aosp12/external/android-nn-driver/ArmnnPreparedModel_1_3.hpp

149 lines
6.9 KiB
C++

//
// Copyright © 2020 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#pragma once
#include "ArmnnDriver.hpp"
#include "ArmnnDriverImpl.hpp"
#include "RequestThread_1_3.hpp"
#include "ModelToINetworkConverter.hpp"
#include <NeuralNetworks.h>
#include <armnn/ArmNN.hpp>
#include <string>
#include <vector>
namespace armnn_driver
{
using CallbackAsync_1_3 = std::function<
void(V1_3::ErrorStatus errorStatus,
std::vector<::android::hardware::neuralnetworks::V1_2::OutputShape> outputShapes,
const ::android::hardware::neuralnetworks::V1_2::Timing& timing,
std::string callingFunction)>;
struct ExecutionContext_1_3
{
::android::hardware::neuralnetworks::V1_2::MeasureTiming measureTimings =
::android::hardware::neuralnetworks::V1_2::MeasureTiming::NO;
TimePoint driverStart;
TimePoint driverEnd;
TimePoint deviceStart;
TimePoint deviceEnd;
};
using CallbackContext_1_3 = CallbackContext<CallbackAsync_1_3, ExecutionContext_1_3>;
using executeFenced_cb = std::function<void(::android::hardware::neuralnetworks::V1_3::ErrorStatus status,
const ::android::hardware::hidl_handle& syncFence,
const ::android::sp<::android::hardware::neuralnetworks::V1_3::IFencedExecutionCallback>& callback)>;
template <typename HalVersion>
class ArmnnPreparedModel_1_3 : public V1_3::IPreparedModel
{
public:
using HalModel = typename V1_3::Model;
ArmnnPreparedModel_1_3(armnn::NetworkId networkId,
armnn::IRuntime* runtime,
const HalModel& model,
const std::string& requestInputsAndOutputsDumpDir,
const bool gpuProfilingEnabled,
V1_3::Priority priority = V1_3::Priority::MEDIUM);
virtual ~ArmnnPreparedModel_1_3();
Return<V1_0::ErrorStatus> execute(const V1_0::Request& request,
const sp<V1_0::IExecutionCallback>& callback) override;
Return<V1_0::ErrorStatus> execute_1_2(const V1_0::Request& request, V1_2::MeasureTiming measure,
const sp<V1_2::IExecutionCallback>& callback) override;
Return<V1_3::ErrorStatus> execute_1_3(const V1_3::Request& request,
V1_2::MeasureTiming measure,
const V1_3::OptionalTimePoint&,
const V1_3::OptionalTimeoutDuration&,
const sp<V1_3::IExecutionCallback>& callback) override;
Return<void> executeSynchronously(const V1_0::Request &request,
V1_2::MeasureTiming measure,
V1_3::IPreparedModel::executeSynchronously_cb cb) override;
Return<void> executeSynchronously_1_3(const V1_3::Request &request,
V1_2::MeasureTiming measure,
const V1_3::OptionalTimePoint& deadline,
const V1_3::OptionalTimeoutDuration& loopTimeoutDuration,
V1_3::IPreparedModel::executeSynchronously_1_3_cb cb) override;
Return<void> executeFenced(const V1_3::Request& request,
const android::hardware::hidl_vec<android::hardware::hidl_handle>& fenceWaitFor,
V1_2::MeasureTiming measure,
const V1_3::OptionalTimePoint& deadline,
const V1_3::OptionalTimeoutDuration& loopTimeoutDuration,
const V1_3::OptionalTimeoutDuration& duration,
executeFenced_cb callback) override;
Return<void> configureExecutionBurst(
const sp<V1_2::IBurstCallback>& callback,
const android::hardware::MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
const android::hardware::MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel,
configureExecutionBurst_cb cb) override;
template<typename CallbackContext>
Return<void> ExecuteSynchronously(const V1_3::Request& request, CallbackContext cbCtx);
/// execute the graph prepared from the request
template<typename CallbackContext>
Return <V1_3::ErrorStatus> ExecuteGraph(
std::shared_ptr<std::vector<::android::nn::RunTimePoolInfo>>& pMemPools,
armnn::InputTensors& inputTensors,
armnn::OutputTensors& outputTensors,
CallbackContext callback);
/// Executes this model with dummy inputs (e.g. all zeroes).
/// \return false on failure, otherwise true
bool ExecuteWithDummyInputs();
V1_3::Priority GetModelPriority();
private:
Return <V1_3::ErrorStatus> Execute(const V1_3::Request& request,
V1_2::MeasureTiming measureTiming,
CallbackAsync_1_3 callback);
Return<V1_3::ErrorStatus> PrepareMemoryForInputs(
armnn::InputTensors& inputs,
const V1_3::Request& request,
const std::vector<android::nn::RunTimePoolInfo>& memPools);
Return<V1_3::ErrorStatus> PrepareMemoryForOutputs(
armnn::OutputTensors& outputs,
std::vector<V1_2::OutputShape> &outputShapes,
const V1_3::Request& request,
const std::vector<android::nn::RunTimePoolInfo>& memPools);
std::tuple<V1_3::ErrorStatus, android::hardware::hidl_vec<V1_2::OutputShape>, V1_2::Timing, std::string> PrepareMemoryForIO(
armnn::InputTensors& inputs,
armnn::OutputTensors& outputs,
std::vector<android::nn::RunTimePoolInfo>& memPools,
const V1_3::Request& request);
template <typename TensorBindingCollection>
void DumpTensorsIfRequired(char const* tensorNamePrefix, const TensorBindingCollection& tensorBindings);
armnn::NetworkId m_NetworkId;
armnn::IRuntime* m_Runtime;
V1_3::Model m_Model;
// There must be a single RequestThread for all ArmnnPreparedModel objects to ensure serial execution of workloads
// It is specific to this class, so it is declared as static here
static RequestThread_1_3<ArmnnPreparedModel_1_3, HalVersion, CallbackContext_1_3> m_RequestThread;
uint32_t m_RequestCount;
const std::string& m_RequestInputsAndOutputsDumpDir;
const bool m_GpuProfilingEnabled;
V1_3::Priority m_ModelPriority;
};
}