119 lines
4.7 KiB
C++
119 lines
4.7 KiB
C++
/*
|
|
* Copyright (c) 2018 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_UNSTACK_FIXTURE
|
|
#define ARM_COMPUTE_TEST_UNSTACK_FIXTURE
|
|
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
|
|
#include "tests/AssetsLibrary.h"
|
|
#include "tests/Globals.h"
|
|
#include "tests/IAccessor.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Fixture.h"
|
|
#include "tests/validation/Helpers.h"
|
|
#include "tests/validation/reference/Unstack.h"
|
|
|
|
#include <random>
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
template <typename TensorType, typename ITensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class UnstackValidationFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape input_shape, int axis, int num, DataType data_type)
|
|
{
|
|
_target = compute_target(input_shape, axis, num, data_type);
|
|
_reference = compute_reference(input_shape, axis, num, data_type);
|
|
}
|
|
|
|
protected:
|
|
template <typename U>
|
|
void fill(U &&tensor, int i)
|
|
{
|
|
library->fill_tensor_uniform(tensor, i);
|
|
}
|
|
|
|
std::vector<TensorType> compute_target(TensorShape input_shape, int axis, unsigned int num, DataType data_type)
|
|
{
|
|
TensorType input_tensor = create_tensor<TensorType>(input_shape, data_type);
|
|
const unsigned int axis_u = wrap_around(axis, static_cast<int>(input_shape.num_dimensions()));
|
|
const unsigned int axis_size = input_shape[axis_u];
|
|
const unsigned int num_slices = std::min(num, axis_size);
|
|
std::vector<TensorType> output_slices(num_slices);
|
|
std::vector<ITensorType *> output_ptrs(num_slices);
|
|
for(size_t k = 0; k < num_slices; ++k)
|
|
{
|
|
output_ptrs[k] = &output_slices[k];
|
|
}
|
|
// Create and configure function
|
|
FunctionType unstack;
|
|
unstack.configure(&input_tensor, output_ptrs, axis);
|
|
// Allocate tensors
|
|
for(auto &out : output_slices)
|
|
{
|
|
out.allocator()->allocate();
|
|
ARM_COMPUTE_EXPECT(!out.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
}
|
|
input_tensor.allocator()->allocate();
|
|
ARM_COMPUTE_EXPECT(!input_tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
fill(AccessorType(input_tensor), 0);
|
|
// Compute function
|
|
unstack.run();
|
|
return output_slices;
|
|
}
|
|
|
|
std::vector<SimpleTensor<T>> compute_reference(TensorShape input_shape, int axis, unsigned int num, DataType data_type)
|
|
{
|
|
const unsigned int axis_u = wrap_around(axis, static_cast<int>(input_shape.num_dimensions()));
|
|
const unsigned int axis_size = input_shape[axis_u];
|
|
const unsigned int num_output_tensors = (num == 0) ? axis_size : std::min(axis_size, num);
|
|
// create and fill input tensor
|
|
SimpleTensor<T> input_tensor{ input_shape, data_type };
|
|
fill(input_tensor, 0);
|
|
// create output tensors
|
|
const TensorShape slice_shape = arm_compute::misc::shape_calculator::calculate_unstack_shape(input_shape, axis_u);
|
|
std::vector<SimpleTensor<T>> output_tensors(num_output_tensors);
|
|
for(size_t k = 0; k < num_output_tensors; ++k)
|
|
{
|
|
output_tensors[k] = SimpleTensor<T>(slice_shape, data_type);
|
|
}
|
|
|
|
return reference::unstack<T>(input_tensor, output_tensors, axis);
|
|
}
|
|
|
|
std::vector<TensorType> _target{};
|
|
std::vector<SimpleTensor<T>> _reference{};
|
|
};
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_UNSTACK_FIXTURE */
|