824 lines
28 KiB
C++
824 lines
28 KiB
C++
/*
|
|
* Copyright (c) 2017-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_UTILS_H
|
|
#define ARM_COMPUTE_TEST_UTILS_H
|
|
|
|
#include "arm_compute/core/Coordinates.h"
|
|
#include "arm_compute/core/Error.h"
|
|
#include "arm_compute/core/HOGInfo.h"
|
|
#include "arm_compute/core/PyramidInfo.h"
|
|
#include "arm_compute/core/Size2D.h"
|
|
#include "arm_compute/core/TensorInfo.h"
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "support/StringSupport.h"
|
|
#include "support/ToolchainSupport.h"
|
|
|
|
#ifdef ARM_COMPUTE_CL
|
|
#include "arm_compute/core/CL/OpenCL.h"
|
|
#include "arm_compute/runtime/CL/CLScheduler.h"
|
|
#endif /* ARM_COMPUTE_CL */
|
|
|
|
#ifdef ARM_COMPUTE_GC
|
|
#include "arm_compute/core/GLES_COMPUTE/OpenGLES.h"
|
|
#include "arm_compute/runtime/GLES_COMPUTE/GCTensor.h"
|
|
#endif /* ARM_COMPUTE_GC */
|
|
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <random>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#include "arm_compute/runtime/CPP/CPPScheduler.h"
|
|
#include "arm_compute/runtime/RuntimeContext.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
#ifdef ARM_COMPUTE_CL
|
|
class CLTensor;
|
|
#endif /* ARM_COMPUTE_CL */
|
|
namespace test
|
|
{
|
|
/** Round floating-point value with half value rounding to positive infinity.
|
|
*
|
|
* @param[in] value floating-point value to be rounded.
|
|
*
|
|
* @return Floating-point value of rounded @p value.
|
|
*/
|
|
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
|
|
inline T round_half_up(T value)
|
|
{
|
|
return std::floor(value + 0.5f);
|
|
}
|
|
|
|
/** Round floating-point value with half value rounding to nearest even.
|
|
*
|
|
* @param[in] value floating-point value to be rounded.
|
|
* @param[in] epsilon precision.
|
|
*
|
|
* @return Floating-point value of rounded @p value.
|
|
*/
|
|
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
|
|
inline T round_half_even(T value, T epsilon = std::numeric_limits<T>::epsilon())
|
|
{
|
|
T positive_value = std::abs(value);
|
|
T ipart = 0;
|
|
std::modf(positive_value, &ipart);
|
|
// If 'value' is exactly halfway between two integers
|
|
if(std::abs(positive_value - (ipart + 0.5f)) < epsilon)
|
|
{
|
|
// If 'ipart' is even then return 'ipart'
|
|
if(std::fmod(ipart, 2.f) < epsilon)
|
|
{
|
|
return support::cpp11::copysign(ipart, value);
|
|
}
|
|
// Else return the nearest even integer
|
|
return support::cpp11::copysign(std::ceil(ipart + 0.5f), value);
|
|
}
|
|
// Otherwise use the usual round to closest
|
|
return support::cpp11::copysign(support::cpp11::round(positive_value), value);
|
|
}
|
|
|
|
namespace traits
|
|
{
|
|
// *INDENT-OFF*
|
|
// clang-format off
|
|
/** Promote a type */
|
|
template <typename T> struct promote { };
|
|
/** Promote uint8_t to uint16_t */
|
|
template <> struct promote<uint8_t> { using type = uint16_t; /**< Promoted type */ };
|
|
/** Promote int8_t to int16_t */
|
|
template <> struct promote<int8_t> { using type = int16_t; /**< Promoted type */ };
|
|
/** Promote uint16_t to uint32_t */
|
|
template <> struct promote<uint16_t> { using type = uint32_t; /**< Promoted type */ };
|
|
/** Promote int16_t to int32_t */
|
|
template <> struct promote<int16_t> { using type = int32_t; /**< Promoted type */ };
|
|
/** Promote uint32_t to uint64_t */
|
|
template <> struct promote<uint32_t> { using type = uint64_t; /**< Promoted type */ };
|
|
/** Promote int32_t to int64_t */
|
|
template <> struct promote<int32_t> { using type = int64_t; /**< Promoted type */ };
|
|
/** Promote float to float */
|
|
template <> struct promote<float> { using type = float; /**< Promoted type */ };
|
|
/** Promote half to half */
|
|
template <> struct promote<half> { using type = half; /**< Promoted type */ };
|
|
|
|
/** Get promoted type */
|
|
template <typename T>
|
|
using promote_t = typename promote<T>::type;
|
|
|
|
template <typename T>
|
|
using make_signed_conditional_t = typename std::conditional<std::is_integral<T>::value, std::make_signed<T>, std::common_type<T>>::type;
|
|
|
|
template <typename T>
|
|
using make_unsigned_conditional_t = typename std::conditional<std::is_integral<T>::value, std::make_unsigned<T>, std::common_type<T>>::type;
|
|
|
|
// clang-format on
|
|
// *INDENT-ON*
|
|
}
|
|
|
|
/** Look up the format corresponding to a channel.
|
|
*
|
|
* @param[in] channel Channel type.
|
|
*
|
|
* @return Format that contains the given channel.
|
|
*/
|
|
inline Format get_format_for_channel(Channel channel)
|
|
{
|
|
switch(channel)
|
|
{
|
|
case Channel::R:
|
|
case Channel::G:
|
|
case Channel::B:
|
|
return Format::RGB888;
|
|
default:
|
|
throw std::runtime_error("Unsupported channel");
|
|
}
|
|
}
|
|
|
|
/** Return the format of a channel.
|
|
*
|
|
* @param[in] channel Channel type.
|
|
*
|
|
* @return Format of the given channel.
|
|
*/
|
|
inline Format get_channel_format(Channel channel)
|
|
{
|
|
switch(channel)
|
|
{
|
|
case Channel::R:
|
|
case Channel::G:
|
|
case Channel::B:
|
|
return Format::U8;
|
|
default:
|
|
throw std::runtime_error("Unsupported channel");
|
|
}
|
|
}
|
|
|
|
/** Base case of foldl.
|
|
*
|
|
* @return value.
|
|
*/
|
|
template <typename F, typename T>
|
|
inline T foldl(F &&, const T &value)
|
|
{
|
|
return value;
|
|
}
|
|
|
|
/** Base case of foldl.
|
|
*
|
|
* @return func(value1, value2).
|
|
*/
|
|
template <typename F, typename T, typename U>
|
|
inline auto foldl(F &&func, T &&value1, U &&value2) -> decltype(func(value1, value2))
|
|
{
|
|
return func(value1, value2);
|
|
}
|
|
|
|
/** Fold left.
|
|
*
|
|
* @param[in] func Binary function to be called.
|
|
* @param[in] initial Initial value.
|
|
* @param[in] value Argument passed to the function.
|
|
* @param[in] values Remaining arguments.
|
|
*/
|
|
template <typename F, typename I, typename T, typename... Vs>
|
|
inline I foldl(F &&func, I &&initial, T &&value, Vs &&... values)
|
|
{
|
|
return foldl(std::forward<F>(func), func(std::forward<I>(initial), std::forward<T>(value)), std::forward<Vs>(values)...);
|
|
}
|
|
|
|
/** Create a valid region based on tensor shape, border mode and border size
|
|
*
|
|
* @param[in] a_shape Shape used as size of the valid region.
|
|
* @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined.
|
|
* @param[in] border_size (Optional) Border size used to specify the region to exclude.
|
|
*
|
|
* @return A valid region starting at (0, 0, ...) with size of @p shape if @p border_undefined is false; otherwise
|
|
* return A valid region starting at (@p border_size.left, @p border_size.top, ...) with reduced size of @p shape.
|
|
*/
|
|
inline ValidRegion shape_to_valid_region(const TensorShape &a_shape, bool border_undefined = false, BorderSize border_size = BorderSize(0))
|
|
{
|
|
ValidRegion valid_region{ Coordinates(), a_shape };
|
|
|
|
Coordinates &anchor = valid_region.anchor;
|
|
TensorShape &shape = valid_region.shape;
|
|
|
|
if(border_undefined)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON(shape.num_dimensions() < 2);
|
|
|
|
anchor.set(0, border_size.left);
|
|
anchor.set(1, border_size.top);
|
|
|
|
const int valid_shape_x = std::max(0, static_cast<int>(shape.x()) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right));
|
|
const int valid_shape_y = std::max(0, static_cast<int>(shape.y()) - static_cast<int>(border_size.top) - static_cast<int>(border_size.bottom));
|
|
|
|
shape.set(0, valid_shape_x);
|
|
shape.set(1, valid_shape_y);
|
|
}
|
|
|
|
return valid_region;
|
|
}
|
|
|
|
/** Create a valid region for Gaussian Pyramid Half based on tensor shape and valid region at level "i - 1" and border mode
|
|
*
|
|
* @note The border size is 2 in case of Gaussian Pyramid Half
|
|
*
|
|
* @param[in] a_shape Shape used at level "i - 1" of Gaussian Pyramid Half
|
|
* @param[in] a_valid_region Valid region used at level "i - 1" of Gaussian Pyramid Half
|
|
* @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined.
|
|
*
|
|
* return The valid region for the level "i" of Gaussian Pyramid Half
|
|
*/
|
|
inline ValidRegion shape_to_valid_region_gaussian_pyramid_half(const TensorShape &a_shape, const ValidRegion &a_valid_region, bool border_undefined = false)
|
|
{
|
|
constexpr int border_size = 2;
|
|
|
|
ValidRegion valid_region{ Coordinates(), a_shape };
|
|
|
|
Coordinates &anchor = valid_region.anchor;
|
|
TensorShape &shape = valid_region.shape;
|
|
|
|
// Compute tensor shape for level "i" of Gaussian Pyramid Half
|
|
// dst_width = (src_width + 1) * 0.5f
|
|
// dst_height = (src_height + 1) * 0.5f
|
|
shape.set(0, (a_shape[0] + 1) * 0.5f);
|
|
shape.set(1, (a_shape[1] + 1) * 0.5f);
|
|
|
|
if(border_undefined)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON(shape.num_dimensions() < 2);
|
|
|
|
// Compute the left and top invalid borders
|
|
float invalid_border_left = static_cast<float>(a_valid_region.anchor.x() + border_size) / 2.0f;
|
|
float invalid_border_top = static_cast<float>(a_valid_region.anchor.y() + border_size) / 2.0f;
|
|
|
|
// For the new anchor point we can have 2 cases:
|
|
// 1) If the width/height of the tensor shape is odd, we have to take the ceil value of (a_valid_region.anchor.x() + border_size) / 2.0f or (a_valid_region.anchor.y() + border_size / 2.0f
|
|
// 2) If the width/height of the tensor shape is even, we have to take the floor value of (a_valid_region.anchor.x() + border_size) / 2.0f or (a_valid_region.anchor.y() + border_size) / 2.0f
|
|
// In this manner we should be able to propagate correctly the valid region along all levels of the pyramid
|
|
invalid_border_left = (a_shape[0] % 2) ? std::ceil(invalid_border_left) : std::floor(invalid_border_left);
|
|
invalid_border_top = (a_shape[1] % 2) ? std::ceil(invalid_border_top) : std::floor(invalid_border_top);
|
|
|
|
// Set the anchor point
|
|
anchor.set(0, static_cast<int>(invalid_border_left));
|
|
anchor.set(1, static_cast<int>(invalid_border_top));
|
|
|
|
// Compute shape
|
|
// Calculate the right and bottom invalid borders at the previous level of the pyramid
|
|
const float prev_invalid_border_right = static_cast<float>(a_shape[0] - (a_valid_region.anchor.x() + a_valid_region.shape[0]));
|
|
const float prev_invalid_border_bottom = static_cast<float>(a_shape[1] - (a_valid_region.anchor.y() + a_valid_region.shape[1]));
|
|
|
|
// Calculate the right and bottom invalid borders at the current level of the pyramid
|
|
const float invalid_border_right = std::ceil((prev_invalid_border_right + static_cast<float>(border_size)) / 2.0f);
|
|
const float invalid_border_bottom = std::ceil((prev_invalid_border_bottom + static_cast<float>(border_size)) / 2.0f);
|
|
|
|
const int valid_shape_x = std::max(0, static_cast<int>(shape.x()) - static_cast<int>(invalid_border_left) - static_cast<int>(invalid_border_right));
|
|
const int valid_shape_y = std::max(0, static_cast<int>(shape.y()) - static_cast<int>(invalid_border_top) - static_cast<int>(invalid_border_bottom));
|
|
|
|
shape.set(0, valid_shape_x);
|
|
shape.set(1, valid_shape_y);
|
|
}
|
|
|
|
return valid_region;
|
|
}
|
|
|
|
/** Create a valid region for Laplacian Pyramid based on tensor shape and valid region at level "i - 1" and border mode
|
|
*
|
|
* @note The border size is 2 in case of Laplacian Pyramid
|
|
*
|
|
* @param[in] a_shape Shape used at level "i - 1" of Laplacian Pyramid
|
|
* @param[in] a_valid_region Valid region used at level "i - 1" of Laplacian Pyramid
|
|
* @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined.
|
|
*
|
|
* return The valid region for the level "i" of Laplacian Pyramid
|
|
*/
|
|
inline ValidRegion shape_to_valid_region_laplacian_pyramid(const TensorShape &a_shape, const ValidRegion &a_valid_region, bool border_undefined = false)
|
|
{
|
|
ValidRegion valid_region = shape_to_valid_region_gaussian_pyramid_half(a_shape, a_valid_region, border_undefined);
|
|
|
|
if(border_undefined)
|
|
{
|
|
const BorderSize gaussian5x5_border(2);
|
|
|
|
auto border_left = static_cast<int>(gaussian5x5_border.left);
|
|
auto border_right = static_cast<int>(gaussian5x5_border.right);
|
|
auto border_top = static_cast<int>(gaussian5x5_border.top);
|
|
auto border_bottom = static_cast<int>(gaussian5x5_border.bottom);
|
|
|
|
valid_region.anchor.set(0, valid_region.anchor[0] + border_left);
|
|
valid_region.anchor.set(1, valid_region.anchor[1] + border_top);
|
|
valid_region.shape.set(0, std::max(0, static_cast<int>(valid_region.shape[0]) - border_right - border_left));
|
|
valid_region.shape.set(1, std::max(0, static_cast<int>(valid_region.shape[1]) - border_top - border_bottom));
|
|
}
|
|
|
|
return valid_region;
|
|
}
|
|
|
|
/** Write the value after casting the pointer according to @p data_type.
|
|
*
|
|
* @warning The type of the value must match the specified data type.
|
|
*
|
|
* @param[out] ptr Pointer to memory where the @p value will be written.
|
|
* @param[in] value Value that will be written.
|
|
* @param[in] data_type Data type that will be written.
|
|
*/
|
|
template <typename T>
|
|
void store_value_with_data_type(void *ptr, T value, DataType data_type)
|
|
{
|
|
switch(data_type)
|
|
{
|
|
case DataType::U8:
|
|
case DataType::QASYMM8:
|
|
*reinterpret_cast<uint8_t *>(ptr) = value;
|
|
break;
|
|
case DataType::S8:
|
|
case DataType::QASYMM8_SIGNED:
|
|
case DataType::QSYMM8:
|
|
case DataType::QSYMM8_PER_CHANNEL:
|
|
*reinterpret_cast<int8_t *>(ptr) = value;
|
|
break;
|
|
case DataType::U16:
|
|
case DataType::QASYMM16:
|
|
*reinterpret_cast<uint16_t *>(ptr) = value;
|
|
break;
|
|
case DataType::S16:
|
|
case DataType::QSYMM16:
|
|
*reinterpret_cast<int16_t *>(ptr) = value;
|
|
break;
|
|
case DataType::U32:
|
|
*reinterpret_cast<uint32_t *>(ptr) = value;
|
|
break;
|
|
case DataType::S32:
|
|
*reinterpret_cast<int32_t *>(ptr) = value;
|
|
break;
|
|
case DataType::U64:
|
|
*reinterpret_cast<uint64_t *>(ptr) = value;
|
|
break;
|
|
case DataType::S64:
|
|
*reinterpret_cast<int64_t *>(ptr) = value;
|
|
break;
|
|
case DataType::BFLOAT16:
|
|
*reinterpret_cast<bfloat16 *>(ptr) = bfloat16(value);
|
|
break;
|
|
case DataType::F16:
|
|
*reinterpret_cast<half *>(ptr) = value;
|
|
break;
|
|
case DataType::F32:
|
|
*reinterpret_cast<float *>(ptr) = value;
|
|
break;
|
|
case DataType::F64:
|
|
*reinterpret_cast<double *>(ptr) = value;
|
|
break;
|
|
case DataType::SIZET:
|
|
*reinterpret_cast<size_t *>(ptr) = value;
|
|
break;
|
|
default:
|
|
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
|
|
}
|
|
}
|
|
|
|
/** Saturate a value of type T against the numeric limits of type U.
|
|
*
|
|
* @param[in] val Value to be saturated.
|
|
*
|
|
* @return saturated value.
|
|
*/
|
|
template <typename U, typename T>
|
|
T saturate_cast(T val)
|
|
{
|
|
if(val > static_cast<T>(std::numeric_limits<U>::max()))
|
|
{
|
|
val = static_cast<T>(std::numeric_limits<U>::max());
|
|
}
|
|
if(val < static_cast<T>(std::numeric_limits<U>::lowest()))
|
|
{
|
|
val = static_cast<T>(std::numeric_limits<U>::lowest());
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/** Find the signed promoted common type.
|
|
*/
|
|
template <typename... T>
|
|
struct common_promoted_signed_type
|
|
{
|
|
/** Common type */
|
|
using common_type = typename std::common_type<T...>::type;
|
|
/** Promoted type */
|
|
using promoted_type = traits::promote_t<common_type>;
|
|
/** Intermediate type */
|
|
using intermediate_type = typename traits::make_signed_conditional_t<promoted_type>::type;
|
|
};
|
|
|
|
/** Find the unsigned promoted common type.
|
|
*/
|
|
template <typename... T>
|
|
struct common_promoted_unsigned_type
|
|
{
|
|
/** Common type */
|
|
using common_type = typename std::common_type<T...>::type;
|
|
/** Promoted type */
|
|
using promoted_type = traits::promote_t<common_type>;
|
|
/** Intermediate type */
|
|
using intermediate_type = typename traits::make_unsigned_conditional_t<promoted_type>::type;
|
|
};
|
|
|
|
/** Convert a linear index into n-dimensional coordinates.
|
|
*
|
|
* @param[in] shape Shape of the n-dimensional tensor.
|
|
* @param[in] index Linear index specifying the i-th element.
|
|
*
|
|
* @return n-dimensional coordinates.
|
|
*/
|
|
inline Coordinates index2coord(const TensorShape &shape, int index)
|
|
{
|
|
int num_elements = shape.total_size();
|
|
|
|
ARM_COMPUTE_ERROR_ON_MSG(index < 0 || index >= num_elements, "Index has to be in [0, num_elements]");
|
|
ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create coordinate from empty shape");
|
|
|
|
Coordinates coord{ 0 };
|
|
|
|
for(int d = shape.num_dimensions() - 1; d >= 0; --d)
|
|
{
|
|
num_elements /= shape[d];
|
|
coord.set(d, index / num_elements);
|
|
index %= num_elements;
|
|
}
|
|
|
|
return coord;
|
|
}
|
|
|
|
/** Linearise the given coordinate.
|
|
*
|
|
* Transforms the given coordinate into a linear offset in terms of
|
|
* elements.
|
|
*
|
|
* @param[in] shape Shape of the n-dimensional tensor.
|
|
* @param[in] coord The to be converted coordinate.
|
|
*
|
|
* @return Linear offset to the element.
|
|
*/
|
|
inline int coord2index(const TensorShape &shape, const Coordinates &coord)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON_MSG(shape.total_size() == 0, "Cannot get index from empty shape");
|
|
ARM_COMPUTE_ERROR_ON_MSG(coord.num_dimensions() == 0, "Cannot get index of empty coordinate");
|
|
|
|
int index = 0;
|
|
int dim_size = 1;
|
|
|
|
for(unsigned int i = 0; i < coord.num_dimensions(); ++i)
|
|
{
|
|
index += coord[i] * dim_size;
|
|
dim_size *= shape[i];
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
/** Check if a coordinate is within a valid region */
|
|
inline bool is_in_valid_region(const ValidRegion &valid_region, Coordinates coord)
|
|
{
|
|
for(size_t d = 0; d < Coordinates::num_max_dimensions; ++d)
|
|
{
|
|
if(coord[d] < valid_region.start(d) || coord[d] >= valid_region.end(d))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/** Create and initialize a tensor of the given type.
|
|
*
|
|
* @param[in] shape Tensor shape.
|
|
* @param[in] data_type Data type.
|
|
* @param[in] num_channels (Optional) Number of channels.
|
|
* @param[in] quantization_info (Optional) Quantization info for asymmetric quantized types.
|
|
* @param[in] data_layout (Optional) Data layout. Default is NCHW.
|
|
* @param[in] ctx (Optional) Pointer to the runtime context.
|
|
*
|
|
* @return Initialized tensor of given type.
|
|
*/
|
|
template <typename T>
|
|
inline T create_tensor(const TensorShape &shape, DataType data_type, int num_channels = 1,
|
|
QuantizationInfo quantization_info = QuantizationInfo(), DataLayout data_layout = DataLayout::NCHW, IRuntimeContext *ctx = nullptr)
|
|
{
|
|
T tensor(ctx);
|
|
TensorInfo info(shape, num_channels, data_type);
|
|
info.set_quantization_info(quantization_info);
|
|
info.set_data_layout(data_layout);
|
|
tensor.allocator()->init(info);
|
|
|
|
return tensor;
|
|
}
|
|
|
|
/** Create and initialize a tensor of the given type.
|
|
*
|
|
* @param[in] shape Tensor shape.
|
|
* @param[in] format Format type.
|
|
* @param[in] ctx (Optional) Pointer to the runtime context.
|
|
*
|
|
* @return Initialized tensor of given type.
|
|
*/
|
|
template <typename T>
|
|
inline T create_tensor(const TensorShape &shape, Format format, IRuntimeContext *ctx = nullptr)
|
|
{
|
|
TensorInfo info(shape, format);
|
|
|
|
T tensor(ctx);
|
|
tensor.allocator()->init(info);
|
|
|
|
return tensor;
|
|
}
|
|
|
|
/** Create and initialize a multi-image of the given type.
|
|
*
|
|
* @param[in] shape Tensor shape.
|
|
* @param[in] format Format type.
|
|
*
|
|
* @return Initialized tensor of given type.
|
|
*/
|
|
template <typename T>
|
|
inline T create_multi_image(const TensorShape &shape, Format format)
|
|
{
|
|
T multi_image;
|
|
multi_image.init(shape.x(), shape.y(), format);
|
|
|
|
return multi_image;
|
|
}
|
|
|
|
/** Create and initialize a HOG (Histogram of Oriented Gradients) of the given type.
|
|
*
|
|
* @param[in] hog_info HOGInfo object
|
|
*
|
|
* @return Initialized HOG of given type.
|
|
*/
|
|
template <typename T>
|
|
inline T create_HOG(const HOGInfo &hog_info)
|
|
{
|
|
T hog;
|
|
hog.init(hog_info);
|
|
|
|
return hog;
|
|
}
|
|
|
|
/** Create and initialize a Pyramid of the given type.
|
|
*
|
|
* @param[in] pyramid_info The PyramidInfo object.
|
|
*
|
|
* @return Initialized Pyramid of given type.
|
|
*/
|
|
template <typename T>
|
|
inline T create_pyramid(const PyramidInfo &pyramid_info)
|
|
{
|
|
T pyramid;
|
|
pyramid.init_auto_padding(pyramid_info);
|
|
|
|
return pyramid;
|
|
}
|
|
|
|
/** Initialize a convolution matrix.
|
|
*
|
|
* @param[in, out] conv The input convolution matrix.
|
|
* @param[in] width The width of the convolution matrix.
|
|
* @param[in] height The height of the convolution matrix.
|
|
* @param[in] seed The random seed to be used.
|
|
*/
|
|
inline void init_conv(int16_t *conv, unsigned int width, unsigned int height, std::random_device::result_type seed)
|
|
{
|
|
std::mt19937 gen(seed);
|
|
std::uniform_int_distribution<int16_t> distribution_int16(-32768, 32767);
|
|
|
|
for(unsigned int i = 0; i < width * height; ++i)
|
|
{
|
|
conv[i] = distribution_int16(gen);
|
|
}
|
|
}
|
|
|
|
/** Initialize a separable convolution matrix.
|
|
*
|
|
* @param[in, out] conv The input convolution matrix.
|
|
* @param[in] width The width of the convolution matrix.
|
|
* @param[in] height The height of the convolution matrix.
|
|
* @param[in] seed The random seed to be used.
|
|
*/
|
|
inline void init_separable_conv(int16_t *conv, unsigned int width, unsigned int height, std::random_device::result_type seed)
|
|
{
|
|
std::mt19937 gen(seed);
|
|
// Set it between -128 and 127 to ensure the matrix does not overflow
|
|
std::uniform_int_distribution<int16_t> distribution_int16(-128, 127);
|
|
|
|
int16_t *conv_row = new int16_t[width];
|
|
int16_t *conv_col = new int16_t[height];
|
|
|
|
conv_row[0] = conv_col[0] = 1;
|
|
for(unsigned int i = 1; i < width; ++i)
|
|
{
|
|
conv_row[i] = distribution_int16(gen);
|
|
}
|
|
|
|
for(unsigned int i = 1; i < height; ++i)
|
|
{
|
|
conv_col[i] = distribution_int16(gen);
|
|
}
|
|
|
|
// Multiply two matrices
|
|
for(unsigned int i = 0; i < width; ++i)
|
|
{
|
|
for(unsigned int j = 0; j < height; ++j)
|
|
{
|
|
conv[i * width + j] = conv_col[i] * conv_row[j];
|
|
}
|
|
}
|
|
|
|
delete[] conv_row;
|
|
delete[] conv_col;
|
|
}
|
|
|
|
/** Create a vector with a uniform distribution of floating point values across the specified range.
|
|
*
|
|
* @param[in] num_values The number of values to be created.
|
|
* @param[in] min The minimum value in distribution (inclusive).
|
|
* @param[in] max The maximum value in distribution (inclusive).
|
|
* @param[in] seed The random seed to be used.
|
|
*
|
|
* @return A vector that contains the requested number of random floating point values
|
|
*/
|
|
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
|
|
inline std::vector<T> generate_random_real(unsigned int num_values, T min, T max, std::random_device::result_type seed)
|
|
{
|
|
std::vector<T> v(num_values);
|
|
std::mt19937 gen(seed);
|
|
std::uniform_real_distribution<T> dist(min, max);
|
|
|
|
for(unsigned int i = 0; i < num_values; ++i)
|
|
{
|
|
v.at(i) = dist(gen);
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
/** Create a vector of random keypoints for pyramid representation.
|
|
*
|
|
* @param[in] shape The shape of the input tensor.
|
|
* @param[in] num_keypoints The number of keypoints to be created.
|
|
* @param[in] seed The random seed to be used.
|
|
* @param[in] num_levels The number of pyramid levels.
|
|
*
|
|
* @return A vector that contains the requested number of random keypoints
|
|
*/
|
|
inline std::vector<KeyPoint> generate_random_keypoints(const TensorShape &shape, size_t num_keypoints, std::random_device::result_type seed, size_t num_levels = 1)
|
|
{
|
|
std::vector<KeyPoint> keypoints;
|
|
std::mt19937 gen(seed);
|
|
|
|
// Calculate distribution bounds
|
|
const auto min = static_cast<int>(std::pow(2, num_levels));
|
|
const auto max_width = static_cast<int>(shape.x());
|
|
const auto max_height = static_cast<int>(shape.y());
|
|
|
|
ARM_COMPUTE_ERROR_ON(min > max_width || min > max_height);
|
|
|
|
// Create distributions
|
|
std::uniform_int_distribution<> dist_w(min, max_width);
|
|
std::uniform_int_distribution<> dist_h(min, max_height);
|
|
|
|
for(unsigned int i = 0; i < num_keypoints; i++)
|
|
{
|
|
KeyPoint keypoint;
|
|
keypoint.x = dist_w(gen);
|
|
keypoint.y = dist_h(gen);
|
|
keypoint.tracking_status = 1;
|
|
|
|
keypoints.push_back(keypoint);
|
|
}
|
|
|
|
return keypoints;
|
|
}
|
|
|
|
template <typename T, typename ArrayAccessor_T>
|
|
inline void fill_array(ArrayAccessor_T &&array, const std::vector<T> &v)
|
|
{
|
|
array.resize(v.size());
|
|
std::memcpy(array.buffer(), v.data(), v.size() * sizeof(T));
|
|
}
|
|
|
|
/** Obtain numpy type string from DataType.
|
|
*
|
|
* @param[in] data_type Data type.
|
|
*
|
|
* @return numpy type string.
|
|
*/
|
|
inline std::string get_typestring(DataType data_type)
|
|
{
|
|
// Check endianness
|
|
const unsigned int i = 1;
|
|
const char *c = reinterpret_cast<const char *>(&i);
|
|
std::string endianness;
|
|
if(*c == 1)
|
|
{
|
|
endianness = std::string("<");
|
|
}
|
|
else
|
|
{
|
|
endianness = std::string(">");
|
|
}
|
|
const std::string no_endianness("|");
|
|
|
|
switch(data_type)
|
|
{
|
|
case DataType::U8:
|
|
return no_endianness + "u" + support::cpp11::to_string(sizeof(uint8_t));
|
|
case DataType::S8:
|
|
return no_endianness + "i" + support::cpp11::to_string(sizeof(int8_t));
|
|
case DataType::U16:
|
|
return endianness + "u" + support::cpp11::to_string(sizeof(uint16_t));
|
|
case DataType::S16:
|
|
return endianness + "i" + support::cpp11::to_string(sizeof(int16_t));
|
|
case DataType::U32:
|
|
return endianness + "u" + support::cpp11::to_string(sizeof(uint32_t));
|
|
case DataType::S32:
|
|
return endianness + "i" + support::cpp11::to_string(sizeof(int32_t));
|
|
case DataType::U64:
|
|
return endianness + "u" + support::cpp11::to_string(sizeof(uint64_t));
|
|
case DataType::S64:
|
|
return endianness + "i" + support::cpp11::to_string(sizeof(int64_t));
|
|
case DataType::F32:
|
|
return endianness + "f" + support::cpp11::to_string(sizeof(float));
|
|
case DataType::F64:
|
|
return endianness + "f" + support::cpp11::to_string(sizeof(double));
|
|
case DataType::SIZET:
|
|
return endianness + "u" + support::cpp11::to_string(sizeof(size_t));
|
|
default:
|
|
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
|
|
}
|
|
}
|
|
|
|
/** Sync if necessary.
|
|
*/
|
|
template <typename TensorType>
|
|
inline void sync_if_necessary()
|
|
{
|
|
#ifdef ARM_COMPUTE_CL
|
|
if(opencl_is_available() && std::is_same<typename std::decay<TensorType>::type, arm_compute::CLTensor>::value)
|
|
{
|
|
CLScheduler::get().sync();
|
|
}
|
|
#endif /* ARM_COMPUTE_CL */
|
|
}
|
|
|
|
/** Sync tensor if necessary.
|
|
*
|
|
* @note: If the destination tensor not being used on OpenGL ES, GPU will optimize out the operation.
|
|
*
|
|
* @param[in] tensor Tensor to be sync.
|
|
*/
|
|
template <typename TensorType>
|
|
inline void sync_tensor_if_necessary(TensorType &tensor)
|
|
{
|
|
#ifdef ARM_COMPUTE_GC
|
|
if(opengles31_is_available() && std::is_same<typename std::decay<TensorType>::type, arm_compute::GCTensor>::value)
|
|
{
|
|
// Force sync the tensor by calling map and unmap.
|
|
IGCTensor &t = dynamic_cast<IGCTensor &>(tensor);
|
|
t.map();
|
|
t.unmap();
|
|
}
|
|
#else /* ARM_COMPUTE_GC */
|
|
ARM_COMPUTE_UNUSED(tensor);
|
|
#endif /* ARM_COMPUTE_GC */
|
|
}
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_UTILS_H */
|