aosp12/external/android-nn-driver/Utils.cpp

660 lines
20 KiB
C++

//
// Copyright © 2017 Arm Ltd. All rights reserved.
// SPDX-License-Identifier: MIT
//
#define LOG_TAG "ArmnnDriver"
#include "Utils.hpp"
#include "Half.hpp"
#include <armnnUtils/Permute.hpp>
#include <armnn/Utils.hpp>
#include <armnn/utility/Assert.hpp>
#include <Filesystem.hpp>
#include <log/log.h>
#include <cassert>
#include <cerrno>
#include <cinttypes>
#include <sstream>
#include <cstdio>
#include <time.h>
using namespace android;
using namespace android::hardware;
using namespace android::hidl::memory::V1_0;
namespace armnn_driver
{
const armnn::PermutationVector g_DontPermute{};
namespace
{
void SwizzleAndroidNn4dTensorToArmNn(const armnn::TensorShape& inTensorShape, const void* input,
void* output, size_t dataTypeSize, const armnn::PermutationVector& mappings)
{
assert(inTensorShape.GetNumDimensions() == 4U);
armnnUtils::Permute(armnnUtils::Permuted(inTensorShape, mappings), mappings, input, output, dataTypeSize);
}
} // anonymous namespace
void SwizzleAndroidNn4dTensorToArmNn(const armnn::TensorInfo& tensor, const void* input, void* output,
const armnn::PermutationVector& mappings)
{
assert(tensor.GetNumDimensions() == 4U);
armnn::DataType dataType = tensor.GetDataType();
switch (dataType)
{
case armnn::DataType::Float16:
case armnn::DataType::Float32:
case armnn::DataType::QAsymmU8:
case armnn::DataType::QSymmS8:
case armnn::DataType::QAsymmS8:
SwizzleAndroidNn4dTensorToArmNn(tensor.GetShape(), input, output, armnn::GetDataTypeSize(dataType), mappings);
break;
default:
ALOGW("Unknown armnn::DataType for swizzling");
assert(0);
}
}
void* GetMemoryFromPool(V1_0::DataLocation location, const std::vector<android::nn::RunTimePoolInfo>& memPools)
{
// find the location within the pool
assert(location.poolIndex < memPools.size());
const android::nn::RunTimePoolInfo& memPool = memPools[location.poolIndex];
uint8_t* memPoolBuffer = memPool.getBuffer();
uint8_t* memory = memPoolBuffer + location.offset;
return memory;
}
armnn::TensorInfo GetTensorInfoForOperand(const V1_0::Operand& operand)
{
using namespace armnn;
DataType type;
switch (operand.type)
{
case V1_0::OperandType::TENSOR_FLOAT32:
type = armnn::DataType::Float32;
break;
case V1_0::OperandType::TENSOR_QUANT8_ASYMM:
type = armnn::DataType::QAsymmU8;
break;
case V1_0::OperandType::TENSOR_INT32:
type = armnn::DataType::Signed32;
break;
default:
throw UnsupportedOperand<V1_0::OperandType>(operand.type);
}
TensorInfo ret;
if (operand.dimensions.size() == 0)
{
TensorShape tensorShape(Dimensionality::NotSpecified);
ret = TensorInfo(tensorShape, type);
}
else
{
bool dimensionsSpecificity[5] = { true, true, true, true, true };
int count = 0;
std::for_each(operand.dimensions.data(),
operand.dimensions.data() + operand.dimensions.size(),
[&](const unsigned int val)
{
if (val == 0)
{
dimensionsSpecificity[count] = false;
}
count++;
});
TensorShape tensorShape(operand.dimensions.size(), operand.dimensions.data(), dimensionsSpecificity);
ret = TensorInfo(tensorShape, type);
}
ret.SetQuantizationScale(operand.scale);
ret.SetQuantizationOffset(operand.zeroPoint);
return ret;
}
#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3)// Using ::android::hardware::neuralnetworks::V1_2
armnn::TensorInfo GetTensorInfoForOperand(const V1_2::Operand& operand)
{
using namespace armnn;
bool perChannel = false;
DataType type;
switch (operand.type)
{
case V1_2::OperandType::TENSOR_BOOL8:
type = armnn::DataType::Boolean;
break;
case V1_2::OperandType::TENSOR_FLOAT32:
type = armnn::DataType::Float32;
break;
case V1_2::OperandType::TENSOR_FLOAT16:
type = armnn::DataType::Float16;
break;
case V1_2::OperandType::TENSOR_QUANT8_ASYMM:
type = armnn::DataType::QAsymmU8;
break;
case V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
perChannel=true;
ARMNN_FALLTHROUGH;
case V1_2::OperandType::TENSOR_QUANT8_SYMM:
type = armnn::DataType::QSymmS8;
break;
case V1_2::OperandType::TENSOR_QUANT16_SYMM:
type = armnn::DataType::QSymmS16;
break;
case V1_2::OperandType::TENSOR_INT32:
type = armnn::DataType::Signed32;
break;
default:
throw UnsupportedOperand<V1_2::OperandType>(operand.type);
}
TensorInfo ret;
if (operand.dimensions.size() == 0)
{
TensorShape tensorShape(Dimensionality::NotSpecified);
ret = TensorInfo(tensorShape, type);
}
else
{
bool dimensionsSpecificity[5] = { true, true, true, true, true };
int count = 0;
std::for_each(operand.dimensions.data(),
operand.dimensions.data() + operand.dimensions.size(),
[&](const unsigned int val)
{
if (val == 0)
{
dimensionsSpecificity[count] = false;
}
count++;
});
TensorShape tensorShape(operand.dimensions.size(), operand.dimensions.data(), dimensionsSpecificity);
ret = TensorInfo(tensorShape, type);
}
if (perChannel)
{
// ExtraParams is expected to be of type channelQuant
ARMNN_ASSERT(operand.extraParams.getDiscriminator() ==
V1_2::Operand::ExtraParams::hidl_discriminator::channelQuant);
auto perAxisQuantParams = operand.extraParams.channelQuant();
ret.SetQuantizationScales(perAxisQuantParams.scales);
ret.SetQuantizationDim(MakeOptional<unsigned int>(perAxisQuantParams.channelDim));
}
else
{
ret.SetQuantizationScale(operand.scale);
ret.SetQuantizationOffset(operand.zeroPoint);
}
return ret;
}
#endif
#ifdef ARMNN_ANDROID_NN_V1_3 // Using ::android::hardware::neuralnetworks::V1_3
armnn::TensorInfo GetTensorInfoForOperand(const V1_3::Operand& operand)
{
using namespace armnn;
bool perChannel = false;
bool isScalar = false;
DataType type;
switch (operand.type)
{
case V1_3::OperandType::TENSOR_BOOL8:
type = armnn::DataType::Boolean;
break;
case V1_3::OperandType::TENSOR_FLOAT32:
type = armnn::DataType::Float32;
break;
case V1_3::OperandType::TENSOR_FLOAT16:
type = armnn::DataType::Float16;
break;
case V1_3::OperandType::TENSOR_QUANT8_ASYMM:
type = armnn::DataType::QAsymmU8;
break;
case V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
perChannel=true;
ARMNN_FALLTHROUGH;
case V1_3::OperandType::TENSOR_QUANT8_SYMM:
type = armnn::DataType::QSymmS8;
break;
case V1_3::OperandType::TENSOR_QUANT16_SYMM:
type = armnn::DataType::QSymmS16;
break;
case V1_3::OperandType::TENSOR_INT32:
type = armnn::DataType::Signed32;
break;
case V1_3::OperandType::INT32:
type = armnn::DataType::Signed32;
isScalar = true;
break;
case V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
type = armnn::DataType::QAsymmS8;
break;
default:
throw UnsupportedOperand<V1_3::OperandType>(operand.type);
}
TensorInfo ret;
if (isScalar)
{
ret = TensorInfo(TensorShape(armnn::Dimensionality::Scalar), type);
}
else
{
if (operand.dimensions.size() == 0)
{
TensorShape tensorShape(Dimensionality::NotSpecified);
ret = TensorInfo(tensorShape, type);
}
else
{
bool dimensionsSpecificity[5] = { true, true, true, true, true };
int count = 0;
std::for_each(operand.dimensions.data(),
operand.dimensions.data() + operand.dimensions.size(),
[&](const unsigned int val)
{
if (val == 0)
{
dimensionsSpecificity[count] = false;
}
count++;
});
TensorShape tensorShape(operand.dimensions.size(), operand.dimensions.data(), dimensionsSpecificity);
ret = TensorInfo(tensorShape, type);
}
}
if (perChannel)
{
// ExtraParams is expected to be of type channelQuant
ARMNN_ASSERT(operand.extraParams.getDiscriminator() ==
V1_2::Operand::ExtraParams::hidl_discriminator::channelQuant);
auto perAxisQuantParams = operand.extraParams.channelQuant();
ret.SetQuantizationScales(perAxisQuantParams.scales);
ret.SetQuantizationDim(MakeOptional<unsigned int>(perAxisQuantParams.channelDim));
}
else
{
ret.SetQuantizationScale(operand.scale);
ret.SetQuantizationOffset(operand.zeroPoint);
}
return ret;
}
#endif
std::string GetOperandSummary(const V1_0::Operand& operand)
{
return android::hardware::details::arrayToString(operand.dimensions, operand.dimensions.size()) + " " +
toString(operand.type);
}
#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3) // Using ::android::hardware::neuralnetworks::V1_2
std::string GetOperandSummary(const V1_2::Operand& operand)
{
return android::hardware::details::arrayToString(operand.dimensions, operand.dimensions.size()) + " " +
toString(operand.type);
}
#endif
#ifdef ARMNN_ANDROID_NN_V1_3 // Using ::android::hardware::neuralnetworks::V1_3
std::string GetOperandSummary(const V1_3::Operand& operand)
{
return android::hardware::details::arrayToString(operand.dimensions, operand.dimensions.size()) + " " +
toString(operand.type);
}
#endif
using DumpElementFunction = void (*)(const armnn::ConstTensor& tensor,
unsigned int elementIndex,
std::ofstream& fileStream);
namespace
{
template <typename ElementType, typename PrintableType = ElementType>
void DumpTensorElement(const armnn::ConstTensor& tensor, unsigned int elementIndex, std::ofstream& fileStream)
{
const ElementType* elements = reinterpret_cast<const ElementType*>(tensor.GetMemoryArea());
fileStream << static_cast<PrintableType>(elements[elementIndex]) << ",";
}
constexpr const char* MemoryLayoutString(const armnn::ConstTensor& tensor)
{
const char* str = "";
switch (tensor.GetNumDimensions())
{
case 4: { str = "(BHWC) "; break; }
case 3: { str = "(HWC) "; break; }
case 2: { str = "(HW) "; break; }
default: { str = ""; break; }
}
return str;
}
} // namespace
void DumpTensor(const std::string& dumpDir,
const std::string& requestName,
const std::string& tensorName,
const armnn::ConstTensor& tensor)
{
// The dump directory must exist in advance.
fs::path dumpPath = dumpDir;
const fs::path fileName = dumpPath / (requestName + "_" + tensorName + ".dump");
std::ofstream fileStream;
fileStream.open(fileName.c_str(), std::ofstream::out | std::ofstream::trunc);
if (!fileStream.good())
{
ALOGW("Could not open file %s for writing", fileName.c_str());
return;
}
DumpElementFunction dumpElementFunction = nullptr;
switch (tensor.GetDataType())
{
case armnn::DataType::Float32:
{
dumpElementFunction = &DumpTensorElement<float>;
break;
}
case armnn::DataType::QAsymmU8:
{
dumpElementFunction = &DumpTensorElement<uint8_t, uint32_t>;
break;
}
case armnn::DataType::Signed32:
{
dumpElementFunction = &DumpTensorElement<int32_t>;
break;
}
case armnn::DataType::Float16:
{
dumpElementFunction = &DumpTensorElement<armnn::Half>;
break;
}
case armnn::DataType::QAsymmS8:
{
dumpElementFunction = &DumpTensorElement<int8_t, int32_t>;
break;
}
case armnn::DataType::Boolean:
{
dumpElementFunction = &DumpTensorElement<bool>;
break;
}
default:
{
dumpElementFunction = nullptr;
}
}
if (dumpElementFunction != nullptr)
{
const unsigned int numDimensions = tensor.GetNumDimensions();
const unsigned int batch = (numDimensions == 4) ? tensor.GetShape()[numDimensions - 4] : 1;
const unsigned int height = (numDimensions >= 3)
? tensor.GetShape()[numDimensions - 3]
: (numDimensions >= 2) ? tensor.GetShape()[numDimensions - 2] : 1;
const unsigned int width = (numDimensions >= 3)
? tensor.GetShape()[numDimensions - 2]
: (numDimensions >= 1) ? tensor.GetShape()[numDimensions - 1] : 0;
const unsigned int channels = (numDimensions >= 3) ? tensor.GetShape()[numDimensions - 1] : 1;
fileStream << "# Number of elements " << tensor.GetNumElements() << std::endl;
fileStream << "# Dimensions " << MemoryLayoutString(tensor);
fileStream << "[" << tensor.GetShape()[0];
for (unsigned int d = 1; d < numDimensions; d++)
{
fileStream << "," << tensor.GetShape()[d];
}
fileStream << "]" << std::endl;
for (unsigned int e = 0, b = 0; b < batch; ++b)
{
if (numDimensions >= 4)
{
fileStream << "# Batch " << b << std::endl;
}
for (unsigned int c = 0; c < channels; c++)
{
if (numDimensions >= 3)
{
fileStream << "# Channel " << c << std::endl;
}
for (unsigned int h = 0; h < height; h++)
{
for (unsigned int w = 0; w < width; w++, e += channels)
{
(*dumpElementFunction)(tensor, e, fileStream);
}
fileStream << std::endl;
}
e -= channels - 1;
if (c < channels)
{
e -= ((height * width) - 1) * channels;
}
}
fileStream << std::endl;
}
fileStream << std::endl;
}
else
{
fileStream << "Cannot dump tensor elements: Unsupported data type "
<< static_cast<unsigned int>(tensor.GetDataType()) << std::endl;
}
if (!fileStream.good())
{
ALOGW("An error occurred when writing to file %s", fileName.c_str());
}
}
void DumpJsonProfilingIfRequired(bool gpuProfilingEnabled,
const std::string& dumpDir,
armnn::NetworkId networkId,
const armnn::IProfiler* profiler)
{
// Check if profiling is required.
if (!gpuProfilingEnabled)
{
return;
}
// The dump directory must exist in advance.
if (dumpDir.empty())
{
return;
}
ARMNN_ASSERT(profiler);
// Set the name of the output profiling file.
fs::path dumpPath = dumpDir;
const fs::path fileName = dumpPath / (std::to_string(networkId) + "_profiling.json");
// Open the ouput file for writing.
std::ofstream fileStream;
fileStream.open(fileName.c_str(), std::ofstream::out | std::ofstream::trunc);
if (!fileStream.good())
{
ALOGW("Could not open file %s for writing", fileName.c_str());
return;
}
// Write the profiling info to a JSON file.
profiler->Print(fileStream);
}
std::string ExportNetworkGraphToDotFile(const armnn::IOptimizedNetwork& optimizedNetwork,
const std::string& dumpDir)
{
std::string fileName;
// The dump directory must exist in advance.
if (dumpDir.empty())
{
return fileName;
}
std::string timestamp = GetFileTimestamp();
if (timestamp.empty())
{
return fileName;
}
// Set the name of the output .dot file.
fs::path dumpPath = dumpDir;
fs::path tempFilePath = dumpPath / (timestamp + "_networkgraph.dot");
fileName = tempFilePath.string();
ALOGV("Exporting the optimized network graph to file: %s", fileName.c_str());
// Write the network graph to a dot file.
std::ofstream fileStream;
fileStream.open(fileName, std::ofstream::out | std::ofstream::trunc);
if (!fileStream.good())
{
ALOGW("Could not open file %s for writing", fileName.c_str());
return fileName;
}
if (optimizedNetwork.SerializeToDot(fileStream) != armnn::Status::Success)
{
ALOGW("An error occurred when writing to file %s", fileName.c_str());
}
return fileName;
}
bool IsDynamicTensor(const armnn::TensorInfo& tensorInfo)
{
if (tensorInfo.GetShape().GetDimensionality() == armnn::Dimensionality::NotSpecified)
{
return true;
}
// Account for the usage of the TensorShape empty constructor
if (tensorInfo.GetNumDimensions() == 0)
{
return true;
}
return !tensorInfo.GetShape().AreAllDimensionsSpecified();
}
bool AreDynamicTensorsSupported()
{
#if defined(ARMNN_ANDROID_NN_V1_3)
return true;
#else
return false;
#endif
}
std::string GetFileTimestamp()
{
// used to get a timestamp to name diagnostic files (the ArmNN serialized graph
// and getSupportedOperations.txt files)
timespec ts;
int iRet = clock_gettime(CLOCK_MONOTONIC_RAW, &ts);
std::stringstream ss;
if (iRet == 0)
{
ss << std::to_string(ts.tv_sec) << "_" << std::to_string(ts.tv_nsec);
}
else
{
ALOGW("clock_gettime failed with errno %s : %s", std::to_string(errno).c_str(), std::strerror(errno));
}
return ss.str();
}
void RenameGraphDotFile(const std::string& oldName, const std::string& dumpDir, const armnn::NetworkId networkId)
{
if (dumpDir.empty())
{
return;
}
if (oldName.empty())
{
return;
}
fs::path dumpPath = dumpDir;
const fs::path newFileName = dumpPath / (std::to_string(networkId) + "_networkgraph.dot");
int iRet = rename(oldName.c_str(), newFileName.c_str());
if (iRet != 0)
{
std::stringstream ss;
ss << "rename of [" << oldName << "] to [" << newFileName << "] failed with errno " << std::to_string(errno)
<< " : " << std::strerror(errno);
ALOGW(ss.str().c_str());
}
}
void CommitPools(std::vector<::android::nn::RunTimePoolInfo>& memPools)
{
if (memPools.empty())
{
return;
}
// Commit output buffers.
// Note that we update *all* pools, even if they aren't actually used as outputs -
// this is simpler and is what the CpuExecutor does.
for (auto& pool : memPools)
{
// Type android::nn::RunTimePoolInfo has changed between Android P & Q and Android R, where
// update() has been removed and flush() added.
#if defined(ARMNN_ANDROID_R) // Use the new Android implementation.
pool.flush();
#else
pool.update();
#endif
}
}
} // namespace armnn_driver