194 lines
8.1 KiB
C++
194 lines
8.1 KiB
C++
/*
|
|
* Copyright (c) 2018 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_HOG_MULTI_DETECTION_FIXTURE
|
|
#define ARM_COMPUTE_TEST_HOG_MULTI_DETECTION_FIXTURE
|
|
|
|
#include "arm_compute/core/HOGInfo.h"
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "tests/AssetsLibrary.h"
|
|
#include "tests/Globals.h"
|
|
#include "tests/IAccessor.h"
|
|
#include "tests/IHOGAccessor.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Fixture.h"
|
|
#include "tests/validation/reference/HOGMultiDetection.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
template <typename TensorType,
|
|
typename HOGType,
|
|
typename MultiHOGType,
|
|
typename DetectionWindowArrayType,
|
|
typename DetectionWindowStrideType,
|
|
typename AccessorType,
|
|
typename Size2DArrayAccessorType,
|
|
typename DetectionWindowArrayAccessorType,
|
|
typename HOGAccessorType,
|
|
typename FunctionType,
|
|
typename T,
|
|
typename U>
|
|
class HOGMultiDetectionValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(std::string image, std::vector<HOGInfo> models, Format format, BorderMode border_mode, bool non_maxima_suppression)
|
|
{
|
|
// Only defined borders supported
|
|
ARM_COMPUTE_ERROR_ON(border_mode == BorderMode::UNDEFINED);
|
|
|
|
// Generate a random constant value
|
|
std::mt19937 gen(library->seed());
|
|
std::uniform_int_distribution<T> int_dist(0, 255);
|
|
const T constant_border_value = int_dist(gen);
|
|
|
|
// Initialize descriptors vector
|
|
std::vector<std::vector<U>> descriptors(models.size());
|
|
|
|
// Use default values for threshold and min_distance
|
|
const float threshold = 0.f;
|
|
const float min_distance = 1.f;
|
|
|
|
// Maximum number of detection windows per batch
|
|
const unsigned int max_num_detection_windows = 100000;
|
|
|
|
_target = compute_target(image, format, border_mode, constant_border_value, models, descriptors, max_num_detection_windows, threshold, non_maxima_suppression, min_distance);
|
|
_reference = compute_reference(image, format, border_mode, constant_border_value, models, descriptors, max_num_detection_windows, threshold, non_maxima_suppression, min_distance);
|
|
}
|
|
|
|
protected:
|
|
template <typename V>
|
|
void fill(V &&tensor, const std::string image, Format format)
|
|
{
|
|
library->fill(tensor, image, format);
|
|
}
|
|
|
|
void initialize_batch(const std::vector<HOGInfo> &models, MultiHOGType &multi_hog,
|
|
std::vector<std::vector<U>> &descriptors, DetectionWindowStrideType &detection_window_strides)
|
|
{
|
|
for(unsigned i = 0; i < models.size(); ++i)
|
|
{
|
|
auto hog_model = reinterpret_cast<HOGType *>(multi_hog.model(i));
|
|
hog_model->init(models[i]);
|
|
|
|
// Initialise descriptor (linear SVM coefficients).
|
|
std::random_device::result_type seed = 0;
|
|
descriptors.at(i) = generate_random_real(models[i].descriptor_size(), -0.505f, 0.495f, seed);
|
|
|
|
// Copy HOG descriptor values to HOG memory
|
|
{
|
|
HOGAccessorType hog_accessor(*hog_model);
|
|
std::memcpy(hog_accessor.descriptor(), descriptors.at(i).data(), descriptors.at(i).size() * sizeof(U));
|
|
}
|
|
|
|
// Initialize detection window stride
|
|
Size2DArrayAccessorType accessor(detection_window_strides);
|
|
accessor.at(i) = models[i].block_stride();
|
|
}
|
|
}
|
|
|
|
std::vector<DetectionWindow> compute_target(const std::string image, Format &format, BorderMode &border_mode, T constant_border_value,
|
|
const std::vector<HOGInfo> &models, std::vector<std::vector<U>> &descriptors, unsigned int max_num_detection_windows,
|
|
float threshold, bool non_max_suppression, float min_distance)
|
|
{
|
|
MultiHOGType multi_hog(models.size());
|
|
DetectionWindowArrayType detection_windows(max_num_detection_windows);
|
|
DetectionWindowStrideType detection_window_strides(models.size());
|
|
|
|
// Resize detection window_strides for index access
|
|
detection_window_strides.resize(models.size());
|
|
|
|
// Initialiize MultiHOG and detection windows
|
|
initialize_batch(models, multi_hog, descriptors, detection_window_strides);
|
|
|
|
// Get image shape for src tensor
|
|
TensorShape shape = library->get_image_shape(image);
|
|
|
|
// Create tensors
|
|
TensorType src = create_tensor<TensorType>(shape, data_type_from_format(format));
|
|
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Create and configure function
|
|
FunctionType hog_multi_detection;
|
|
hog_multi_detection.configure(&src, &multi_hog, &detection_windows, &detection_window_strides, border_mode, constant_border_value, threshold, non_max_suppression, min_distance);
|
|
|
|
// Reset detection windows
|
|
detection_windows.clear();
|
|
|
|
// Allocate tensors
|
|
src.allocator()->allocate();
|
|
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(src), image, format);
|
|
|
|
// Compute function
|
|
hog_multi_detection.run();
|
|
|
|
// Copy detection windows
|
|
std::vector<DetectionWindow> windows;
|
|
DetectionWindowArrayAccessorType accessor(detection_windows);
|
|
|
|
for(size_t i = 0; i < accessor.num_values(); i++)
|
|
{
|
|
DetectionWindow win;
|
|
win.x = accessor.at(i).x;
|
|
win.y = accessor.at(i).y;
|
|
win.width = accessor.at(i).width;
|
|
win.height = accessor.at(i).height;
|
|
win.idx_class = accessor.at(i).idx_class;
|
|
win.score = accessor.at(i).score;
|
|
|
|
windows.push_back(win);
|
|
}
|
|
|
|
return windows;
|
|
}
|
|
|
|
std::vector<DetectionWindow> compute_reference(const std::string image, Format format, BorderMode border_mode, T constant_border_value,
|
|
const std::vector<HOGInfo> &models, const std::vector<std::vector<U>> &descriptors, unsigned int max_num_detection_windows,
|
|
float threshold, bool non_max_suppression, float min_distance)
|
|
{
|
|
// Create reference
|
|
SimpleTensor<T> src{ library->get_image_shape(image), data_type_from_format(format) };
|
|
|
|
// Fill reference
|
|
fill(src, image, format);
|
|
|
|
// NOTE: Detection window stride fixed to block stride
|
|
return reference::hog_multi_detection(src, border_mode, constant_border_value, models, descriptors, max_num_detection_windows, threshold, non_max_suppression, min_distance);
|
|
}
|
|
|
|
std::vector<DetectionWindow> _target{};
|
|
std::vector<DetectionWindow> _reference{};
|
|
};
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_HOG_MULTI_DETECTION_FIXTURE */
|