7be3fd486c | ||
---|---|---|
.. | ||
aarch64 | ||
acpi_tables | ||
arch | ||
assertions | ||
audio_streams | ||
base | ||
bin | ||
bit_field | ||
ci | ||
common | ||
cros_async | ||
crosvm_plugin | ||
cuttlefish | ||
data_model | ||
devices | ||
disk | ||
docs | ||
enumn | ||
fuse | ||
fuzz | ||
gpu_display | ||
hypervisor | ||
integration_tests | ||
io_uring | ||
kernel_cmdline | ||
kernel_loader | ||
kvm | ||
kvm_sys | ||
libcras_stub | ||
libcrosvm_control | ||
libvda | ||
linux_input_sys | ||
net_sys | ||
net_util | ||
patches | ||
power_monitor | ||
protos | ||
qcow_utils | ||
resources | ||
rutabaga_gfx | ||
seccomp | ||
src | ||
sync | ||
sys_util | ||
tempfile | ||
tests | ||
tpm2 | ||
tpm2-sys | ||
usb_sys | ||
usb_util | ||
vfio_sys | ||
vhost | ||
vhost_user_devices | ||
virtio_sys | ||
vm_control | ||
vm_memory | ||
x86_64 | ||
.dockerignore | ||
.gitignore | ||
.rustfmt.toml | ||
Android.bp | ||
CONTRIBUTING.md | ||
Cargo.lock | ||
Cargo.toml | ||
LICENSE | ||
METADATA | ||
OWNERS | ||
OWNERS.android | ||
README.md | ||
all2android.sh | ||
cargo2android.json | ||
cargo2android_defaults.bp | ||
cargo2android_module.bp | ||
navbar.md | ||
run_tests | ||
rust-toolchain | ||
setup_cros_cargo.sh | ||
test_all | ||
unblocked_terms.txt |
README.md
crosvm - The Chrome OS Virtual Machine Monitor
This component, known as crosvm, runs untrusted operating systems along with virtualized devices. This only runs VMs through the Linux's KVM interface. What makes crosvm unique is a focus on safety within the programming language and a sandbox around the virtual devices to protect the kernel from attack in case of an exploit in the devices.
Getting started
Building for CrOS
crosvm on Chromium OS is built with Portage, so it follows the same general
workflow as any cros_workon
package. The full package name is
chromeos-base/crosvm
.
See the Chromium OS developer guide for more on how to build and deploy with Portage.
NOTE: cros_workon_make
modifies crosvm's Cargo.toml and Cargo.lock. Please be
careful not to commit the changes. Moreover, with the changes cargo will fail to
build and clippy preupload check will fail.
Building with Docker
See the README from the ci
subdirectory to learn how
to build and test crosvm in enviroments outside of the Chrome OS chroot.
Building for Linux
NOTE: Building for Linux natively is new and not fully supported.
Crosvm uses submodules to manage external dependencies. Initialize them via:
git submodule update --init
It is recommended to enable automatic recursive operations to keep the submodules in sync with the main repository:
git config --global submodule.recurse true
A basic crosvm build links against libcap
. On a Debian-based system,
you can install libcap-dev
.
Handy Debian one-liner for all build and runtime deps, particularly if you're running Crostini:
sudo apt install build-essential clang libasound2-dev libcap-dev libgbm-dev libvirglrenderer-dev libwayland-bin libwayland-dev pkg-config protobuf-compiler python wayland-protocols bindgen
Known issues:
- Even with the following points, jailed devices seem to crash for unclear
reasons. If you run into this, you can add
--disable-sandbox
to run everything in a single process. - If your Linux header files are too old, you may find minijail rejecting
seccomp filters for containing unknown syscalls. You can try removing the
offending lines from the filter file, or add
--seccomp-log-failures
to the crosvm command line to turn these into warnings. Note that this option will also stop minijail from killing processes that violate the seccomp rule, making the sandboxing much less aggressive. - Seccomp policy files have hardcoded absolute paths. You can either fix up
the paths locally, or set up an awesome hacky symlink:
sudo mkdir /usr/share/policy && sudo ln -s /path/to/crosvm/seccomp/x86_64 /usr/share/policy/crosvm
. We'll eventually build the precompiled policies into the crosvm binary. - Devices can't be jailed if
/var/empty
doesn't exist.sudo mkdir -p /var/empty
to work around this for now. - You need read/write permissions for
/dev/kvm
to run tests or other crosvm instances. Usually it's owned by thekvm
group, sosudo usermod -a -G kvm $USER
and then log out and back in again to fix this. - Some other features (networking) require
CAP_NET_ADMIN
so those usually need to be run as root.
And that's it! You should be able to cargo build/run/test
.
Usage
To see the usage information for your version of crosvm, run crosvm
or crosvm run --help
.
Boot a Kernel
To run a very basic VM with just a kernel and default devices:
$ crosvm run "${KERNEL_PATH}"
The uncompressed kernel image, also known as vmlinux, can be found in your kernel
build directory in the case of x86 at arch/x86/boot/compressed/vmlinux
.
Rootfs
With a disk image
In most cases, you will want to give the VM a virtual block device to use as a root file system:
$ crosvm run -r "${ROOT_IMAGE}" "${KERNEL_PATH}"
The root image must be a path to a disk image formatted in a way that the kernel
can read. Typically this is a squashfs image made with mksquashfs
or an ext4
image made with mkfs.ext4
. By using the -r
argument, the kernel is
automatically told to use that image as the root, and therefore can only be
given once. More disks can be given with -d
or --rwdisk
if a writable disk
is desired.
To run crosvm with a writable rootfs:
WARNING: Writable disks are at risk of corruption by a malicious or malfunctioning guest OS.
crosvm run --rwdisk "${ROOT_IMAGE}" -p "root=/dev/vda" vmlinux
NOTE: If more disks arguments are added prior to the desired rootfs image, the
root=/dev/vda
must be adjusted to the appropriate letter.
With virtiofs
Linux kernel 5.4+ is required for using virtiofs. This is convenient for testing. The file system must be named "mtd*" or "ubi*".
crosvm run --shared-dir "/:mtdfake:type=fs:cache=always" \
-p "rootfstype=virtiofs root=mtdfake" vmlinux
Control Socket
If the control socket was enabled with -s
, the main process can be controlled
while crosvm is running. To tell crosvm to stop and exit, for example:
NOTE: If the socket path given is for a directory, a socket name underneath that path will be generated based on crosvm's PID.
$ crosvm run -s /run/crosvm.sock ${USUAL_CROSVM_ARGS}
<in another shell>
$ crosvm stop /run/crosvm.sock
WARNING: The guest OS will not be notified or gracefully shutdown.
This will cause the original crosvm process to exit in an orderly fashion, allowing it to clean up any OS resources that might have stuck around if crosvm were terminated early.
Multiprocess Mode
By default crosvm runs in multiprocess mode. Each device that supports running
inside of a sandbox will run in a jailed child process of crosvm. The
appropriate minijail seccomp policy files must be present either in
/usr/share/policy/crosvm
or in the path specified by the
--seccomp-policy-dir
argument. The sandbox can be disabled for testing with
the --disable-sandbox
option.
Virtio Wayland
Virtio Wayland support requires special support on the part of the guest and as
such is unlikely to work out of the box unless you are using a Chrome OS kernel
along with a termina
rootfs.
To use it, ensure that the XDG_RUNTIME_DIR
enviroment variable is set and that
the path $XDG_RUNTIME_DIR/wayland-0
points to the socket of the Wayland
compositor you would like the guest to use.
GDB Support
crosvm supports GDB Remote Serial Protocol to allow developers to debug guest kernel via GDB.
You can enable the feature by --gdb
flag:
# Use uncompressed vmlinux
$ crosvm run --gdb <port> ${USUAL_CROSVM_ARGS} vmlinux
Then, you can start GDB in another shell.
$ gdb vmlinux
(gdb) target remote :<port>
(gdb) hbreak start_kernel
(gdb) c
<start booting in the other shell>
For general techniques for debugging the Linux kernel via GDB, see this kernel documentation.
Defaults
The following are crosvm's default arguments and how to override them.
- 256MB of memory (set with
-m
) - 1 virtual CPU (set with
-c
) - no block devices (set with
-r
,-d
, or--rwdisk
) - no network (set with
--host_ip
,--netmask
, and--mac
) - virtio wayland support if
XDG_RUNTIME_DIR
enviroment variable is set (disable with--no-wl
) - only the kernel arguments necessary to run with the supported devices (add more with
-p
) - run in multiprocess mode (run in single process mode with
--disable-sandbox
) - no control socket (set with
-s
)
System Requirements
A Linux kernel with KVM support (check for /dev/kvm
) is required to run
crosvm. In order to run certain devices, there are additional system
requirements:
virtio-wayland
- Thememfd_create
syscall, introduced in Linux 3.17, and a Wayland compositor.vsock
- Host Linux kernel with vhost-vsock support, introduced in Linux 4.8.multiprocess
- Host Linux kernel with seccomp-bpf and Linux namespacing support.virtio-net
- Host Linux kernel with TUN/TAP support (check for/dev/net/tun
) and running withCAP_NET_ADMIN
privileges.
Emulated Devices
Device | Description |
---|---|
CMOS/RTC |
Used to get the current calendar time. |
i8042 |
Used by the guest kernel to exit crosvm. |
serial |
x86 I/O port driven serial devices that print to stdout and take input from stdin. |
virtio-block |
Basic read/write block device. |
virtio-net |
Device to interface the host and guest networks. |
virtio-rng |
Entropy source used to seed guest OS's entropy pool. |
virtio-vsock |
Enabled VSOCKs for the guests. |
virtio-wayland |
Allowed guest to use host Wayland socket. |
Contributing
Code Health
test_all
Crosvm provides docker containers to build and run tests for both x86_64 and
aarch64, which can be run with the ./test_all
script.
See ci/README.md
for more details on how to use the containers for local
development.
rustfmt
All code should be formatted with rustfmt
. We have a script that applies
rustfmt to all Rust code in the crosvm repo: please run bin/fmt
before
checking in a change. This is different from cargo fmt --all
which formats
multiple crates but a single workspace only; crosvm consists of multiple
workspaces.
clippy
The clippy
linter is used to check for common Rust problems. The crosvm
project uses a specific set of clippy
checks; please run bin/clippy
before
checking in a change.
Dependencies
With a few exceptions, external dependencies inside of the Cargo.toml
files
are not allowed. The reason being that community made crates tend to explode the
binary size by including dozens of transitive dependencies. All these
dependencies also must be reviewed to ensure their suitability to the crosvm
project. Currently allowed crates are:
cc
- Build time dependency needed to build C source code used in crosvm.libc
- Required to use the standard library, this crate is a simple wrapper aroundlibc
's symbols.
Code Overview
The crosvm source code is written in Rust and C. To build, crosvm generally requires the most recent stable version of rustc.
Source code is organized into crates, each with their own unit tests. These crates are:
crosvm
- The top-level binary front-end for using crosvm.devices
- Virtual devices exposed to the guest OS.kernel_loader
- Loads elf64 kernel files to a slice of memory.kvm_sys
- Low-level (mostly) auto-generated structures and constants for using KVM.kvm
- Unsafe, low-level wrapper code for usingkvm_sys
.net_sys
- Low-level (mostly) auto-generated structures and constants for creating TUN/TAP devices.net_util
- Wrapper for creating TUN/TAP devices.sys_util
- Mostly safe wrappers for small system facilities such aseventfd
orsyslog
.syscall_defines
- Lists of syscall numbers in each architecture used to make syscalls not supported inlibc
.vhost
- Wrappers for creating vhost based devices.virtio_sys
- Low-level (mostly) auto-generated structures and constants for interfacing with kernel vhost support.vm_control
- IPC for the VM.x86_64
- Support code specific to 64 bit intel machines.
The seccomp
folder contains minijail seccomp policy files for each sandboxed
device. Because some syscalls vary by architecture, the seccomp policies are
split by architecture.