_sun_misc_Unsafe(env);
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
|
|
os << GetDeoptimizationKindName(kind);
|
|
return os;
|
|
}
|
|
|
|
void Runtime::DumpDeoptimizations(std::ostream& os) {
|
|
for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
|
|
if (deoptimization_counts_[i] != 0) {
|
|
os << "Number of "
|
|
<< GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
|
|
<< " deoptimizations: "
|
|
<< deoptimization_counts_[i]
|
|
<< "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void Runtime::DumpForSigQuit(std::ostream& os) {
|
|
GetClassLinker()->DumpForSigQuit(os);
|
|
GetInternTable()->DumpForSigQuit(os);
|
|
GetJavaVM()->DumpForSigQuit(os);
|
|
GetHeap()->DumpForSigQuit(os);
|
|
oat_file_manager_->DumpForSigQuit(os);
|
|
if (GetJit() != nullptr) {
|
|
GetJit()->DumpForSigQuit(os);
|
|
} else {
|
|
os << "Running non JIT\n";
|
|
}
|
|
DumpDeoptimizations(os);
|
|
TrackedAllocators::Dump(os);
|
|
GetMetrics()->DumpForSigQuit(os);
|
|
os << "\n";
|
|
|
|
thread_list_->DumpForSigQuit(os);
|
|
BaseMutex::DumpAll(os);
|
|
|
|
// Inform anyone else who is interested in SigQuit.
|
|
{
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
callbacks_->SigQuit();
|
|
}
|
|
}
|
|
|
|
void Runtime::DumpLockHolders(std::ostream& os) {
|
|
uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
|
|
pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
|
|
pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
|
|
pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
|
|
if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
|
|
os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
|
|
<< "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
|
|
<< "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
|
|
<< "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
|
|
}
|
|
}
|
|
|
|
void Runtime::SetStatsEnabled(bool new_state) {
|
|
Thread* self = Thread::Current();
|
|
MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
|
|
if (new_state == true) {
|
|
GetStats()->Clear(~0);
|
|
// TODO: wouldn't it make more sense to clear _all_ threads' stats?
|
|
self->GetStats()->Clear(~0);
|
|
if (stats_enabled_ != new_state) {
|
|
GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
|
|
}
|
|
} else if (stats_enabled_ != new_state) {
|
|
GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
|
|
}
|
|
stats_enabled_ = new_state;
|
|
}
|
|
|
|
void Runtime::ResetStats(int kinds) {
|
|
GetStats()->Clear(kinds & 0xffff);
|
|
// TODO: wouldn't it make more sense to clear _all_ threads' stats?
|
|
Thread::Current()->GetStats()->Clear(kinds >> 16);
|
|
}
|
|
|
|
uint64_t Runtime::GetStat(int kind) {
|
|
RuntimeStats* stats;
|
|
if (kind < (1<<16)) {
|
|
stats = GetStats();
|
|
} else {
|
|
stats = Thread::Current()->GetStats();
|
|
kind >>= 16;
|
|
}
|
|
switch (kind) {
|
|
case KIND_ALLOCATED_OBJECTS:
|
|
return stats->allocated_objects;
|
|
case KIND_ALLOCATED_BYTES:
|
|
return stats->allocated_bytes;
|
|
case KIND_FREED_OBJECTS:
|
|
return stats->freed_objects;
|
|
case KIND_FREED_BYTES:
|
|
return stats->freed_bytes;
|
|
case KIND_GC_INVOCATIONS:
|
|
return stats->gc_for_alloc_count;
|
|
case KIND_CLASS_INIT_COUNT:
|
|
return stats->class_init_count;
|
|
case KIND_CLASS_INIT_TIME:
|
|
return stats->class_init_time_ns;
|
|
case KIND_EXT_ALLOCATED_OBJECTS:
|
|
case KIND_EXT_ALLOCATED_BYTES:
|
|
case KIND_EXT_FREED_OBJECTS:
|
|
case KIND_EXT_FREED_BYTES:
|
|
return 0; // backward compatibility
|
|
default:
|
|
LOG(FATAL) << "Unknown statistic " << kind;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void Runtime::BlockSignals() {
|
|
SignalSet signals;
|
|
signals.Add(SIGPIPE);
|
|
// SIGQUIT is used to dump the runtime's state (including stack traces).
|
|
signals.Add(SIGQUIT);
|
|
// SIGUSR1 is used to initiate a GC.
|
|
signals.Add(SIGUSR1);
|
|
signals.Block();
|
|
}
|
|
|
|
bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
|
|
bool create_peer) {
|
|
ScopedTrace trace(__FUNCTION__);
|
|
Thread* self = Thread::Attach(thread_name, as_daemon, thread_group, create_peer);
|
|
// Run ThreadGroup.add to notify the group that this thread is now started.
|
|
if (self != nullptr && create_peer && !IsAotCompiler()) {
|
|
ScopedObjectAccess soa(self);
|
|
self->NotifyThreadGroup(soa, thread_group);
|
|
}
|
|
return self != nullptr;
|
|
}
|
|
|
|
void Runtime::DetachCurrentThread() {
|
|
ScopedTrace trace(__FUNCTION__);
|
|
Thread* self = Thread::Current();
|
|
if (self == nullptr) {
|
|
LOG(FATAL) << "attempting to detach thread that is not attached";
|
|
}
|
|
if (self->HasManagedStack()) {
|
|
LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
|
|
}
|
|
thread_list_->Unregister(self);
|
|
}
|
|
|
|
mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingException() {
|
|
mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_exception_.Read();
|
|
if (oome == nullptr) {
|
|
LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-exception";
|
|
}
|
|
return oome;
|
|
}
|
|
|
|
mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME() {
|
|
mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_oome_.Read();
|
|
if (oome == nullptr) {
|
|
LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-OOME";
|
|
}
|
|
return oome;
|
|
}
|
|
|
|
mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow() {
|
|
mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read();
|
|
if (oome == nullptr) {
|
|
LOG(ERROR) << "Failed to return pre-allocated OOME-when-handling-stack-overflow";
|
|
}
|
|
return oome;
|
|
}
|
|
|
|
mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
|
|
mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
|
|
if (ncdfe == nullptr) {
|
|
LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
|
|
}
|
|
return ncdfe;
|
|
}
|
|
|
|
void Runtime::VisitConstantRoots(RootVisitor* visitor) {
|
|
// Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
|
|
// null.
|
|
BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
|
|
const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
|
|
if (HasResolutionMethod()) {
|
|
resolution_method_->VisitRoots(buffered_visitor, pointer_size);
|
|
}
|
|
if (HasImtConflictMethod()) {
|
|
imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
|
|
}
|
|
if (imt_unimplemented_method_ != nullptr) {
|
|
imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
|
|
}
|
|
for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
|
|
auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
|
|
if (m != nullptr) {
|
|
m->VisitRoots(buffered_visitor, pointer_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
|
|
intern_table_->VisitRoots(visitor, flags);
|
|
class_linker_->VisitRoots(visitor, flags);
|
|
jni_id_manager_->VisitRoots(visitor);
|
|
heap_->VisitAllocationRecords(visitor);
|
|
if ((flags & kVisitRootFlagNewRoots) == 0) {
|
|
// Guaranteed to have no new roots in the constant roots.
|
|
VisitConstantRoots(visitor);
|
|
}
|
|
}
|
|
|
|
void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
|
|
for (auto& transaction : preinitialization_transactions_) {
|
|
transaction->VisitRoots(visitor);
|
|
}
|
|
}
|
|
|
|
void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
|
|
java_vm_->VisitRoots(visitor);
|
|
sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
|
|
pre_allocated_OutOfMemoryError_when_throwing_exception_
|
|
.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
|
|
pre_allocated_OutOfMemoryError_when_throwing_oome_
|
|
.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
|
|
pre_allocated_OutOfMemoryError_when_handling_stack_overflow_
|
|
.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
|
|
pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
|
|
VisitImageRoots(visitor);
|
|
verifier::ClassVerifier::VisitStaticRoots(visitor);
|
|
VisitTransactionRoots(visitor);
|
|
}
|
|
|
|
void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
|
|
VisitThreadRoots(visitor, flags);
|
|
VisitNonThreadRoots(visitor);
|
|
}
|
|
|
|
void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
|
|
thread_list_->VisitRoots(visitor, flags);
|
|
}
|
|
|
|
void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
|
|
VisitNonConcurrentRoots(visitor, flags);
|
|
VisitConcurrentRoots(visitor, flags);
|
|
}
|
|
|
|
void Runtime::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) {
|
|
thread_list_->VisitReflectiveTargets(visitor);
|
|
heap_->VisitReflectiveTargets(visitor);
|
|
jni_id_manager_->VisitReflectiveTargets(visitor);
|
|
callbacks_->VisitReflectiveTargets(visitor);
|
|
}
|
|
|
|
void Runtime::VisitImageRoots(RootVisitor* visitor) {
|
|
for (auto* space : GetHeap()->GetContinuousSpaces()) {
|
|
if (space->IsImageSpace()) {
|
|
auto* image_space = space->AsImageSpace();
|
|
const auto& image_header = image_space->GetImageHeader();
|
|
for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
|
|
mirror::Object* obj =
|
|
image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i)).Ptr();
|
|
if (obj != nullptr) {
|
|
mirror::Object* after_obj = obj;
|
|
visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
|
|
CHECK_EQ(after_obj, obj);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
|
|
const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
|
|
const size_t method_size = ArtMethod::Size(image_pointer_size);
|
|
LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
|
|
Thread::Current(),
|
|
linear_alloc,
|
|
1);
|
|
ArtMethod* method = &method_array->At(0, method_size, method_alignment);
|
|
CHECK(method != nullptr);
|
|
method->SetDexMethodIndex(dex::kDexNoIndex);
|
|
CHECK(method->IsRuntimeMethod());
|
|
return method;
|
|
}
|
|
|
|
ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
|
|
ClassLinker* const class_linker = GetClassLinker();
|
|
ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
|
|
// When compiling, the code pointer will get set later when the image is loaded.
|
|
const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
|
|
if (IsAotCompiler()) {
|
|
method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
|
|
} else {
|
|
method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
|
|
}
|
|
// Create empty conflict table.
|
|
method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count=*/0u, linear_alloc),
|
|
pointer_size);
|
|
return method;
|
|
}
|
|
|
|
void Runtime::SetImtConflictMethod(ArtMethod* method) {
|
|
CHECK(method != nullptr);
|
|
CHECK(method->IsRuntimeMethod());
|
|
imt_conflict_method_ = method;
|
|
}
|
|
|
|
ArtMethod* Runtime::CreateResolutionMethod() {
|
|
auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
|
|
// When compiling, the code pointer will get set later when the image is loaded.
|
|
if (IsAotCompiler()) {
|
|
PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
|
|
method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
|
|
method->SetEntryPointFromJniPtrSize(nullptr, pointer_size);
|
|
} else {
|
|
method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
|
|
method->SetEntryPointFromJni(GetJniDlsymLookupCriticalStub());
|
|
}
|
|
return method;
|
|
}
|
|
|
|
ArtMethod* Runtime::CreateCalleeSaveMethod() {
|
|
auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
|
|
PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
|
|
method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
|
|
DCHECK_NE(instruction_set_, InstructionSet::kNone);
|
|
DCHECK(method->IsRuntimeMethod());
|
|
return method;
|
|
}
|
|
|
|
void Runtime::DisallowNewSystemWeaks() {
|
|
CHECK(!kUseReadBarrier);
|
|
monitor_list_->DisallowNewMonitors();
|
|
intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
|
|
java_vm_->DisallowNewWeakGlobals();
|
|
heap_->DisallowNewAllocationRecords();
|
|
if (GetJit() != nullptr) {
|
|
GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
|
|
}
|
|
|
|
// All other generic system-weak holders.
|
|
for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
|
|
holder->Disallow();
|
|
}
|
|
}
|
|
|
|
void Runtime::AllowNewSystemWeaks() {
|
|
CHECK(!kUseReadBarrier);
|
|
monitor_list_->AllowNewMonitors();
|
|
intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal); // TODO: Do this in the sweeping.
|
|
java_vm_->AllowNewWeakGlobals();
|
|
heap_->AllowNewAllocationRecords();
|
|
if (GetJit() != nullptr) {
|
|
GetJit()->GetCodeCache()->AllowInlineCacheAccess();
|
|
}
|
|
|
|
// All other generic system-weak holders.
|
|
for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
|
|
holder->Allow();
|
|
}
|
|
}
|
|
|
|
void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
|
|
// This is used for the read barrier case that uses the thread-local
|
|
// Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
|
|
// (see ThreadList::RunCheckpoint).
|
|
monitor_list_->BroadcastForNewMonitors();
|
|
intern_table_->BroadcastForNewInterns();
|
|
java_vm_->BroadcastForNewWeakGlobals();
|
|
heap_->BroadcastForNewAllocationRecords();
|
|
if (GetJit() != nullptr) {
|
|
GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
|
|
}
|
|
|
|
// All other generic system-weak holders.
|
|
for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
|
|
holder->Broadcast(broadcast_for_checkpoint);
|
|
}
|
|
}
|
|
|
|
void Runtime::SetInstructionSet(InstructionSet instruction_set) {
|
|
instruction_set_ = instruction_set;
|
|
switch (instruction_set) {
|
|
case InstructionSet::kThumb2:
|
|
// kThumb2 is the same as kArm, use the canonical value.
|
|
instruction_set_ = InstructionSet::kArm;
|
|
break;
|
|
case InstructionSet::kArm:
|
|
case InstructionSet::kArm64:
|
|
case InstructionSet::kX86:
|
|
case InstructionSet::kX86_64:
|
|
break;
|
|
default:
|
|
UNIMPLEMENTED(FATAL) << instruction_set_;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void Runtime::ClearInstructionSet() {
|
|
instruction_set_ = InstructionSet::kNone;
|
|
}
|
|
|
|
void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
|
|
DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
|
|
CHECK(method != nullptr);
|
|
callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
|
|
}
|
|
|
|
void Runtime::ClearCalleeSaveMethods() {
|
|
for (size_t i = 0; i < kCalleeSaveSize; ++i) {
|
|
callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
|
|
}
|
|
}
|
|
|
|
void Runtime::RegisterAppInfo(const std::string& package_name,
|
|
const std::vector<std::string>& code_paths,
|
|
const std::string& profile_output_filename,
|
|
const std::string& ref_profile_filename,
|
|
int32_t code_type) {
|
|
app_info_.RegisterAppInfo(
|
|
package_name,
|
|
code_paths,
|
|
profile_output_filename,
|
|
ref_profile_filename,
|
|
AppInfo::FromVMRuntimeConstants(code_type));
|
|
|
|
if (metrics_reporter_ != nullptr) {
|
|
metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
|
|
}
|
|
|
|
if (jit_.get() == nullptr) {
|
|
// We are not JITing. Nothing to do.
|
|
return;
|
|
}
|
|
|
|
VLOG(profiler) << "Register app with " << profile_output_filename
|
|
<< " " << android::base::Join(code_paths, ':');
|
|
VLOG(profiler) << "Reference profile is: " << ref_profile_filename;
|
|
|
|
if (profile_output_filename.empty()) {
|
|
LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
|
|
return;
|
|
}
|
|
if (!OS::FileExists(profile_output_filename.c_str(), /*check_file_type=*/ false)) {
|
|
LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exist.";
|
|
return;
|
|
}
|
|
if (code_paths.empty()) {
|
|
LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
|
|
return;
|
|
}
|
|
|
|
jit_->StartProfileSaver(profile_output_filename, code_paths, ref_profile_filename);
|
|
}
|
|
|
|
// Transaction support.
|
|
bool Runtime::IsActiveTransaction() const {
|
|
return !preinitialization_transactions_.empty() && !GetTransaction()->IsRollingBack();
|
|
}
|
|
|
|
void Runtime::EnterTransactionMode(bool strict, mirror::Class* root) {
|
|
DCHECK(IsAotCompiler());
|
|
if (preinitialization_transactions_.empty()) { // Top-level transaction?
|
|
// Make initialized classes visibly initialized now. If that happened during the transaction
|
|
// and then the transaction was aborted, we would roll back the status update but not the
|
|
// ClassLinker's bookkeeping structures, so these classes would never be visibly initialized.
|
|
GetClassLinker()->MakeInitializedClassesVisiblyInitialized(Thread::Current(), /*wait=*/ true);
|
|
}
|
|
preinitialization_transactions_.push_back(std::make_unique<Transaction>(strict, root));
|
|
}
|
|
|
|
void Runtime::ExitTransactionMode() {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
preinitialization_transactions_.pop_back();
|
|
}
|
|
|
|
void Runtime::RollbackAndExitTransactionMode() {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
preinitialization_transactions_.back()->Rollback();
|
|
preinitialization_transactions_.pop_back();
|
|
}
|
|
|
|
bool Runtime::IsTransactionAborted() const {
|
|
if (!IsActiveTransaction()) {
|
|
return false;
|
|
} else {
|
|
DCHECK(IsAotCompiler());
|
|
return GetTransaction()->IsAborted();
|
|
}
|
|
}
|
|
|
|
void Runtime::RollbackAllTransactions() {
|
|
// If transaction is aborted, all transactions will be kept in the list.
|
|
// Rollback and exit all of them.
|
|
while (IsActiveTransaction()) {
|
|
RollbackAndExitTransactionMode();
|
|
}
|
|
}
|
|
|
|
bool Runtime::IsActiveStrictTransactionMode() const {
|
|
return IsActiveTransaction() && GetTransaction()->IsStrict();
|
|
}
|
|
|
|
const std::unique_ptr<Transaction>& Runtime::GetTransaction() const {
|
|
DCHECK(!preinitialization_transactions_.empty());
|
|
return preinitialization_transactions_.back();
|
|
}
|
|
|
|
void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
// Throwing an exception may cause its class initialization. If we mark the transaction
|
|
// aborted before that, we may warn with a false alarm. Throwing the exception before
|
|
// marking the transaction aborted avoids that.
|
|
// But now the transaction can be nested, and abort the transaction will relax the constraints
|
|
// for constructing stack trace.
|
|
GetTransaction()->Abort(abort_message);
|
|
GetTransaction()->ThrowAbortError(self, &abort_message);
|
|
}
|
|
|
|
void Runtime::ThrowTransactionAbortError(Thread* self) {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
// Passing nullptr means we rethrow an exception with the earlier transaction abort message.
|
|
GetTransaction()->ThrowAbortError(self, nullptr);
|
|
}
|
|
|
|
void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
|
|
uint8_t value, bool is_volatile) const {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
GetTransaction()->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
|
|
}
|
|
|
|
void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
|
|
int8_t value, bool is_volatile) const {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
GetTransaction()->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
|
|
}
|
|
|
|
void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
|
|
uint16_t value, bool is_volatile) const {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
GetTransaction()->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
|
|
}
|
|
|
|
void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
|
|
int16_t value, bool is_volatile) const {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
GetTransaction()->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
|
|
}
|
|
|
|
void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
|
|
uint32_t value, bool is_volatile) const {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
GetTransaction()->RecordWriteField32(obj, field_offset, value, is_volatile);
|
|
}
|
|
|
|
void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
|
|
uint64_t value, bool is_volatile) const {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
GetTransaction()->RecordWriteField64(obj, field_offset, value, is_volatile);
|
|
}
|
|
|
|
void Runtime::RecordWriteFieldReference(mirror::Object* obj,
|
|
MemberOffset field_offset,
|
|
ObjPtr<mirror::Object> value,
|
|
bool is_volatile) const {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
GetTransaction()->RecordWriteFieldReference(obj,
|
|
field_offset,
|
|
value.Ptr(),
|
|
is_volatile);
|
|
}
|
|
|
|
void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
GetTransaction()->RecordWriteArray(array, index, value);
|
|
}
|
|
|
|
void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) const {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
GetTransaction()->RecordStrongStringInsertion(s);
|
|
}
|
|
|
|
void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) const {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
GetTransaction()->RecordWeakStringInsertion(s);
|
|
}
|
|
|
|
void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) const {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
GetTransaction()->RecordStrongStringRemoval(s);
|
|
}
|
|
|
|
void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) const {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
GetTransaction()->RecordWeakStringRemoval(s);
|
|
}
|
|
|
|
void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
|
|
dex::StringIndex string_idx) const {
|
|
DCHECK(IsAotCompiler());
|
|
DCHECK(IsActiveTransaction());
|
|
GetTransaction()->RecordResolveString(dex_cache, string_idx);
|
|
}
|
|
|
|
void Runtime::SetFaultMessage(const std::string& message) {
|
|
std::string* new_msg = new std::string(message);
|
|
std::string* cur_msg = fault_message_.exchange(new_msg);
|
|
delete cur_msg;
|
|
}
|
|
|
|
std::string Runtime::GetFaultMessage() {
|
|
// Retrieve the message. Temporarily replace with null so that SetFaultMessage will not delete
|
|
// the string in parallel.
|
|
std::string* cur_msg = fault_message_.exchange(nullptr);
|
|
|
|
// Make a copy of the string.
|
|
std::string ret = cur_msg == nullptr ? "" : *cur_msg;
|
|
|
|
// Put the message back if it hasn't been updated.
|
|
std::string* null_str = nullptr;
|
|
if (!fault_message_.compare_exchange_strong(null_str, cur_msg)) {
|
|
// Already replaced.
|
|
delete cur_msg;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
|
|
const {
|
|
if (GetInstrumentation()->InterpretOnly()) {
|
|
argv->push_back("--compiler-filter=quicken");
|
|
}
|
|
|
|
// Make the dex2oat instruction set match that of the launching runtime. If we have multiple
|
|
// architecture support, dex2oat may be compiled as a different instruction-set than that
|
|
// currently being executed.
|
|
std::string instruction_set("--instruction-set=");
|
|
instruction_set += GetInstructionSetString(kRuntimeISA);
|
|
argv->push_back(instruction_set);
|
|
|
|
if (InstructionSetFeatures::IsRuntimeDetectionSupported()) {
|
|
argv->push_back("--instruction-set-features=runtime");
|
|
} else {
|
|
std::unique_ptr<const InstructionSetFeatures> features(
|
|
InstructionSetFeatures::FromCppDefines());
|
|
std::string feature_string("--instruction-set-features=");
|
|
feature_string += features->GetFeatureString();
|
|
argv->push_back(feature_string);
|
|
}
|
|
}
|
|
|
|
void Runtime::CreateJitCodeCache(bool rwx_memory_allowed) {
|
|
if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
|
|
DCHECK(!jit_options_->UseJitCompilation());
|
|
}
|
|
|
|
if (!jit_options_->UseJitCompilation() && !jit_options_->GetSaveProfilingInfo()) {
|
|
return;
|
|
}
|
|
|
|
std::string error_msg;
|
|
bool profiling_only = !jit_options_->UseJitCompilation();
|
|
jit_code_cache_.reset(jit::JitCodeCache::Create(profiling_only,
|
|
rwx_memory_allowed,
|
|
IsZygote(),
|
|
&error_msg));
|
|
if (jit_code_cache_.get() == nullptr) {
|
|
LOG(WARNING) << "Failed to create JIT Code Cache: " << error_msg;
|
|
}
|
|
}
|
|
|
|
void Runtime::CreateJit() {
|
|
DCHECK(jit_ == nullptr);
|
|
if (jit_code_cache_.get() == nullptr) {
|
|
if (!IsSafeMode()) {
|
|
LOG(WARNING) << "Missing code cache, cannot create JIT.";
|
|
}
|
|
return;
|
|
}
|
|
if (IsSafeMode()) {
|
|
LOG(INFO) << "Not creating JIT because of SafeMode.";
|
|
jit_code_cache_.reset();
|
|
return;
|
|
}
|
|
|
|
jit::Jit* jit = jit::Jit::Create(jit_code_cache_.get(), jit_options_.get());
|
|
DoAndMaybeSwitchInterpreter([=](){ jit_.reset(jit); });
|
|
if (jit == nullptr) {
|
|
LOG(WARNING) << "Failed to allocate JIT";
|
|
// Release JIT code cache resources (several MB of memory).
|
|
jit_code_cache_.reset();
|
|
} else {
|
|
jit->CreateThreadPool();
|
|
}
|
|
}
|
|
|
|
bool Runtime::CanRelocate() const {
|
|
return !IsAotCompiler();
|
|
}
|
|
|
|
bool Runtime::IsCompilingBootImage() const {
|
|
return IsCompiler() && compiler_callbacks_->IsBootImage();
|
|
}
|
|
|
|
void Runtime::SetResolutionMethod(ArtMethod* method) {
|
|
CHECK(method != nullptr);
|
|
CHECK(method->IsRuntimeMethod()) << method;
|
|
resolution_method_ = method;
|
|
}
|
|
|
|
void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
|
|
CHECK(method != nullptr);
|
|
CHECK(method->IsRuntimeMethod());
|
|
imt_unimplemented_method_ = method;
|
|
}
|
|
|
|
void Runtime::FixupConflictTables() {
|
|
// We can only do this after the class linker is created.
|
|
const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
|
|
if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
|
|
imt_unimplemented_method_->SetImtConflictTable(
|
|
ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
|
|
pointer_size);
|
|
}
|
|
if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
|
|
imt_conflict_method_->SetImtConflictTable(
|
|
ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
|
|
pointer_size);
|
|
}
|
|
}
|
|
|
|
void Runtime::DisableVerifier() {
|
|
verify_ = verifier::VerifyMode::kNone;
|
|
}
|
|
|
|
bool Runtime::IsVerificationEnabled() const {
|
|
return verify_ == verifier::VerifyMode::kEnable ||
|
|
verify_ == verifier::VerifyMode::kSoftFail;
|
|
}
|
|
|
|
bool Runtime::IsVerificationSoftFail() const {
|
|
return verify_ == verifier::VerifyMode::kSoftFail;
|
|
}
|
|
|
|
bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const {
|
|
if (OatQuickMethodHeader::NterpMethodHeader != nullptr) {
|
|
if (OatQuickMethodHeader::NterpMethodHeader->Contains(code)) {
|
|
return true;
|
|
}
|
|
}
|
|
// We only support async deopt (ie the compiled code is not explicitly asking for
|
|
// deopt, but something else like the debugger) in debuggable JIT code.
|
|
// We could look at the oat file where `code` is being defined,
|
|
// and check whether it's been compiled debuggable, but we decided to
|
|
// only rely on the JIT for debuggable apps.
|
|
// The JIT-zygote is not debuggable so we need to be sure to exclude code from the non-private
|
|
// region as well.
|
|
return IsJavaDebuggable() && GetJit() != nullptr &&
|
|
GetJit()->GetCodeCache()->PrivateRegionContainsPc(reinterpret_cast<const void*>(code));
|
|
}
|
|
|
|
LinearAlloc* Runtime::CreateLinearAlloc() {
|
|
// For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
|
|
// 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
|
|
// when we have 64 bit ArtMethod pointers.
|
|
return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
|
|
? new LinearAlloc(low_4gb_arena_pool_.get())
|
|
: new LinearAlloc(arena_pool_.get());
|
|
}
|
|
|
|
double Runtime::GetHashTableMinLoadFactor() const {
|
|
return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
|
|
}
|
|
|
|
double Runtime::GetHashTableMaxLoadFactor() const {
|
|
return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
|
|
}
|
|
|
|
void Runtime::UpdateProcessState(ProcessState process_state) {
|
|
ProcessState old_process_state = process_state_;
|
|
process_state_ = process_state;
|
|
GetHeap()->UpdateProcessState(old_process_state, process_state);
|
|
}
|
|
|
|
void Runtime::RegisterSensitiveThread() const {
|
|
Thread::SetJitSensitiveThread();
|
|
}
|
|
|
|
// Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
|
|
bool Runtime::UseJitCompilation() const {
|
|
return (jit_ != nullptr) && jit_->UseJitCompilation();
|
|
}
|
|
|
|
void Runtime::EnvSnapshot::TakeSnapshot() {
|
|
char** env = GetEnviron();
|
|
for (size_t i = 0; env[i] != nullptr; ++i) {
|
|
name_value_pairs_.emplace_back(new std::string(env[i]));
|
|
}
|
|
// The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
|
|
// for quick use by GetSnapshot. This avoids allocation and copying cost at Exec.
|
|
c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
|
|
for (size_t i = 0; env[i] != nullptr; ++i) {
|
|
c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
|
|
}
|
|
c_env_vector_[name_value_pairs_.size()] = nullptr;
|
|
}
|
|
|
|
char** Runtime::EnvSnapshot::GetSnapshot() const {
|
|
return c_env_vector_.get();
|
|
}
|
|
|
|
void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
|
|
gc::ScopedGCCriticalSection gcs(Thread::Current(),
|
|
gc::kGcCauseAddRemoveSystemWeakHolder,
|
|
gc::kCollectorTypeAddRemoveSystemWeakHolder);
|
|
// Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
|
|
// a critical section.
|
|
system_weak_holders_.push_back(holder);
|
|
}
|
|
|
|
void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
|
|
gc::ScopedGCCriticalSection gcs(Thread::Current(),
|
|
gc::kGcCauseAddRemoveSystemWeakHolder,
|
|
gc::kCollectorTypeAddRemoveSystemWeakHolder);
|
|
auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
|
|
if (it != system_weak_holders_.end()) {
|
|
system_weak_holders_.erase(it);
|
|
}
|
|
}
|
|
|
|
RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
|
|
return callbacks_.get();
|
|
}
|
|
|
|
// Used to patch boot image method entry point to interpreter bridge.
|
|
class UpdateEntryPointsClassVisitor : public ClassVisitor {
|
|
public:
|
|
explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
|
|
: instrumentation_(instrumentation) {}
|
|
|
|
bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES(Locks::mutator_lock_) {
|
|
DCHECK(Locks::mutator_lock_->IsExclusiveHeld(Thread::Current()));
|
|
auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
|
|
for (auto& m : klass->GetMethods(pointer_size)) {
|
|
const void* code = m.GetEntryPointFromQuickCompiledCode();
|
|
if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
|
|
!m.IsNative() &&
|
|
!m.IsProxyMethod()) {
|
|
instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
|
|
}
|
|
|
|
if (Runtime::Current()->GetJit() != nullptr &&
|
|
Runtime::Current()->GetJit()->GetCodeCache()->IsInZygoteExecSpace(code) &&
|
|
!m.IsNative()) {
|
|
DCHECK(!m.IsProxyMethod());
|
|
instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
|
|
}
|
|
|
|
if (m.IsPreCompiled()) {
|
|
// Precompilation is incompatible with debuggable, so clear the flag
|
|
// and update the entrypoint in case it has been compiled.
|
|
m.ClearPreCompiled();
|
|
instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
instrumentation::Instrumentation* const instrumentation_;
|
|
};
|
|
|
|
void Runtime::SetJavaDebuggable(bool value) {
|
|
is_java_debuggable_ = value;
|
|
// Do not call DeoptimizeBootImage just yet, the runtime may still be starting up.
|
|
}
|
|
|
|
void Runtime::DeoptimizeBootImage() {
|
|
// If we've already started and we are setting this runtime to debuggable,
|
|
// we patch entry points of methods in boot image to interpreter bridge, as
|
|
// boot image code may be AOT compiled as not debuggable.
|
|
if (!GetInstrumentation()->IsForcedInterpretOnly()) {
|
|
UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
|
|
GetClassLinker()->VisitClasses(&visitor);
|
|
jit::Jit* jit = GetJit();
|
|
if (jit != nullptr) {
|
|
// Code previously compiled may not be compiled debuggable.
|
|
jit->GetCodeCache()->TransitionToDebuggable();
|
|
}
|
|
}
|
|
}
|
|
|
|
Runtime::ScopedThreadPoolUsage::ScopedThreadPoolUsage()
|
|
: thread_pool_(Runtime::Current()->AcquireThreadPool()) {}
|
|
|
|
Runtime::ScopedThreadPoolUsage::~ScopedThreadPoolUsage() {
|
|
Runtime::Current()->ReleaseThreadPool();
|
|
}
|
|
|
|
bool Runtime::DeleteThreadPool() {
|
|
// Make sure workers are started to prevent thread shutdown errors.
|
|
WaitForThreadPoolWorkersToStart();
|
|
std::unique_ptr<ThreadPool> thread_pool;
|
|
{
|
|
MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
|
|
if (thread_pool_ref_count_ == 0) {
|
|
thread_pool = std::move(thread_pool_);
|
|
}
|
|
}
|
|
return thread_pool != nullptr;
|
|
}
|
|
|
|
ThreadPool* Runtime::AcquireThreadPool() {
|
|
MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
|
|
++thread_pool_ref_count_;
|
|
return thread_pool_.get();
|
|
}
|
|
|
|
void Runtime::ReleaseThreadPool() {
|
|
MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
|
|
CHECK_GT(thread_pool_ref_count_, 0u);
|
|
--thread_pool_ref_count_;
|
|
}
|
|
|
|
void Runtime::WaitForThreadPoolWorkersToStart() {
|
|
// Need to make sure workers are created before deleting the pool.
|
|
ScopedThreadPoolUsage stpu;
|
|
if (stpu.GetThreadPool() != nullptr) {
|
|
stpu.GetThreadPool()->WaitForWorkersToBeCreated();
|
|
}
|
|
}
|
|
|
|
void Runtime::ResetStartupCompleted() {
|
|
startup_completed_.store(false, std::memory_order_seq_cst);
|
|
}
|
|
|
|
class Runtime::NotifyStartupCompletedTask : public gc::HeapTask {
|
|
public:
|
|
NotifyStartupCompletedTask() : gc::HeapTask(/*target_run_time=*/ NanoTime()) {}
|
|
|
|
void Run(Thread* self) override {
|
|
VLOG(startup) << "NotifyStartupCompletedTask running";
|
|
Runtime* const runtime = Runtime::Current();
|
|
{
|
|
ScopedTrace trace("Releasing app image spaces metadata");
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
// Request empty checkpoints to make sure no threads are accessing the image space metadata
|
|
// section when we madvise it. Use GC exclusion to prevent deadlocks that may happen if
|
|
// multiple threads are attempting to run empty checkpoints at the same time.
|
|
{
|
|
// Avoid using ScopedGCCriticalSection since that does not allow thread suspension. This is
|
|
// not allowed to prevent allocations, but it's still safe to suspend temporarily for the
|
|
// checkpoint.
|
|
gc::ScopedInterruptibleGCCriticalSection sigcs(self,
|
|
gc::kGcCauseRunEmptyCheckpoint,
|
|
gc::kCollectorTypeCriticalSection);
|
|
runtime->GetThreadList()->RunEmptyCheckpoint();
|
|
}
|
|
for (gc::space::ContinuousSpace* space : runtime->GetHeap()->GetContinuousSpaces()) {
|
|
if (space->IsImageSpace()) {
|
|
gc::space::ImageSpace* image_space = space->AsImageSpace();
|
|
if (image_space->GetImageHeader().IsAppImage()) {
|
|
image_space->ReleaseMetadata();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// Delete the thread pool used for app image loading since startup is assumed to be completed.
|
|
ScopedTrace trace2("Delete thread pool");
|
|
runtime->DeleteThreadPool();
|
|
}
|
|
}
|
|
};
|
|
|
|
void Runtime::NotifyStartupCompleted() {
|
|
bool expected = false;
|
|
if (!startup_completed_.compare_exchange_strong(expected, true, std::memory_order_seq_cst)) {
|
|
// Right now NotifyStartupCompleted will be called up to twice, once from profiler and up to
|
|
// once externally. For this reason there are no asserts.
|
|
return;
|
|
}
|
|
|
|
VLOG(startup) << app_info_;
|
|
|
|
VLOG(startup) << "Adding NotifyStartupCompleted task";
|
|
// Use the heap task processor since we want to be exclusive with the GC and we don't want to
|
|
// block the caller if the GC is running.
|
|
if (!GetHeap()->AddHeapTask(new NotifyStartupCompletedTask)) {
|
|
VLOG(startup) << "Failed to add NotifyStartupCompletedTask";
|
|
}
|
|
|
|
// Notify the profiler saver that startup is now completed.
|
|
ProfileSaver::NotifyStartupCompleted();
|
|
|
|
if (metrics_reporter_ != nullptr) {
|
|
metrics_reporter_->NotifyStartupCompleted();
|
|
}
|
|
}
|
|
|
|
void Runtime::NotifyDexFileLoaded() {
|
|
if (metrics_reporter_ != nullptr) {
|
|
metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
|
|
}
|
|
}
|
|
|
|
bool Runtime::GetStartupCompleted() const {
|
|
return startup_completed_.load(std::memory_order_seq_cst);
|
|
}
|
|
|
|
void Runtime::SetSignalHookDebuggable(bool value) {
|
|
SkipAddSignalHandler(value);
|
|
}
|
|
|
|
void Runtime::SetJniIdType(JniIdType t) {
|
|
CHECK(CanSetJniIdType()) << "Not allowed to change id type!";
|
|
if (t == GetJniIdType()) {
|
|
return;
|
|
}
|
|
jni_ids_indirection_ = t;
|
|
JNIEnvExt::ResetFunctionTable();
|
|
WellKnownClasses::HandleJniIdTypeChange(Thread::Current()->GetJniEnv());
|
|
}
|
|
|
|
bool Runtime::GetOatFilesExecutable() const {
|
|
return !IsAotCompiler() && !(IsSystemServer() && jit_options_->GetSaveProfilingInfo());
|
|
}
|
|
|
|
void Runtime::ProcessWeakClass(GcRoot<mirror::Class>* root_ptr,
|
|
IsMarkedVisitor* visitor,
|
|
mirror::Class* update) {
|
|
// This does not need a read barrier because this is called by GC.
|
|
mirror::Class* cls = root_ptr->Read<kWithoutReadBarrier>();
|
|
if (cls != nullptr && cls != GetWeakClassSentinel()) {
|
|
DCHECK((cls->IsClass<kDefaultVerifyFlags>()));
|
|
// Look at the classloader of the class to know if it has been unloaded.
|
|
// This does not need a read barrier because this is called by GC.
|
|
ObjPtr<mirror::Object> class_loader =
|
|
cls->GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>();
|
|
if (class_loader == nullptr || visitor->IsMarked(class_loader.Ptr()) != nullptr) {
|
|
// The class loader is live, update the entry if the class has moved.
|
|
mirror::Class* new_cls = down_cast<mirror::Class*>(visitor->IsMarked(cls));
|
|
// Note that new_object can be null for CMS and newly allocated objects.
|
|
if (new_cls != nullptr && new_cls != cls) {
|
|
*root_ptr = GcRoot<mirror::Class>(new_cls);
|
|
}
|
|
} else {
|
|
// The class loader is not live, clear the entry.
|
|
*root_ptr = GcRoot<mirror::Class>(update);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Runtime::MadviseFileForRange(size_t madvise_size_limit_bytes,
|
|
size_t map_size_bytes,
|
|
const uint8_t* map_begin,
|
|
const uint8_t* map_end,
|
|
const std::string& file_name) {
|
|
// Ideal blockTransferSize for madvising files (128KiB)
|
|
static constexpr size_t kIdealIoTransferSizeBytes = 128*1024;
|
|
|
|
size_t target_size_bytes = std::min<size_t>(map_size_bytes, madvise_size_limit_bytes);
|
|
|
|
if (target_size_bytes > 0) {
|
|
ScopedTrace madvising_trace("madvising "
|
|
+ file_name
|
|
+ " size="
|
|
+ std::to_string(target_size_bytes));
|
|
|
|
// Based on requested size (target_size_bytes)
|
|
const uint8_t* target_pos = map_begin + target_size_bytes;
|
|
|
|
// Clamp endOfFile if its past map_end
|
|
if (target_pos > map_end) {
|
|
target_pos = map_end;
|
|
}
|
|
|
|
// Madvise the whole file up to target_pos in chunks of
|
|
// kIdealIoTransferSizeBytes (to MADV_WILLNEED)
|
|
// Note:
|
|
// madvise(MADV_WILLNEED) will prefetch max(fd readahead size, optimal
|
|
// block size for device) per call, hence the need for chunks. (128KB is a
|
|
// good default.)
|
|
for (const uint8_t* madvise_start = map_begin;
|
|
madvise_start < target_pos;
|
|
madvise_start += kIdealIoTransferSizeBytes) {
|
|
void* madvise_addr = const_cast<void*>(reinterpret_cast<const void*>(madvise_start));
|
|
size_t madvise_length = std::min(kIdealIoTransferSizeBytes,
|
|
static_cast<size_t>(target_pos - madvise_start));
|
|
int status = madvise(madvise_addr, madvise_length, MADV_WILLNEED);
|
|
// In case of error we stop madvising rest of the file
|
|
if (status < 0) {
|
|
LOG(ERROR) << "Failed to madvise file:" << file_name << " for size:" << map_size_bytes;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace art
|