aosp12/external/ethtool/ethtool.c

5766 lines
144 KiB
C

/*
* ethtool.c: Linux ethernet device configuration tool.
*
* Copyright (C) 1998 David S. Miller (davem@dm.cobaltmicro.com)
* Portions Copyright 2001 Sun Microsystems
* Kernel 2.4 update Copyright 2001 Jeff Garzik <jgarzik@mandrakesoft.com>
* Wake-on-LAN,natsemi,misc support by Tim Hockin <thockin@sun.com>
* Portions Copyright 2002 Intel
* Portions Copyright (C) Sun Microsystems 2008
* do_test support by Eli Kupermann <eli.kupermann@intel.com>
* ETHTOOL_PHYS_ID support by Chris Leech <christopher.leech@intel.com>
* e1000 support by Scott Feldman <scott.feldman@intel.com>
* e100 support by Wen Tao <wen-hwa.tao@intel.com>
* ixgb support by Nicholas Nunley <Nicholas.d.nunley@intel.com>
* amd8111e support by Reeja John <reeja.john@amd.com>
* long arguments by Andi Kleen.
* SMSC LAN911x support by Steve Glendinning <steve.glendinning@smsc.com>
* Rx Network Flow Control configuration support <santwona.behera@sun.com>
* Various features by Ben Hutchings <bhutchings@solarflare.com>;
* Copyright 2009, 2010 Solarflare Communications
* MDI-X set support by Jesse Brandeburg <jesse.brandeburg@intel.com>
* Copyright 2012 Intel Corporation
* vmxnet3 support by Shrikrishna Khare <skhare@vmware.com>
* Various features by Ben Hutchings <ben@decadent.org.uk>;
* Copyright 2008-2010, 2013-2016 Ben Hutchings
* QSFP+/QSFP28 DOM support by Vidya Sagar Ravipati <vidya@cumulusnetworks.com>
*
* TODO:
* * show settings for all devices
*/
#include "internal.h"
#include <string.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <stdio.h>
#include <stddef.h>
#include <stdbool.h>
#include <errno.h>
#include <sys/utsname.h>
#include <limits.h>
#include <ctype.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <linux/sockios.h>
#include <linux/netlink.h>
#ifndef MAX_ADDR_LEN
#define MAX_ADDR_LEN 32
#endif
#ifndef HAVE_NETIF_MSG
enum {
NETIF_MSG_DRV = 0x0001,
NETIF_MSG_PROBE = 0x0002,
NETIF_MSG_LINK = 0x0004,
NETIF_MSG_TIMER = 0x0008,
NETIF_MSG_IFDOWN = 0x0010,
NETIF_MSG_IFUP = 0x0020,
NETIF_MSG_RX_ERR = 0x0040,
NETIF_MSG_TX_ERR = 0x0080,
NETIF_MSG_TX_QUEUED = 0x0100,
NETIF_MSG_INTR = 0x0200,
NETIF_MSG_TX_DONE = 0x0400,
NETIF_MSG_RX_STATUS = 0x0800,
NETIF_MSG_PKTDATA = 0x1000,
NETIF_MSG_HW = 0x2000,
NETIF_MSG_WOL = 0x4000,
};
#endif
#ifndef NETLINK_GENERIC
#define NETLINK_GENERIC 16
#endif
#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))
static void exit_bad_args(void) __attribute__((noreturn));
static void exit_bad_args(void)
{
fprintf(stderr,
"ethtool: bad command line argument(s)\n"
"For more information run ethtool -h\n");
exit(1);
}
typedef enum {
CMDL_NONE,
CMDL_BOOL,
CMDL_S32,
CMDL_U8,
CMDL_U16,
CMDL_U32,
CMDL_U64,
CMDL_BE16,
CMDL_IP4,
CMDL_STR,
CMDL_FLAG,
CMDL_MAC,
} cmdline_type_t;
struct cmdline_info {
const char *name;
cmdline_type_t type;
/* Points to int (BOOL), s32, u16, u32 (U32/FLAG/IP4), u64,
* char * (STR) or u8[6] (MAC). For FLAG, the value accumulates
* all flags to be set. */
void *wanted_val;
void *ioctl_val;
/* For FLAG, the flag value to be set/cleared */
u32 flag_val;
/* For FLAG, points to u32 and accumulates all flags seen.
* For anything else, points to int and is set if the option is
* seen. */
void *seen_val;
};
struct flag_info {
const char *name;
u32 value;
};
static const struct flag_info flags_msglvl[] = {
{ "drv", NETIF_MSG_DRV },
{ "probe", NETIF_MSG_PROBE },
{ "link", NETIF_MSG_LINK },
{ "timer", NETIF_MSG_TIMER },
{ "ifdown", NETIF_MSG_IFDOWN },
{ "ifup", NETIF_MSG_IFUP },
{ "rx_err", NETIF_MSG_RX_ERR },
{ "tx_err", NETIF_MSG_TX_ERR },
{ "tx_queued", NETIF_MSG_TX_QUEUED },
{ "intr", NETIF_MSG_INTR },
{ "tx_done", NETIF_MSG_TX_DONE },
{ "rx_status", NETIF_MSG_RX_STATUS },
{ "pktdata", NETIF_MSG_PKTDATA },
{ "hw", NETIF_MSG_HW },
{ "wol", NETIF_MSG_WOL },
};
struct off_flag_def {
const char *short_name;
const char *long_name;
const char *kernel_name;
u32 get_cmd, set_cmd;
u32 value;
/* For features exposed through ETHTOOL_GFLAGS, the oldest
* kernel version for which we can trust the result. Where
* the flag was added at the same time the kernel started
* supporting the feature, this is 0 (to allow for backports).
* Where the feature was supported before the flag was added,
* it is the version that introduced the flag.
*/
u32 min_kernel_ver;
};
static const struct off_flag_def off_flag_def[] = {
{ "rx", "rx-checksumming", "rx-checksum",
ETHTOOL_GRXCSUM, ETHTOOL_SRXCSUM, ETH_FLAG_RXCSUM, 0 },
{ "tx", "tx-checksumming", "tx-checksum-*",
ETHTOOL_GTXCSUM, ETHTOOL_STXCSUM, ETH_FLAG_TXCSUM, 0 },
{ "sg", "scatter-gather", "tx-scatter-gather*",
ETHTOOL_GSG, ETHTOOL_SSG, ETH_FLAG_SG, 0 },
{ "tso", "tcp-segmentation-offload", "tx-tcp*-segmentation",
ETHTOOL_GTSO, ETHTOOL_STSO, ETH_FLAG_TSO, 0 },
{ "ufo", "udp-fragmentation-offload", "tx-udp-fragmentation",
ETHTOOL_GUFO, ETHTOOL_SUFO, ETH_FLAG_UFO, 0 },
{ "gso", "generic-segmentation-offload", "tx-generic-segmentation",
ETHTOOL_GGSO, ETHTOOL_SGSO, ETH_FLAG_GSO, 0 },
{ "gro", "generic-receive-offload", "rx-gro",
ETHTOOL_GGRO, ETHTOOL_SGRO, ETH_FLAG_GRO, 0 },
{ "lro", "large-receive-offload", "rx-lro",
0, 0, ETH_FLAG_LRO,
KERNEL_VERSION(2,6,24) },
{ "rxvlan", "rx-vlan-offload", "rx-vlan-hw-parse",
0, 0, ETH_FLAG_RXVLAN,
KERNEL_VERSION(2,6,37) },
{ "txvlan", "tx-vlan-offload", "tx-vlan-hw-insert",
0, 0, ETH_FLAG_TXVLAN,
KERNEL_VERSION(2,6,37) },
{ "ntuple", "ntuple-filters", "rx-ntuple-filter",
0, 0, ETH_FLAG_NTUPLE, 0 },
{ "rxhash", "receive-hashing", "rx-hashing",
0, 0, ETH_FLAG_RXHASH, 0 },
};
struct feature_def {
char name[ETH_GSTRING_LEN];
int off_flag_index; /* index in off_flag_def; negative if none match */
};
struct feature_defs {
size_t n_features;
/* Number of features each offload flag is associated with */
unsigned int off_flag_matched[ARRAY_SIZE(off_flag_def)];
/* Name and offload flag index for each feature */
struct feature_def def[0];
};
#define FEATURE_BITS_TO_BLOCKS(n_bits) DIV_ROUND_UP(n_bits, 32U)
#define FEATURE_WORD(blocks, index, field) ((blocks)[(index) / 32U].field)
#define FEATURE_FIELD_FLAG(index) (1U << (index) % 32U)
#define FEATURE_BIT_SET(blocks, index, field) \
(FEATURE_WORD(blocks, index, field) |= FEATURE_FIELD_FLAG(index))
#define FEATURE_BIT_CLEAR(blocks, index, field) \
(FEATURE_WORD(blocks, index, filed) &= ~FEATURE_FIELD_FLAG(index))
#define FEATURE_BIT_IS_SET(blocks, index, field) \
(FEATURE_WORD(blocks, index, field) & FEATURE_FIELD_FLAG(index))
static long long
get_int_range(char *str, int base, long long min, long long max)
{
long long v;
char *endp;
if (!str)
exit_bad_args();
errno = 0;
v = strtoll(str, &endp, base);
if (errno || *endp || v < min || v > max)
exit_bad_args();
return v;
}
static unsigned long long
get_uint_range(char *str, int base, unsigned long long max)
{
unsigned long long v;
char *endp;
if (!str)
exit_bad_args();
errno = 0;
v = strtoull(str, &endp, base);
if (errno || *endp || v > max)
exit_bad_args();
return v;
}
static int get_int(char *str, int base)
{
return get_int_range(str, base, INT_MIN, INT_MAX);
}
static u32 get_u32(char *str, int base)
{
return get_uint_range(str, base, 0xffffffff);
}
static void get_mac_addr(char *src, unsigned char *dest)
{
int count;
int i;
int buf[ETH_ALEN];
count = sscanf(src, "%2x:%2x:%2x:%2x:%2x:%2x",
&buf[0], &buf[1], &buf[2], &buf[3], &buf[4], &buf[5]);
if (count != ETH_ALEN)
exit_bad_args();
for (i = 0; i < count; i++)
dest[i] = buf[i];
}
static int parse_hex_u32_bitmap(const char *s,
unsigned int nbits, u32 *result)
{
const unsigned int nwords = __KERNEL_DIV_ROUND_UP(nbits, 32);
size_t slen = strlen(s);
size_t i;
/* ignore optional '0x' prefix */
if ((slen > 2) && (strncasecmp(s, "0x", 2) == 0)) {
slen -= 2;
s += 2;
}
if (slen > 8 * nwords) /* up to 2 digits per byte */
return -1;
memset(result, 0, 4 * nwords);
for (i = 0; i < slen; ++i) {
const unsigned int shift = (slen - 1 - i) * 4;
u32 *dest = &result[shift / 32];
u32 nibble;
if ('a' <= s[i] && s[i] <= 'f')
nibble = 0xa + (s[i] - 'a');
else if ('A' <= s[i] && s[i] <= 'F')
nibble = 0xa + (s[i] - 'A');
else if ('0' <= s[i] && s[i] <= '9')
nibble = (s[i] - '0');
else
return -1;
*dest |= (nibble << (shift % 32));
}
return 0;
}
static void parse_generic_cmdline(struct cmd_context *ctx,
int *changed,
struct cmdline_info *info,
unsigned int n_info)
{
int argc = ctx->argc;
char **argp = ctx->argp;
int i, idx;
int found;
for (i = 0; i < argc; i++) {
found = 0;
for (idx = 0; idx < n_info; idx++) {
if (!strcmp(info[idx].name, argp[i])) {
found = 1;
*changed = 1;
if (info[idx].type != CMDL_FLAG &&
info[idx].seen_val)
*(int *)info[idx].seen_val = 1;
i += 1;
if (i >= argc)
exit_bad_args();
switch (info[idx].type) {
case CMDL_BOOL: {
int *p = info[idx].wanted_val;
if (!strcmp(argp[i], "on"))
*p = 1;
else if (!strcmp(argp[i], "off"))
*p = 0;
else
exit_bad_args();
break;
}
case CMDL_S32: {
s32 *p = info[idx].wanted_val;
*p = get_int_range(argp[i], 0,
-0x80000000LL,
0x7fffffff);
break;
}
case CMDL_U8: {
u8 *p = info[idx].wanted_val;
*p = get_uint_range(argp[i], 0, 0xff);
break;
}
case CMDL_U16: {
u16 *p = info[idx].wanted_val;
*p = get_uint_range(argp[i], 0, 0xffff);
break;
}
case CMDL_U32: {
u32 *p = info[idx].wanted_val;
*p = get_uint_range(argp[i], 0,
0xffffffff);
break;
}
case CMDL_U64: {
u64 *p = info[idx].wanted_val;
*p = get_uint_range(
argp[i], 0,
0xffffffffffffffffLL);
break;
}
case CMDL_BE16: {
u16 *p = info[idx].wanted_val;
*p = cpu_to_be16(
get_uint_range(argp[i], 0,
0xffff));
break;
}
case CMDL_IP4: {
u32 *p = info[idx].wanted_val;
struct in_addr in;
if (!inet_aton(argp[i], &in))
exit_bad_args();
*p = in.s_addr;
break;
}
case CMDL_MAC:
get_mac_addr(argp[i],
info[idx].wanted_val);
break;
case CMDL_FLAG: {
u32 *p;
p = info[idx].seen_val;
*p |= info[idx].flag_val;
if (!strcmp(argp[i], "on")) {
p = info[idx].wanted_val;
*p |= info[idx].flag_val;
} else if (strcmp(argp[i], "off")) {
exit_bad_args();
}
break;
}
case CMDL_STR: {
char **s = info[idx].wanted_val;
*s = strdup(argp[i]);
break;
}
default:
exit_bad_args();
}
break;
}
}
if (!found)
exit_bad_args();
}
}
static void flag_to_cmdline_info(const char *name, u32 value,
u32 *wanted, u32 *mask,
struct cmdline_info *cli)
{
memset(cli, 0, sizeof(*cli));
cli->name = name;
cli->type = CMDL_FLAG;
cli->flag_val = value;
cli->wanted_val = wanted;
cli->seen_val = mask;
}
static void
print_flags(const struct flag_info *info, unsigned int n_info, u32 value)
{
const char *sep = "";
while (n_info) {
if (value & info->value) {
printf("%s%s", sep, info->name);
sep = " ";
value &= ~info->value;
}
++info;
--n_info;
}
/* Print any unrecognised flags in hex */
if (value)
printf("%s%#x", sep, value);
}
static int rxflow_str_to_type(const char *str)
{
int flow_type = 0;
if (!strcmp(str, "tcp4"))
flow_type = TCP_V4_FLOW;
else if (!strcmp(str, "udp4"))
flow_type = UDP_V4_FLOW;
else if (!strcmp(str, "ah4") || !strcmp(str, "esp4"))
flow_type = AH_ESP_V4_FLOW;
else if (!strcmp(str, "sctp4"))
flow_type = SCTP_V4_FLOW;
else if (!strcmp(str, "tcp6"))
flow_type = TCP_V6_FLOW;
else if (!strcmp(str, "udp6"))
flow_type = UDP_V6_FLOW;
else if (!strcmp(str, "ah6") || !strcmp(str, "esp6"))
flow_type = AH_ESP_V6_FLOW;
else if (!strcmp(str, "sctp6"))
flow_type = SCTP_V6_FLOW;
else if (!strcmp(str, "ether"))
flow_type = ETHER_FLOW;
return flow_type;
}
static int do_version(struct cmd_context *ctx maybe_unused)
{
fprintf(stdout,
PACKAGE " version " VERSION
#ifndef ETHTOOL_ENABLE_PRETTY_DUMP
" (pretty dumps disabled)"
#endif
"\n");
return 0;
}
/* link mode routines */
static ETHTOOL_DECLARE_LINK_MODE_MASK(all_advertised_modes);
static ETHTOOL_DECLARE_LINK_MODE_MASK(all_advertised_flags);
static void init_global_link_mode_masks(void)
{
static const enum ethtool_link_mode_bit_indices
all_advertised_modes_bits[] = {
ETHTOOL_LINK_MODE_10baseT_Half_BIT,
ETHTOOL_LINK_MODE_10baseT_Full_BIT,
ETHTOOL_LINK_MODE_100baseT_Half_BIT,
ETHTOOL_LINK_MODE_100baseT_Full_BIT,
ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
ETHTOOL_LINK_MODE_2500baseX_Full_BIT,
ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
ETHTOOL_LINK_MODE_20000baseMLD2_Full_BIT,
ETHTOOL_LINK_MODE_20000baseKR2_Full_BIT,
ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
ETHTOOL_LINK_MODE_56000baseKR4_Full_BIT,
ETHTOOL_LINK_MODE_56000baseCR4_Full_BIT,
ETHTOOL_LINK_MODE_56000baseSR4_Full_BIT,
ETHTOOL_LINK_MODE_56000baseLR4_Full_BIT,
ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
ETHTOOL_LINK_MODE_10000baseCR_Full_BIT,
ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
ETHTOOL_LINK_MODE_10000baseLRM_Full_BIT,
ETHTOOL_LINK_MODE_10000baseER_Full_BIT,
ETHTOOL_LINK_MODE_2500baseT_Full_BIT,
ETHTOOL_LINK_MODE_5000baseT_Full_BIT,
ETHTOOL_LINK_MODE_50000baseKR_Full_BIT,
ETHTOOL_LINK_MODE_50000baseSR_Full_BIT,
ETHTOOL_LINK_MODE_50000baseCR_Full_BIT,
ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT,
ETHTOOL_LINK_MODE_50000baseDR_Full_BIT,
ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT,
ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT,
ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT,
ETHTOOL_LINK_MODE_100000baseLR2_ER2_FR2_Full_BIT,
ETHTOOL_LINK_MODE_100000baseDR2_Full_BIT,
ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT,
ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT,
ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT,
ETHTOOL_LINK_MODE_200000baseDR4_Full_BIT,
ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT,
ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
ETHTOOL_LINK_MODE_1000baseT1_Full_BIT,
};
static const enum ethtool_link_mode_bit_indices
additional_advertised_flags_bits[] = {
ETHTOOL_LINK_MODE_Autoneg_BIT,
ETHTOOL_LINK_MODE_TP_BIT,
ETHTOOL_LINK_MODE_AUI_BIT,
ETHTOOL_LINK_MODE_MII_BIT,
ETHTOOL_LINK_MODE_FIBRE_BIT,
ETHTOOL_LINK_MODE_BNC_BIT,
ETHTOOL_LINK_MODE_Pause_BIT,
ETHTOOL_LINK_MODE_Asym_Pause_BIT,
ETHTOOL_LINK_MODE_Backplane_BIT,
ETHTOOL_LINK_MODE_FEC_NONE_BIT,
ETHTOOL_LINK_MODE_FEC_RS_BIT,
ETHTOOL_LINK_MODE_FEC_BASER_BIT,
};
unsigned int i;
ethtool_link_mode_zero(all_advertised_modes);
ethtool_link_mode_zero(all_advertised_flags);
for (i = 0; i < ARRAY_SIZE(all_advertised_modes_bits); ++i) {
ethtool_link_mode_set_bit(all_advertised_modes_bits[i],
all_advertised_modes);
ethtool_link_mode_set_bit(all_advertised_modes_bits[i],
all_advertised_flags);
}
for (i = 0; i < ARRAY_SIZE(additional_advertised_flags_bits); ++i) {
ethtool_link_mode_set_bit(
additional_advertised_flags_bits[i],
all_advertised_flags);
}
}
static void dump_link_caps(const char *prefix, const char *an_prefix,
const u32 *mask, int link_mode_only);
static void dump_supported(const struct ethtool_link_usettings *link_usettings)
{
fprintf(stdout, " Supported ports: [ ");
if (ethtool_link_mode_test_bit(
ETHTOOL_LINK_MODE_TP_BIT,
link_usettings->link_modes.supported))
fprintf(stdout, "TP ");
if (ethtool_link_mode_test_bit(
ETHTOOL_LINK_MODE_AUI_BIT,
link_usettings->link_modes.supported))
fprintf(stdout, "AUI ");
if (ethtool_link_mode_test_bit(
ETHTOOL_LINK_MODE_BNC_BIT,
link_usettings->link_modes.supported))
fprintf(stdout, "BNC ");
if (ethtool_link_mode_test_bit(
ETHTOOL_LINK_MODE_MII_BIT,
link_usettings->link_modes.supported))
fprintf(stdout, "MII ");
if (ethtool_link_mode_test_bit(
ETHTOOL_LINK_MODE_FIBRE_BIT,
link_usettings->link_modes.supported))
fprintf(stdout, "FIBRE ");
if (ethtool_link_mode_test_bit(
ETHTOOL_LINK_MODE_Backplane_BIT,
link_usettings->link_modes.supported))
fprintf(stdout, "Backplane ");
fprintf(stdout, "]\n");
dump_link_caps("Supported", "Supports",
link_usettings->link_modes.supported, 0);
}
/* Print link capability flags (supported, advertised or lp_advertised).
* Assumes that the corresponding SUPPORTED and ADVERTISED flags are equal.
*/
static void dump_link_caps(const char *prefix, const char *an_prefix,
const u32 *mask, int link_mode_only)
{
static const struct {
int same_line; /* print on same line as previous */
unsigned int bit_index;
const char *name;
} mode_defs[] = {
{ 0, ETHTOOL_LINK_MODE_10baseT_Half_BIT,
"10baseT/Half" },
{ 1, ETHTOOL_LINK_MODE_10baseT_Full_BIT,
"10baseT/Full" },
{ 0, ETHTOOL_LINK_MODE_100baseT_Half_BIT,
"100baseT/Half" },
{ 1, ETHTOOL_LINK_MODE_100baseT_Full_BIT,
"100baseT/Full" },
{ 0, ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
"100baseT1/Full" },
{ 0, ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
"1000baseT/Half" },
{ 1, ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
"1000baseT/Full" },
{ 0, ETHTOOL_LINK_MODE_1000baseT1_Full_BIT,
"1000baseT1/Full" },
{ 0, ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
"1000baseKX/Full" },
{ 0, ETHTOOL_LINK_MODE_2500baseX_Full_BIT,
"2500baseX/Full" },
{ 0, ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
"10000baseT/Full" },
{ 0, ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
"10000baseKX4/Full" },
{ 0, ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
"10000baseKR/Full" },
{ 0, ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
"10000baseR_FEC" },
{ 0, ETHTOOL_LINK_MODE_20000baseMLD2_Full_BIT,
"20000baseMLD2/Full" },
{ 0, ETHTOOL_LINK_MODE_20000baseKR2_Full_BIT,
"20000baseKR2/Full" },
{ 0, ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
"40000baseKR4/Full" },
{ 0, ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
"40000baseCR4/Full" },
{ 0, ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
"40000baseSR4/Full" },
{ 0, ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
"40000baseLR4/Full" },
{ 0, ETHTOOL_LINK_MODE_56000baseKR4_Full_BIT,
"56000baseKR4/Full" },
{ 0, ETHTOOL_LINK_MODE_56000baseCR4_Full_BIT,
"56000baseCR4/Full" },
{ 0, ETHTOOL_LINK_MODE_56000baseSR4_Full_BIT,
"56000baseSR4/Full" },
{ 0, ETHTOOL_LINK_MODE_56000baseLR4_Full_BIT,
"56000baseLR4/Full" },
{ 0, ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
"25000baseCR/Full" },
{ 0, ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
"25000baseKR/Full" },
{ 0, ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
"25000baseSR/Full" },
{ 0, ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
"50000baseCR2/Full" },
{ 0, ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
"50000baseKR2/Full" },
{ 0, ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
"100000baseKR4/Full" },
{ 0, ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
"100000baseSR4/Full" },
{ 0, ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
"100000baseCR4/Full" },
{ 0, ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
"100000baseLR4_ER4/Full" },
{ 0, ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
"50000baseSR2/Full" },
{ 0, ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
"1000baseX/Full" },
{ 0, ETHTOOL_LINK_MODE_10000baseCR_Full_BIT,
"10000baseCR/Full" },
{ 0, ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
"10000baseSR/Full" },
{ 0, ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
"10000baseLR/Full" },
{ 0, ETHTOOL_LINK_MODE_10000baseLRM_Full_BIT,
"10000baseLRM/Full" },
{ 0, ETHTOOL_LINK_MODE_10000baseER_Full_BIT,
"10000baseER/Full" },
{ 0, ETHTOOL_LINK_MODE_2500baseT_Full_BIT,
"2500baseT/Full" },
{ 0, ETHTOOL_LINK_MODE_5000baseT_Full_BIT,
"5000baseT/Full" },
{ 0, ETHTOOL_LINK_MODE_50000baseKR_Full_BIT,
"50000baseKR/Full" },
{ 0, ETHTOOL_LINK_MODE_50000baseSR_Full_BIT,
"50000baseSR/Full" },
{ 0, ETHTOOL_LINK_MODE_50000baseCR_Full_BIT,
"50000baseCR/Full" },
{ 0, ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT,
"50000baseLR_ER_FR/Full" },
{ 0, ETHTOOL_LINK_MODE_50000baseDR_Full_BIT,
"50000baseDR/Full" },
{ 0, ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT,
"100000baseKR2/Full" },
{ 0, ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT,
"100000baseSR2/Full" },
{ 0, ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT,
"100000baseCR2/Full" },
{ 0, ETHTOOL_LINK_MODE_100000baseLR2_ER2_FR2_Full_BIT,
"100000baseLR2_ER2_FR2/Full" },
{ 0, ETHTOOL_LINK_MODE_100000baseDR2_Full_BIT,
"100000baseDR2/Full" },
{ 0, ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT,
"200000baseKR4/Full" },
{ 0, ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT,
"200000baseSR4/Full" },
{ 0, ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT,
"200000baseLR4_ER4_FR4/Full" },
{ 0, ETHTOOL_LINK_MODE_200000baseDR4_Full_BIT,
"200000baseDR4/Full" },
{ 0, ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT,
"200000baseCR4/Full" },
};
int indent;
int did1, new_line_pend, i;
int fecreported = 0;
/* Indent just like the separate functions used to */
indent = strlen(prefix) + 14;
if (indent < 24)
indent = 24;
fprintf(stdout, " %s link modes:%*s", prefix,
indent - (int)strlen(prefix) - 12, "");
did1 = 0;
new_line_pend = 0;
for (i = 0; i < ARRAY_SIZE(mode_defs); i++) {
if (did1 && !mode_defs[i].same_line)
new_line_pend = 1;
if (ethtool_link_mode_test_bit(mode_defs[i].bit_index,
mask)) {
if (new_line_pend) {
fprintf(stdout, "\n");
fprintf(stdout, " %*s", indent, "");
new_line_pend = 0;
}
did1++;
fprintf(stdout, "%s ", mode_defs[i].name);
}
}
if (did1 == 0)
fprintf(stdout, "Not reported");
fprintf(stdout, "\n");
if (!link_mode_only) {
fprintf(stdout, " %s pause frame use: ", prefix);
if (ethtool_link_mode_test_bit(
ETHTOOL_LINK_MODE_Pause_BIT, mask)) {
fprintf(stdout, "Symmetric");
if (ethtool_link_mode_test_bit(
ETHTOOL_LINK_MODE_Asym_Pause_BIT, mask))
fprintf(stdout, " Receive-only");
fprintf(stdout, "\n");
} else {
if (ethtool_link_mode_test_bit(
ETHTOOL_LINK_MODE_Asym_Pause_BIT, mask))
fprintf(stdout, "Transmit-only\n");
else
fprintf(stdout, "No\n");
}
fprintf(stdout, " %s auto-negotiation: ", an_prefix);
if (ethtool_link_mode_test_bit(
ETHTOOL_LINK_MODE_Autoneg_BIT, mask))
fprintf(stdout, "Yes\n");
else
fprintf(stdout, "No\n");
fprintf(stdout, " %s FEC modes:", prefix);
if (ethtool_link_mode_test_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT,
mask)) {
fprintf(stdout, " None");
fecreported = 1;
}
if (ethtool_link_mode_test_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT,
mask)) {
fprintf(stdout, " BaseR");
fecreported = 1;
}
if (ethtool_link_mode_test_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT,
mask)) {
fprintf(stdout, " RS");
fecreported = 1;
}
if (!fecreported)
fprintf(stdout, " Not reported");
fprintf(stdout, "\n");
}
}
static int
dump_link_usettings(const struct ethtool_link_usettings *link_usettings)
{
dump_supported(link_usettings);
dump_link_caps("Advertised", "Advertised",
link_usettings->link_modes.advertising, 0);
if (!ethtool_link_mode_is_empty(
link_usettings->link_modes.lp_advertising))
dump_link_caps("Link partner advertised",
"Link partner advertised",
link_usettings->link_modes.lp_advertising, 0);
fprintf(stdout, " Speed: ");
if (link_usettings->base.speed == 0
|| link_usettings->base.speed == (u16)(-1)
|| link_usettings->base.speed == (u32)(-1))
fprintf(stdout, "Unknown!\n");
else
fprintf(stdout, "%uMb/s\n", link_usettings->base.speed);
fprintf(stdout, " Duplex: ");
switch (link_usettings->base.duplex) {
case DUPLEX_HALF:
fprintf(stdout, "Half\n");
break;
case DUPLEX_FULL:
fprintf(stdout, "Full\n");
break;
default:
fprintf(stdout, "Unknown! (%i)\n", link_usettings->base.duplex);
break;
};
fprintf(stdout, " Port: ");
switch (link_usettings->base.port) {
case PORT_TP:
fprintf(stdout, "Twisted Pair\n");
break;
case PORT_AUI:
fprintf(stdout, "AUI\n");
break;
case PORT_BNC:
fprintf(stdout, "BNC\n");
break;
case PORT_MII:
fprintf(stdout, "MII\n");
break;
case PORT_FIBRE:
fprintf(stdout, "FIBRE\n");
break;
case PORT_DA:
fprintf(stdout, "Direct Attach Copper\n");
break;
case PORT_NONE:
fprintf(stdout, "None\n");
break;
case PORT_OTHER:
fprintf(stdout, "Other\n");
break;
default:
fprintf(stdout, "Unknown! (%i)\n", link_usettings->base.port);
break;
};
fprintf(stdout, " PHYAD: %d\n", link_usettings->base.phy_address);
fprintf(stdout, " Transceiver: ");
switch (link_usettings->deprecated.transceiver) {
case XCVR_INTERNAL:
fprintf(stdout, "internal\n");
break;
case XCVR_EXTERNAL:
fprintf(stdout, "external\n");
break;
default:
fprintf(stdout, "Unknown!\n");
break;
};
fprintf(stdout, " Auto-negotiation: %s\n",
(link_usettings->base.autoneg == AUTONEG_DISABLE) ?
"off" : "on");
if (link_usettings->base.port == PORT_TP) {
fprintf(stdout, " MDI-X: ");
if (link_usettings->base.eth_tp_mdix_ctrl == ETH_TP_MDI) {
fprintf(stdout, "off (forced)\n");
} else if (link_usettings->base.eth_tp_mdix_ctrl
== ETH_TP_MDI_X) {
fprintf(stdout, "on (forced)\n");
} else {
switch (link_usettings->base.eth_tp_mdix) {
case ETH_TP_MDI:
fprintf(stdout, "off");
break;
case ETH_TP_MDI_X:
fprintf(stdout, "on");
break;
default:
fprintf(stdout, "Unknown");
break;
}
if (link_usettings->base.eth_tp_mdix_ctrl
== ETH_TP_MDI_AUTO)
fprintf(stdout, " (auto)");
fprintf(stdout, "\n");
}
}
return 0;
}
static int dump_drvinfo(struct ethtool_drvinfo *info)
{
fprintf(stdout,
"driver: %.*s\n"
"version: %.*s\n"
"firmware-version: %.*s\n"
"expansion-rom-version: %.*s\n"
"bus-info: %.*s\n"
"supports-statistics: %s\n"
"supports-test: %s\n"
"supports-eeprom-access: %s\n"
"supports-register-dump: %s\n"
"supports-priv-flags: %s\n",
(int)sizeof(info->driver), info->driver,
(int)sizeof(info->version), info->version,
(int)sizeof(info->fw_version), info->fw_version,
(int)sizeof(info->erom_version), info->erom_version,
(int)sizeof(info->bus_info), info->bus_info,
info->n_stats ? "yes" : "no",
info->testinfo_len ? "yes" : "no",
info->eedump_len ? "yes" : "no",
info->regdump_len ? "yes" : "no",
info->n_priv_flags ? "yes" : "no");
return 0;
}
static int parse_wolopts(char *optstr, u32 *data)
{
*data = 0;
while (*optstr) {
switch (*optstr) {
case 'p':
*data |= WAKE_PHY;
break;
case 'u':
*data |= WAKE_UCAST;
break;
case 'm':
*data |= WAKE_MCAST;
break;
case 'b':
*data |= WAKE_BCAST;
break;
case 'a':
*data |= WAKE_ARP;
break;
case 'g':
*data |= WAKE_MAGIC;
break;
case 's':
*data |= WAKE_MAGICSECURE;
break;
case 'f':
*data |= WAKE_FILTER;
break;
case 'd':
*data = 0;
break;
default:
return -1;
}
optstr++;
}
return 0;
}
static char *unparse_wolopts(int wolopts)
{
static char buf[16];
char *p = buf;
memset(buf, 0, sizeof(buf));
if (wolopts) {
if (wolopts & WAKE_PHY)
*p++ = 'p';
if (wolopts & WAKE_UCAST)
*p++ = 'u';
if (wolopts & WAKE_MCAST)
*p++ = 'm';
if (wolopts & WAKE_BCAST)
*p++ = 'b';
if (wolopts & WAKE_ARP)
*p++ = 'a';
if (wolopts & WAKE_MAGIC)
*p++ = 'g';
if (wolopts & WAKE_MAGICSECURE)
*p++ = 's';
if (wolopts & WAKE_FILTER)
*p++ = 'f';
} else {
*p = 'd';
}
return buf;
}
static int dump_wol(struct ethtool_wolinfo *wol)
{
fprintf(stdout, " Supports Wake-on: %s\n",
unparse_wolopts(wol->supported));
fprintf(stdout, " Wake-on: %s\n",
unparse_wolopts(wol->wolopts));
if (wol->supported & WAKE_MAGICSECURE) {
int i;
int delim = 0;
fprintf(stdout, " SecureOn password: ");
for (i = 0; i < SOPASS_MAX; i++) {
fprintf(stdout, "%s%02x", delim?":":"", wol->sopass[i]);
delim = 1;
}
fprintf(stdout, "\n");
}
return 0;
}
static int parse_rxfhashopts(char *optstr, u32 *data)
{
*data = 0;
while (*optstr) {
switch (*optstr) {
case 'm':
*data |= RXH_L2DA;
break;
case 'v':
*data |= RXH_VLAN;
break;
case 't':
*data |= RXH_L3_PROTO;
break;
case 's':
*data |= RXH_IP_SRC;
break;
case 'd':
*data |= RXH_IP_DST;
break;
case 'f':
*data |= RXH_L4_B_0_1;
break;
case 'n':
*data |= RXH_L4_B_2_3;
break;
case 'r':
*data |= RXH_DISCARD;
break;
default:
return -1;
}
optstr++;
}
return 0;
}
static char *unparse_rxfhashopts(u64 opts)
{
static char buf[300];
memset(buf, 0, sizeof(buf));
if (opts) {
if (opts & RXH_L2DA)
strcat(buf, "L2DA\n");
if (opts & RXH_VLAN)
strcat(buf, "VLAN tag\n");
if (opts & RXH_L3_PROTO)
strcat(buf, "L3 proto\n");
if (opts & RXH_IP_SRC)
strcat(buf, "IP SA\n");
if (opts & RXH_IP_DST)
strcat(buf, "IP DA\n");
if (opts & RXH_L4_B_0_1)
strcat(buf, "L4 bytes 0 & 1 [TCP/UDP src port]\n");
if (opts & RXH_L4_B_2_3)
strcat(buf, "L4 bytes 2 & 3 [TCP/UDP dst port]\n");
} else {
sprintf(buf, "None");
}
return buf;
}
static int convert_string_to_hashkey(char *rss_hkey, u32 key_size,
const char *rss_hkey_string)
{
u32 i = 0;
int hex_byte, len;
do {
if (i > (key_size - 1)) {
fprintf(stderr,
"Key is too long for device (%u > %u)\n",
i + 1, key_size);
goto err;
}
if (sscanf(rss_hkey_string, "%2x%n", &hex_byte, &len) < 1 ||
len != 2) {
fprintf(stderr, "Invalid RSS hash key format\n");
goto err;
}
rss_hkey[i++] = hex_byte;
rss_hkey_string += 2;
if (*rss_hkey_string == ':') {
rss_hkey_string++;
} else if (*rss_hkey_string != '\0') {
fprintf(stderr, "Invalid RSS hash key format\n");
goto err;
}
} while (*rss_hkey_string);
if (i != key_size) {
fprintf(stderr, "Key is too short for device (%u < %u)\n",
i, key_size);
goto err;
}
return 0;
err:
return 2;
}
static int parse_hkey(char **rss_hkey, u32 key_size,
const char *rss_hkey_string)
{
if (!key_size) {
fprintf(stderr,
"Cannot set RX flow hash configuration:\n"
" Hash key setting not supported\n");
return 1;
}
*rss_hkey = malloc(key_size);
if (!(*rss_hkey)) {
perror("Cannot allocate memory for RSS hash key");
return 1;
}
if (convert_string_to_hashkey(*rss_hkey, key_size,
rss_hkey_string)) {
free(*rss_hkey);
*rss_hkey = NULL;
return 2;
}
return 0;
}
static const struct {
const char *name;
int (*func)(struct ethtool_drvinfo *info, struct ethtool_regs *regs);
} driver_list[] = {
#ifdef ETHTOOL_ENABLE_PRETTY_DUMP
{ "8139cp", realtek_dump_regs },
{ "8139too", realtek_dump_regs },
{ "r8169", realtek_dump_regs },
{ "de2104x", de2104x_dump_regs },
{ "e1000", e1000_dump_regs },
{ "e1000e", e1000_dump_regs },
{ "igb", igb_dump_regs },
{ "ixgb", ixgb_dump_regs },
{ "ixgbe", ixgbe_dump_regs },
{ "ixgbevf", ixgbevf_dump_regs },
{ "natsemi", natsemi_dump_regs },
{ "e100", e100_dump_regs },
{ "amd8111e", amd8111e_dump_regs },
{ "pcnet32", pcnet32_dump_regs },
{ "fec_8xx", fec_8xx_dump_regs },
{ "ibm_emac", ibm_emac_dump_regs },
{ "tg3", tg3_dump_regs },
{ "skge", skge_dump_regs },
{ "sky2", sky2_dump_regs },
{ "vioc", vioc_dump_regs },
{ "smsc911x", smsc911x_dump_regs },
{ "at76c50x-usb", at76c50x_usb_dump_regs },
{ "sfc", sfc_dump_regs },
{ "st_mac100", st_mac100_dump_regs },
{ "st_gmac", st_gmac_dump_regs },
{ "et131x", et131x_dump_regs },
{ "altera_tse", altera_tse_dump_regs },
{ "vmxnet3", vmxnet3_dump_regs },
{ "fjes", fjes_dump_regs },
{ "lan78xx", lan78xx_dump_regs },
{ "dsa", dsa_dump_regs },
{ "fec", fec_dump_regs },
#endif
};
void dump_hex(FILE *file, const u8 *data, int len, int offset)
{
int i;
fprintf(file, "Offset\t\tValues\n");
fprintf(file, "------\t\t------");
for (i = 0; i < len; i++) {
if (i % 16 == 0)
fprintf(file, "\n0x%04x:\t\t", i + offset);
fprintf(file, "%02x ", data[i]);
}
fprintf(file, "\n");
}
static int dump_regs(int gregs_dump_raw, int gregs_dump_hex,
struct ethtool_drvinfo *info, struct ethtool_regs *regs)
{
int i;
if (gregs_dump_raw) {
fwrite(regs->data, regs->len, 1, stdout);
goto nested;
}
if (!gregs_dump_hex)
for (i = 0; i < ARRAY_SIZE(driver_list); i++)
if (!strncmp(driver_list[i].name, info->driver,
ETHTOOL_BUSINFO_LEN)) {
if (driver_list[i].func(info, regs) == 0)
goto nested;
/* This version (or some other
* variation in the dump format) is
* not handled; fall back to hex
*/
break;
}
dump_hex(stdout, regs->data, regs->len, 0);
nested:
/* Recurse dump if some drvinfo and regs structures are nested */
if (info->regdump_len > regs->len + sizeof(*info) + sizeof(*regs)) {
info = (struct ethtool_drvinfo *)(&regs->data[0] + regs->len);
regs = (struct ethtool_regs *)(&regs->data[0] + regs->len + sizeof(*info));
return dump_regs(gregs_dump_raw, gregs_dump_hex, info, regs);
}
return 0;
}
static int dump_eeprom(int geeprom_dump_raw,
struct ethtool_drvinfo *info maybe_unused,
struct ethtool_eeprom *ee)
{
if (geeprom_dump_raw) {
fwrite(ee->data, 1, ee->len, stdout);
return 0;
}
#ifdef ETHTOOL_ENABLE_PRETTY_DUMP
if (!strncmp("natsemi", info->driver, ETHTOOL_BUSINFO_LEN)) {
return natsemi_dump_eeprom(info, ee);
} else if (!strncmp("tg3", info->driver, ETHTOOL_BUSINFO_LEN)) {
return tg3_dump_eeprom(info, ee);
}
#endif
dump_hex(stdout, ee->data, ee->len, ee->offset);
return 0;
}
static int dump_test(struct ethtool_test *test,
struct ethtool_gstrings *strings)
{
int i, rc;
rc = test->flags & ETH_TEST_FL_FAILED;
fprintf(stdout, "The test result is %s\n", rc ? "FAIL" : "PASS");
if (test->flags & ETH_TEST_FL_EXTERNAL_LB)
fprintf(stdout, "External loopback test was %sexecuted\n",
(test->flags & ETH_TEST_FL_EXTERNAL_LB_DONE) ?
"" : "not ");
if (strings->len)
fprintf(stdout, "The test extra info:\n");
for (i = 0; i < strings->len; i++) {
fprintf(stdout, "%s\t %d\n",
(char *)(strings->data + i * ETH_GSTRING_LEN),
(u32) test->data[i]);
}
fprintf(stdout, "\n");
return rc;
}
static int dump_pause(const struct ethtool_pauseparam *epause,
u32 advertising, u32 lp_advertising)
{
fprintf(stdout,
"Autonegotiate: %s\n"
"RX: %s\n"
"TX: %s\n",
epause->autoneg ? "on" : "off",
epause->rx_pause ? "on" : "off",
epause->tx_pause ? "on" : "off");
if (lp_advertising) {
int an_rx = 0, an_tx = 0;
/* Work out negotiated pause frame usage per
* IEEE 802.3-2005 table 28B-3.
*/
if (advertising & lp_advertising & ADVERTISED_Pause) {
an_tx = 1;
an_rx = 1;
} else if (advertising & lp_advertising &
ADVERTISED_Asym_Pause) {
if (advertising & ADVERTISED_Pause)
an_rx = 1;
else if (lp_advertising & ADVERTISED_Pause)
an_tx = 1;
}
fprintf(stdout,
"RX negotiated: %s\n"
"TX negotiated: %s\n",
an_rx ? "on" : "off",
an_tx ? "on" : "off");
}
fprintf(stdout, "\n");
return 0;
}
static int dump_ring(const struct ethtool_ringparam *ering)
{
fprintf(stdout,
"Pre-set maximums:\n"
"RX: %u\n"
"RX Mini: %u\n"
"RX Jumbo: %u\n"
"TX: %u\n",
ering->rx_max_pending,
ering->rx_mini_max_pending,
ering->rx_jumbo_max_pending,
ering->tx_max_pending);
fprintf(stdout,
"Current hardware settings:\n"
"RX: %u\n"
"RX Mini: %u\n"
"RX Jumbo: %u\n"
"TX: %u\n",
ering->rx_pending,
ering->rx_mini_pending,
ering->rx_jumbo_pending,
ering->tx_pending);
fprintf(stdout, "\n");
return 0;
}
static int dump_channels(const struct ethtool_channels *echannels)
{
fprintf(stdout,
"Pre-set maximums:\n"
"RX: %u\n"
"TX: %u\n"
"Other: %u\n"
"Combined: %u\n",
echannels->max_rx, echannels->max_tx,
echannels->max_other,
echannels->max_combined);
fprintf(stdout,
"Current hardware settings:\n"
"RX: %u\n"
"TX: %u\n"
"Other: %u\n"
"Combined: %u\n",
echannels->rx_count, echannels->tx_count,
echannels->other_count,
echannels->combined_count);
fprintf(stdout, "\n");
return 0;
}
static int dump_coalesce(const struct ethtool_coalesce *ecoal)
{
fprintf(stdout, "Adaptive RX: %s TX: %s\n",
ecoal->use_adaptive_rx_coalesce ? "on" : "off",
ecoal->use_adaptive_tx_coalesce ? "on" : "off");
fprintf(stdout,
"stats-block-usecs: %u\n"
"sample-interval: %u\n"
"pkt-rate-low: %u\n"
"pkt-rate-high: %u\n"
"\n"
"rx-usecs: %u\n"
"rx-frames: %u\n"
"rx-usecs-irq: %u\n"
"rx-frames-irq: %u\n"
"\n"
"tx-usecs: %u\n"
"tx-frames: %u\n"
"tx-usecs-irq: %u\n"
"tx-frames-irq: %u\n"
"\n"
"rx-usecs-low: %u\n"
"rx-frames-low: %u\n"
"tx-usecs-low: %u\n"
"tx-frames-low: %u\n"
"\n"
"rx-usecs-high: %u\n"
"rx-frames-high: %u\n"
"tx-usecs-high: %u\n"
"tx-frames-high: %u\n"
"\n",
ecoal->stats_block_coalesce_usecs,
ecoal->rate_sample_interval,
ecoal->pkt_rate_low,
ecoal->pkt_rate_high,
ecoal->rx_coalesce_usecs,
ecoal->rx_max_coalesced_frames,
ecoal->rx_coalesce_usecs_irq,
ecoal->rx_max_coalesced_frames_irq,
ecoal->tx_coalesce_usecs,
ecoal->tx_max_coalesced_frames,
ecoal->tx_coalesce_usecs_irq,
ecoal->tx_max_coalesced_frames_irq,
ecoal->rx_coalesce_usecs_low,
ecoal->rx_max_coalesced_frames_low,
ecoal->tx_coalesce_usecs_low,
ecoal->tx_max_coalesced_frames_low,
ecoal->rx_coalesce_usecs_high,
ecoal->rx_max_coalesced_frames_high,
ecoal->tx_coalesce_usecs_high,
ecoal->tx_max_coalesced_frames_high);
return 0;
}
void dump_per_queue_coalesce(struct ethtool_per_queue_op *per_queue_opt,
__u32 *queue_mask, int n_queues)
{
struct ethtool_coalesce *ecoal;
int i, idx = 0;
ecoal = (struct ethtool_coalesce *)(per_queue_opt + 1);
for (i = 0; i < __KERNEL_DIV_ROUND_UP(MAX_NUM_QUEUE, 32); i++) {
int queue = i * 32;
__u32 mask = queue_mask[i];
while (mask > 0) {
if (mask & 0x1) {
fprintf(stdout, "Queue: %d\n", queue);
dump_coalesce(ecoal + idx);
idx++;
}
mask = mask >> 1;
queue++;
}
if (idx == n_queues)
break;
}
}
struct feature_state {
u32 off_flags;
struct ethtool_gfeatures features;
};
static void dump_one_feature(const char *indent, const char *name,
const struct feature_state *state,
const struct feature_state *ref_state,
u32 index)
{
if (ref_state &&
!(FEATURE_BIT_IS_SET(state->features.features, index, active) ^
FEATURE_BIT_IS_SET(ref_state->features.features, index, active)))
return;
printf("%s%s: %s%s\n",
indent, name,
FEATURE_BIT_IS_SET(state->features.features, index, active) ?
"on" : "off",
(!FEATURE_BIT_IS_SET(state->features.features, index, available)
|| FEATURE_BIT_IS_SET(state->features.features, index,
never_changed))
? " [fixed]"
: (FEATURE_BIT_IS_SET(state->features.features, index, requested)
^ FEATURE_BIT_IS_SET(state->features.features, index, active))
? (FEATURE_BIT_IS_SET(state->features.features, index, requested)
? " [requested on]" : " [requested off]")
: "");
}
static int linux_version_code(void)
{
struct utsname utsname;
unsigned version, patchlevel, sublevel = 0;
if (uname(&utsname))
return -1;
if (sscanf(utsname.release, "%u.%u.%u", &version, &patchlevel, &sublevel) < 2)
return -1;
return KERNEL_VERSION(version, patchlevel, sublevel);
}
static void dump_features(const struct feature_defs *defs,
const struct feature_state *state,
const struct feature_state *ref_state)
{
int kernel_ver = linux_version_code();
u32 value;
int indent;
int i, j;
for (i = 0; i < ARRAY_SIZE(off_flag_def); i++) {
/* Don't show features whose state is unknown on this
* kernel version
*/
if (defs->off_flag_matched[i] == 0 &&
((off_flag_def[i].get_cmd == 0 &&
kernel_ver < off_flag_def[i].min_kernel_ver) ||
(off_flag_def[i].get_cmd == ETHTOOL_GUFO &&
kernel_ver >= KERNEL_VERSION(4, 14, 0))))
continue;
value = off_flag_def[i].value;
/* If this offload flag matches exactly one generic
* feature then it's redundant to show the flag and
* feature states separately. Otherwise, show the
* flag state first.
*/
if (defs->off_flag_matched[i] != 1 &&
(!ref_state ||
(state->off_flags ^ ref_state->off_flags) & value)) {
printf("%s: %s\n",
off_flag_def[i].long_name,
(state->off_flags & value) ? "on" : "off");
indent = 1;
} else {
indent = 0;
}
/* Show matching features */
for (j = 0; j < defs->n_features; j++) {
if (defs->def[j].off_flag_index != i)
continue;
if (defs->off_flag_matched[i] != 1)
/* Show all matching feature states */
dump_one_feature(indent ? "\t" : "",
defs->def[j].name,
state, ref_state, j);
else
/* Show full state with the old flag name */
dump_one_feature("", off_flag_def[i].long_name,
state, ref_state, j);
}
}
/* Show all unmatched features that have non-null names */
for (j = 0; j < defs->n_features; j++)
if (defs->def[j].off_flag_index < 0 && defs->def[j].name[0])
dump_one_feature("", defs->def[j].name,
state, ref_state, j);
}
static int dump_rxfhash(int fhash, u64 val)
{
switch (fhash & ~FLOW_RSS) {
case TCP_V4_FLOW:
fprintf(stdout, "TCP over IPV4 flows");
break;
case UDP_V4_FLOW:
fprintf(stdout, "UDP over IPV4 flows");
break;
case SCTP_V4_FLOW:
fprintf(stdout, "SCTP over IPV4 flows");
break;
case AH_ESP_V4_FLOW:
case AH_V4_FLOW:
case ESP_V4_FLOW:
fprintf(stdout, "IPSEC AH/ESP over IPV4 flows");
break;
case TCP_V6_FLOW:
fprintf(stdout, "TCP over IPV6 flows");
break;
case UDP_V6_FLOW:
fprintf(stdout, "UDP over IPV6 flows");
break;
case SCTP_V6_FLOW:
fprintf(stdout, "SCTP over IPV6 flows");
break;
case AH_ESP_V6_FLOW:
case AH_V6_FLOW:
case ESP_V6_FLOW:
fprintf(stdout, "IPSEC AH/ESP over IPV6 flows");
break;
default:
break;
}
if (val & RXH_DISCARD) {
fprintf(stdout, " - All matching flows discarded on RX\n");
return 0;
}
fprintf(stdout, " use these fields for computing Hash flow key:\n");
fprintf(stdout, "%s\n", unparse_rxfhashopts(val));
return 0;
}
static void dump_eeecmd(struct ethtool_eee *ep)
{
ETHTOOL_DECLARE_LINK_MODE_MASK(link_mode);
fprintf(stdout, " EEE status: ");
if (!ep->supported) {
fprintf(stdout, "not supported\n");
return;
} else if (!ep->eee_enabled) {
fprintf(stdout, "disabled\n");
} else {
fprintf(stdout, "enabled - ");
if (ep->eee_active)
fprintf(stdout, "active\n");
else
fprintf(stdout, "inactive\n");
}
fprintf(stdout, " Tx LPI:");
if (ep->tx_lpi_enabled)
fprintf(stdout, " %d (us)\n", ep->tx_lpi_timer);
else
fprintf(stdout, " disabled\n");
ethtool_link_mode_zero(link_mode);
link_mode[0] = ep->supported;
dump_link_caps("Supported EEE", "", link_mode, 1);
link_mode[0] = ep->advertised;
dump_link_caps("Advertised EEE", "", link_mode, 1);
link_mode[0] = ep->lp_advertised;
dump_link_caps("Link partner advertised EEE", "", link_mode, 1);
}
static void dump_fec(u32 fec)
{
if (fec & ETHTOOL_FEC_NONE)
fprintf(stdout, " None");
if (fec & ETHTOOL_FEC_AUTO)
fprintf(stdout, " Auto");
if (fec & ETHTOOL_FEC_OFF)
fprintf(stdout, " Off");
if (fec & ETHTOOL_FEC_BASER)
fprintf(stdout, " BaseR");
if (fec & ETHTOOL_FEC_RS)
fprintf(stdout, " RS");
}
#define N_SOTS 7
static char *so_timestamping_labels[N_SOTS] = {
"hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)",
"software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)",
"hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)",
"software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)",
"software-system-clock (SOF_TIMESTAMPING_SOFTWARE)",
"hardware-legacy-clock (SOF_TIMESTAMPING_SYS_HARDWARE)",
"hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)",
};
#define N_TX_TYPES (HWTSTAMP_TX_ONESTEP_SYNC + 1)
static char *tx_type_labels[N_TX_TYPES] = {
"off (HWTSTAMP_TX_OFF)",
"on (HWTSTAMP_TX_ON)",
"one-step-sync (HWTSTAMP_TX_ONESTEP_SYNC)",
};
#define N_RX_FILTERS (HWTSTAMP_FILTER_NTP_ALL + 1)
static char *rx_filter_labels[N_RX_FILTERS] = {
"none (HWTSTAMP_FILTER_NONE)",
"all (HWTSTAMP_FILTER_ALL)",
"some (HWTSTAMP_FILTER_SOME)",
"ptpv1-l4-event (HWTSTAMP_FILTER_PTP_V1_L4_EVENT)",
"ptpv1-l4-sync (HWTSTAMP_FILTER_PTP_V1_L4_SYNC)",
"ptpv1-l4-delay-req (HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ)",
"ptpv2-l4-event (HWTSTAMP_FILTER_PTP_V2_L4_EVENT)",
"ptpv2-l4-sync (HWTSTAMP_FILTER_PTP_V2_L4_SYNC)",
"ptpv2-l4-delay-req (HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ)",
"ptpv2-l2-event (HWTSTAMP_FILTER_PTP_V2_L2_EVENT)",
"ptpv2-l2-sync (HWTSTAMP_FILTER_PTP_V2_L2_SYNC)",
"ptpv2-l2-delay-req (HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ)",
"ptpv2-event (HWTSTAMP_FILTER_PTP_V2_EVENT)",
"ptpv2-sync (HWTSTAMP_FILTER_PTP_V2_SYNC)",
"ptpv2-delay-req (HWTSTAMP_FILTER_PTP_V2_DELAY_REQ)",
"ntp-all (HWTSTAMP_FILTER_NTP_ALL)",
};
static int dump_tsinfo(const struct ethtool_ts_info *info)
{
int i;
fprintf(stdout, "Capabilities:\n");
for (i = 0; i < N_SOTS; i++) {
if (info->so_timestamping & (1 << i))
fprintf(stdout, "\t%s\n", so_timestamping_labels[i]);
}
fprintf(stdout, "PTP Hardware Clock: ");
if (info->phc_index < 0)
fprintf(stdout, "none\n");
else
fprintf(stdout, "%d\n", info->phc_index);
fprintf(stdout, "Hardware Transmit Timestamp Modes:");
if (!info->tx_types)
fprintf(stdout, " none\n");
else
fprintf(stdout, "\n");
for (i = 0; i < N_TX_TYPES; i++) {
if (info->tx_types & (1 << i))
fprintf(stdout, "\t%s\n", tx_type_labels[i]);
}
fprintf(stdout, "Hardware Receive Filter Modes:");
if (!info->rx_filters)
fprintf(stdout, " none\n");
else
fprintf(stdout, "\n");
for (i = 0; i < N_RX_FILTERS; i++) {
if (info->rx_filters & (1 << i))
fprintf(stdout, "\t%s\n", rx_filter_labels[i]);
}
return 0;
}
static struct ethtool_gstrings *
get_stringset(struct cmd_context *ctx, enum ethtool_stringset set_id,
ptrdiff_t drvinfo_offset, int null_terminate)
{
struct {
struct ethtool_sset_info hdr;
u32 buf[1];
} sset_info;
struct ethtool_drvinfo drvinfo;
u32 len, i;
struct ethtool_gstrings *strings;
sset_info.hdr.cmd = ETHTOOL_GSSET_INFO;
sset_info.hdr.reserved = 0;
sset_info.hdr.sset_mask = 1ULL << set_id;
if (send_ioctl(ctx, &sset_info) == 0) {
len = sset_info.hdr.sset_mask ? sset_info.hdr.data[0] : 0;
} else if (errno == EOPNOTSUPP && drvinfo_offset != 0) {
/* Fallback for old kernel versions */
drvinfo.cmd = ETHTOOL_GDRVINFO;
if (send_ioctl(ctx, &drvinfo))
return NULL;
len = *(u32 *)((char *)&drvinfo + drvinfo_offset);
} else {
return NULL;
}
strings = calloc(1, sizeof(*strings) + len * ETH_GSTRING_LEN);
if (!strings)
return NULL;
strings->cmd = ETHTOOL_GSTRINGS;
strings->string_set = set_id;
strings->len = len;
if (len != 0 && send_ioctl(ctx, strings)) {
free(strings);
return NULL;
}
if (null_terminate)
for (i = 0; i < len; i++)
strings->data[(i + 1) * ETH_GSTRING_LEN - 1] = 0;
return strings;
}
static struct feature_defs *get_feature_defs(struct cmd_context *ctx)
{
struct ethtool_gstrings *names;
struct feature_defs *defs;
u32 n_features;
int i, j;
names = get_stringset(ctx, ETH_SS_FEATURES, 0, 1);
if (names) {
n_features = names->len;
} else if (errno == EOPNOTSUPP || errno == EINVAL) {
/* Kernel doesn't support named features; not an error */
n_features = 0;
} else if (errno == EPERM) {
/* Kernel bug: ETHTOOL_GSSET_INFO was privileged.
* Work around it. */
n_features = 0;
} else {
return NULL;
}
defs = malloc(sizeof(*defs) + sizeof(defs->def[0]) * n_features);
if (!defs) {
free(names);
return NULL;
}
defs->n_features = n_features;
memset(defs->off_flag_matched, 0, sizeof(defs->off_flag_matched));
/* Copy out feature names and find those associated with legacy flags */
for (i = 0; i < defs->n_features; i++) {
memcpy(defs->def[i].name, names->data + i * ETH_GSTRING_LEN,
ETH_GSTRING_LEN);
defs->def[i].off_flag_index = -1;
for (j = 0;
j < ARRAY_SIZE(off_flag_def) &&
defs->def[i].off_flag_index < 0;
j++) {
const char *pattern =
off_flag_def[j].kernel_name;
const char *name = defs->def[i].name;
for (;;) {
if (*pattern == '*') {
/* There is only one wildcard; so
* switch to a suffix comparison */
size_t pattern_len =
strlen(pattern + 1);
size_t name_len = strlen(name);
if (name_len < pattern_len)
break; /* name is too short */
name += name_len - pattern_len;
++pattern;
} else if (*pattern != *name) {
break; /* mismatch */
} else if (*pattern == 0) {
defs->def[i].off_flag_index = j;
defs->off_flag_matched[j]++;
break;
} else {
++name;
++pattern;
}
}
}
}
free(names);
return defs;
}
static int do_gdrv(struct cmd_context *ctx)
{
int err;
struct ethtool_drvinfo drvinfo;
if (ctx->argc != 0)
exit_bad_args();
drvinfo.cmd = ETHTOOL_GDRVINFO;
err = send_ioctl(ctx, &drvinfo);
if (err < 0) {
perror("Cannot get driver information");
return 71;
}
return dump_drvinfo(&drvinfo);
}
static int do_gpause(struct cmd_context *ctx)
{
struct ethtool_pauseparam epause;
struct ethtool_cmd ecmd;
int err;
if (ctx->argc != 0)
exit_bad_args();
fprintf(stdout, "Pause parameters for %s:\n", ctx->devname);
epause.cmd = ETHTOOL_GPAUSEPARAM;
err = send_ioctl(ctx, &epause);
if (err) {
perror("Cannot get device pause settings");
return 76;
}
if (epause.autoneg) {
ecmd.cmd = ETHTOOL_GSET;
err = send_ioctl(ctx, &ecmd);
if (err) {
perror("Cannot get device settings");
return 1;
}
dump_pause(&epause, ecmd.advertising, ecmd.lp_advertising);
} else {
dump_pause(&epause, 0, 0);
}
return 0;
}
static void do_generic_set1(struct cmdline_info *info, int *changed_out)
{
int wanted, *v1, *v2;
v1 = info->wanted_val;
wanted = *v1;
if (wanted < 0)
return;
v2 = info->ioctl_val;
if (wanted == *v2) {
fprintf(stderr, "%s unmodified, ignoring\n", info->name);
} else {
*v2 = wanted;
*changed_out = 1;
}
}
static void do_generic_set(struct cmdline_info *info,
unsigned int n_info,
int *changed_out)
{
unsigned int i;
for (i = 0; i < n_info; i++)
do_generic_set1(&info[i], changed_out);
}
static int do_spause(struct cmd_context *ctx)
{
struct ethtool_pauseparam epause;
int gpause_changed = 0;
int pause_autoneg_wanted = -1;
int pause_rx_wanted = -1;
int pause_tx_wanted = -1;
struct cmdline_info cmdline_pause[] = {
{ "autoneg", CMDL_BOOL, &pause_autoneg_wanted,
&epause.autoneg },
{ "rx", CMDL_BOOL, &pause_rx_wanted, &epause.rx_pause },
{ "tx", CMDL_BOOL, &pause_tx_wanted, &epause.tx_pause },
};
int err, changed = 0;
parse_generic_cmdline(ctx, &gpause_changed,
cmdline_pause, ARRAY_SIZE(cmdline_pause));
epause.cmd = ETHTOOL_GPAUSEPARAM;
err = send_ioctl(ctx, &epause);
if (err) {
perror("Cannot get device pause settings");
return 77;
}
do_generic_set(cmdline_pause, ARRAY_SIZE(cmdline_pause), &changed);
if (!changed) {
fprintf(stderr, "no pause parameters changed, aborting\n");
return 78;
}
epause.cmd = ETHTOOL_SPAUSEPARAM;
err = send_ioctl(ctx, &epause);
if (err) {
perror("Cannot set device pause parameters");
return 79;
}
return 0;
}
static int do_sring(struct cmd_context *ctx)
{
struct ethtool_ringparam ering;
int gring_changed = 0;
s32 ring_rx_wanted = -1;
s32 ring_rx_mini_wanted = -1;
s32 ring_rx_jumbo_wanted = -1;
s32 ring_tx_wanted = -1;
struct cmdline_info cmdline_ring[] = {
{ "rx", CMDL_S32, &ring_rx_wanted, &ering.rx_pending },
{ "rx-mini", CMDL_S32, &ring_rx_mini_wanted,
&ering.rx_mini_pending },
{ "rx-jumbo", CMDL_S32, &ring_rx_jumbo_wanted,
&ering.rx_jumbo_pending },
{ "tx", CMDL_S32, &ring_tx_wanted, &ering.tx_pending },
};
int err, changed = 0;
parse_generic_cmdline(ctx, &gring_changed,
cmdline_ring, ARRAY_SIZE(cmdline_ring));
ering.cmd = ETHTOOL_GRINGPARAM;
err = send_ioctl(ctx, &ering);
if (err) {
perror("Cannot get device ring settings");
return 76;
}
do_generic_set(cmdline_ring, ARRAY_SIZE(cmdline_ring), &changed);
if (!changed) {
fprintf(stderr, "no ring parameters changed, aborting\n");
return 80;
}
ering.cmd = ETHTOOL_SRINGPARAM;
err = send_ioctl(ctx, &ering);
if (err) {
perror("Cannot set device ring parameters");
return 81;
}
return 0;
}
static int do_gring(struct cmd_context *ctx)
{
struct ethtool_ringparam ering;
int err;
if (ctx->argc != 0)
exit_bad_args();
fprintf(stdout, "Ring parameters for %s:\n", ctx->devname);
ering.cmd = ETHTOOL_GRINGPARAM;
err = send_ioctl(ctx, &ering);
if (err == 0) {
err = dump_ring(&ering);
if (err)
return err;
} else {
perror("Cannot get device ring settings");
return 76;
}
return 0;
}
static int do_schannels(struct cmd_context *ctx)
{
struct ethtool_channels echannels;
int gchannels_changed;
s32 channels_rx_wanted = -1;
s32 channels_tx_wanted = -1;
s32 channels_other_wanted = -1;
s32 channels_combined_wanted = -1;
struct cmdline_info cmdline_channels[] = {
{ "rx", CMDL_S32, &channels_rx_wanted, &echannels.rx_count },
{ "tx", CMDL_S32, &channels_tx_wanted, &echannels.tx_count },
{ "other", CMDL_S32, &channels_other_wanted,
&echannels.other_count },
{ "combined", CMDL_S32, &channels_combined_wanted,
&echannels.combined_count },
};
int err, changed = 0;
parse_generic_cmdline(ctx, &gchannels_changed,
cmdline_channels, ARRAY_SIZE(cmdline_channels));
echannels.cmd = ETHTOOL_GCHANNELS;
err = send_ioctl(ctx, &echannels);
if (err) {
perror("Cannot get device channel parameters");
return 1;
}
do_generic_set(cmdline_channels, ARRAY_SIZE(cmdline_channels),
&changed);
if (!changed) {
fprintf(stderr, "no channel parameters changed.\n");
fprintf(stderr, "current values: rx %u tx %u other %u"
" combined %u\n", echannels.rx_count,
echannels.tx_count, echannels.other_count,
echannels.combined_count);
return 0;
}
echannels.cmd = ETHTOOL_SCHANNELS;
err = send_ioctl(ctx, &echannels);
if (err) {
perror("Cannot set device channel parameters");
return 1;
}
return 0;
}
static int do_gchannels(struct cmd_context *ctx)
{
struct ethtool_channels echannels;
int err;
if (ctx->argc != 0)
exit_bad_args();
fprintf(stdout, "Channel parameters for %s:\n", ctx->devname);
echannels.cmd = ETHTOOL_GCHANNELS;
err = send_ioctl(ctx, &echannels);
if (err == 0) {
err = dump_channels(&echannels);
if (err)
return err;
} else {
perror("Cannot get device channel parameters\n");
return 1;
}
return 0;
}
static int do_gcoalesce(struct cmd_context *ctx)
{
struct ethtool_coalesce ecoal = {};
int err;
if (ctx->argc != 0)
exit_bad_args();
fprintf(stdout, "Coalesce parameters for %s:\n", ctx->devname);
ecoal.cmd = ETHTOOL_GCOALESCE;
err = send_ioctl(ctx, &ecoal);
if (err == 0) {
err = dump_coalesce(&ecoal);
if (err)
return err;
} else {
perror("Cannot get device coalesce settings");
return 82;
}
return 0;
}
#define DECLARE_COALESCE_OPTION_VARS() \
s32 coal_stats_wanted = -1; \
int coal_adaptive_rx_wanted = -1; \
int coal_adaptive_tx_wanted = -1; \
s32 coal_sample_rate_wanted = -1; \
s32 coal_pkt_rate_low_wanted = -1; \
s32 coal_pkt_rate_high_wanted = -1; \
s32 coal_rx_usec_wanted = -1; \
s32 coal_rx_frames_wanted = -1; \
s32 coal_rx_usec_irq_wanted = -1; \
s32 coal_rx_frames_irq_wanted = -1; \
s32 coal_tx_usec_wanted = -1; \
s32 coal_tx_frames_wanted = -1; \
s32 coal_tx_usec_irq_wanted = -1; \
s32 coal_tx_frames_irq_wanted = -1; \
s32 coal_rx_usec_low_wanted = -1; \
s32 coal_rx_frames_low_wanted = -1; \
s32 coal_tx_usec_low_wanted = -1; \
s32 coal_tx_frames_low_wanted = -1; \
s32 coal_rx_usec_high_wanted = -1; \
s32 coal_rx_frames_high_wanted = -1; \
s32 coal_tx_usec_high_wanted = -1; \
s32 coal_tx_frames_high_wanted = -1
#define COALESCE_CMDLINE_INFO(__ecoal) \
{ \
{ "adaptive-rx", CMDL_BOOL, &coal_adaptive_rx_wanted, \
&__ecoal.use_adaptive_rx_coalesce }, \
{ "adaptive-tx", CMDL_BOOL, &coal_adaptive_tx_wanted, \
&__ecoal.use_adaptive_tx_coalesce }, \
{ "sample-interval", CMDL_S32, &coal_sample_rate_wanted, \
&__ecoal.rate_sample_interval }, \
{ "stats-block-usecs", CMDL_S32, &coal_stats_wanted, \
&__ecoal.stats_block_coalesce_usecs }, \
{ "pkt-rate-low", CMDL_S32, &coal_pkt_rate_low_wanted, \
&__ecoal.pkt_rate_low }, \
{ "pkt-rate-high", CMDL_S32, &coal_pkt_rate_high_wanted, \
&__ecoal.pkt_rate_high }, \
{ "rx-usecs", CMDL_S32, &coal_rx_usec_wanted, \
&__ecoal.rx_coalesce_usecs }, \
{ "rx-frames", CMDL_S32, &coal_rx_frames_wanted, \
&__ecoal.rx_max_coalesced_frames }, \
{ "rx-usecs-irq", CMDL_S32, &coal_rx_usec_irq_wanted, \
&__ecoal.rx_coalesce_usecs_irq }, \
{ "rx-frames-irq", CMDL_S32, &coal_rx_frames_irq_wanted, \
&__ecoal.rx_max_coalesced_frames_irq }, \
{ "tx-usecs", CMDL_S32, &coal_tx_usec_wanted, \
&__ecoal.tx_coalesce_usecs }, \
{ "tx-frames", CMDL_S32, &coal_tx_frames_wanted, \
&__ecoal.tx_max_coalesced_frames }, \
{ "tx-usecs-irq", CMDL_S32, &coal_tx_usec_irq_wanted, \
&__ecoal.tx_coalesce_usecs_irq }, \
{ "tx-frames-irq", CMDL_S32, &coal_tx_frames_irq_wanted, \
&__ecoal.tx_max_coalesced_frames_irq }, \
{ "rx-usecs-low", CMDL_S32, &coal_rx_usec_low_wanted, \
&__ecoal.rx_coalesce_usecs_low }, \
{ "rx-frames-low", CMDL_S32, &coal_rx_frames_low_wanted, \
&__ecoal.rx_max_coalesced_frames_low }, \
{ "tx-usecs-low", CMDL_S32, &coal_tx_usec_low_wanted, \
&__ecoal.tx_coalesce_usecs_low }, \
{ "tx-frames-low", CMDL_S32, &coal_tx_frames_low_wanted, \
&__ecoal.tx_max_coalesced_frames_low }, \
{ "rx-usecs-high", CMDL_S32, &coal_rx_usec_high_wanted, \
&__ecoal.rx_coalesce_usecs_high }, \
{ "rx-frames-high", CMDL_S32, &coal_rx_frames_high_wanted, \
&__ecoal.rx_max_coalesced_frames_high }, \
{ "tx-usecs-high", CMDL_S32, &coal_tx_usec_high_wanted, \
&__ecoal.tx_coalesce_usecs_high }, \
{ "tx-frames-high", CMDL_S32, &coal_tx_frames_high_wanted, \
&__ecoal.tx_max_coalesced_frames_high }, \
}
static int do_scoalesce(struct cmd_context *ctx)
{
struct ethtool_coalesce ecoal;
int gcoalesce_changed = 0;
DECLARE_COALESCE_OPTION_VARS();
struct cmdline_info cmdline_coalesce[] = COALESCE_CMDLINE_INFO(ecoal);
int err, changed = 0;
parse_generic_cmdline(ctx, &gcoalesce_changed,
cmdline_coalesce, ARRAY_SIZE(cmdline_coalesce));
ecoal.cmd = ETHTOOL_GCOALESCE;
err = send_ioctl(ctx, &ecoal);
if (err) {
perror("Cannot get device coalesce settings");
return 76;
}
do_generic_set(cmdline_coalesce, ARRAY_SIZE(cmdline_coalesce),
&changed);
if (!changed) {
fprintf(stderr, "no coalesce parameters changed, aborting\n");
return 80;
}
ecoal.cmd = ETHTOOL_SCOALESCE;
err = send_ioctl(ctx, &ecoal);
if (err) {
perror("Cannot set device coalesce parameters");
return 81;
}
return 0;
}
static struct feature_state *
get_features(struct cmd_context *ctx, const struct feature_defs *defs)
{
struct feature_state *state;
struct ethtool_value eval;
int err, allfail = 1;
u32 value;
int i;
state = malloc(sizeof(*state) +
FEATURE_BITS_TO_BLOCKS(defs->n_features) *
sizeof(state->features.features[0]));
if (!state)
return NULL;
state->off_flags = 0;
for (i = 0; i < ARRAY_SIZE(off_flag_def); i++) {
value = off_flag_def[i].value;
if (!off_flag_def[i].get_cmd)
continue;
eval.cmd = off_flag_def[i].get_cmd;
err = send_ioctl(ctx, &eval);
if (err) {
if (errno == EOPNOTSUPP &&
off_flag_def[i].get_cmd == ETHTOOL_GUFO)
continue;
fprintf(stderr,
"Cannot get device %s settings: %m\n",
off_flag_def[i].long_name);
} else {
if (eval.data)
state->off_flags |= value;
allfail = 0;
}
}
eval.cmd = ETHTOOL_GFLAGS;
err = send_ioctl(ctx, &eval);
if (err) {
perror("Cannot get device flags");
} else {
state->off_flags |= eval.data & ETH_FLAG_EXT_MASK;
allfail = 0;
}
if (defs->n_features) {
state->features.cmd = ETHTOOL_GFEATURES;
state->features.size = FEATURE_BITS_TO_BLOCKS(defs->n_features);
err = send_ioctl(ctx, &state->features);
if (err)
perror("Cannot get device generic features");
else
allfail = 0;
}
if (allfail) {
free(state);
return NULL;
}
return state;
}
static int do_gfeatures(struct cmd_context *ctx)
{
struct feature_defs *defs;
struct feature_state *features;
if (ctx->argc != 0)
exit_bad_args();
defs = get_feature_defs(ctx);
if (!defs) {
perror("Cannot get device feature names");
return 1;
}
fprintf(stdout, "Features for %s:\n", ctx->devname);
features = get_features(ctx, defs);
if (!features) {
fprintf(stdout, "no feature info available\n");
free(defs);
return 1;
}
dump_features(defs, features, NULL);
free(features);
free(defs);
return 0;
}
static int do_sfeatures(struct cmd_context *ctx)
{
struct feature_defs *defs;
int any_changed = 0, any_mismatch = 0;
u32 off_flags_wanted = 0;
u32 off_flags_mask = 0;
struct ethtool_sfeatures *efeatures;
struct cmdline_info *cmdline_features;
struct feature_state *old_state, *new_state;
struct ethtool_value eval;
int err, rc;
int i, j;
defs = get_feature_defs(ctx);
if (!defs) {
perror("Cannot get device feature names");
return 1;
}
if (defs->n_features) {
efeatures = malloc(sizeof(*efeatures) +
FEATURE_BITS_TO_BLOCKS(defs->n_features) *
sizeof(efeatures->features[0]));
if (!efeatures) {
perror("Cannot parse arguments");
rc = 1;
goto err;
}
efeatures->cmd = ETHTOOL_SFEATURES;
efeatures->size = FEATURE_BITS_TO_BLOCKS(defs->n_features);
memset(efeatures->features, 0,
FEATURE_BITS_TO_BLOCKS(defs->n_features) *
sizeof(efeatures->features[0]));
} else {
efeatures = NULL;
}
/* Generate cmdline_info for legacy flags and kernel-named
* features, and parse our arguments.
*/
cmdline_features = calloc(ARRAY_SIZE(off_flag_def) + defs->n_features,
sizeof(cmdline_features[0]));
if (!cmdline_features) {
perror("Cannot parse arguments");
rc = 1;
goto err;
}
for (i = 0; i < ARRAY_SIZE(off_flag_def); i++)
flag_to_cmdline_info(off_flag_def[i].short_name,
off_flag_def[i].value,
&off_flags_wanted, &off_flags_mask,
&cmdline_features[i]);
for (i = 0; i < defs->n_features; i++)
flag_to_cmdline_info(
defs->def[i].name, FEATURE_FIELD_FLAG(i),
&FEATURE_WORD(efeatures->features, i, requested),
&FEATURE_WORD(efeatures->features, i, valid),
&cmdline_features[ARRAY_SIZE(off_flag_def) + i]);
parse_generic_cmdline(ctx, &any_changed, cmdline_features,
ARRAY_SIZE(off_flag_def) + defs->n_features);
free(cmdline_features);
if (!any_changed) {
fprintf(stdout, "no features changed\n");
rc = 0;
goto err;
}
old_state = get_features(ctx, defs);
if (!old_state) {
rc = 1;
goto err;
}
if (efeatures) {
/* For each offload that the user specified, update any
* related features that the user did not specify and that
* are not fixed. Warn if all related features are fixed.
*/
for (i = 0; i < ARRAY_SIZE(off_flag_def); i++) {
int fixed = 1;
if (!(off_flags_mask & off_flag_def[i].value))
continue;
for (j = 0; j < defs->n_features; j++) {
if (defs->def[j].off_flag_index != i ||
!FEATURE_BIT_IS_SET(
old_state->features.features,
j, available) ||
FEATURE_BIT_IS_SET(
old_state->features.features,
j, never_changed))
continue;
fixed = 0;
if (!FEATURE_BIT_IS_SET(efeatures->features,
j, valid)) {
FEATURE_BIT_SET(efeatures->features,
j, valid);
if (off_flags_wanted &
off_flag_def[i].value)
FEATURE_BIT_SET(
efeatures->features,
j, requested);
}
}
if (fixed)
fprintf(stderr, "Cannot change %s\n",
off_flag_def[i].long_name);
}
err = send_ioctl(ctx, efeatures);
if (err < 0) {
perror("Cannot set device feature settings");
rc = 1;
goto err;
}
} else {
for (i = 0; i < ARRAY_SIZE(off_flag_def); i++) {
if (!off_flag_def[i].set_cmd)
continue;
if (off_flags_mask & off_flag_def[i].value) {
eval.cmd = off_flag_def[i].set_cmd;
eval.data = !!(off_flags_wanted &
off_flag_def[i].value);
err = send_ioctl(ctx, &eval);
if (err) {
fprintf(stderr,
"Cannot set device %s settings: %m\n",
off_flag_def[i].long_name);
rc = 1;
goto err;
}
}
}
if (off_flags_mask & ETH_FLAG_EXT_MASK) {
eval.cmd = ETHTOOL_SFLAGS;
eval.data = (old_state->off_flags & ~off_flags_mask &
ETH_FLAG_EXT_MASK);
eval.data |= off_flags_wanted & ETH_FLAG_EXT_MASK;
err = send_ioctl(ctx, &eval);
if (err) {
perror("Cannot set device flag settings");
rc = 92;
goto err;
}
}
}
/* Compare new state with requested state */
new_state = get_features(ctx, defs);
if (!new_state) {
rc = 1;
goto err;
}
any_changed = new_state->off_flags != old_state->off_flags;
any_mismatch = (new_state->off_flags !=
((old_state->off_flags & ~off_flags_mask) |
off_flags_wanted));
for (i = 0; i < FEATURE_BITS_TO_BLOCKS(defs->n_features); i++) {
if (new_state->features.features[i].active !=
old_state->features.features[i].active)
any_changed = 1;
if (new_state->features.features[i].active !=
((old_state->features.features[i].active &
~efeatures->features[i].valid) |
efeatures->features[i].requested))
any_mismatch = 1;
}
if (any_mismatch) {
if (!any_changed) {
fprintf(stderr,
"Could not change any device features\n");
rc = 1;
goto err;
}
printf("Actual changes:\n");
dump_features(defs, new_state, old_state);
}
rc = 0;
err:
free(defs);
if (efeatures)
free(efeatures);
return rc;
}
static struct ethtool_link_usettings *
do_ioctl_glinksettings(struct cmd_context *ctx)
{
int err;
struct {
struct ethtool_link_settings req;
__u32 link_mode_data[3 * ETHTOOL_LINK_MODE_MASK_MAX_KERNEL_NU32];
} ecmd;
struct ethtool_link_usettings *link_usettings;
unsigned int u32_offs;
/* Handshake with kernel to determine number of words for link
* mode bitmaps. When requested number of bitmap words is not
* the one expected by kernel, the latter returns the integer
* opposite of what it is expecting. We request length 0 below
* (aka. invalid bitmap length) to get this info.
*/
memset(&ecmd, 0, sizeof(ecmd));
ecmd.req.cmd = ETHTOOL_GLINKSETTINGS;
err = send_ioctl(ctx, &ecmd);
if (err < 0)
return NULL;
/* see above: we expect a strictly negative value from kernel.
*/
if (ecmd.req.link_mode_masks_nwords >= 0
|| ecmd.req.cmd != ETHTOOL_GLINKSETTINGS)
return NULL;
/* got the real ecmd.req.link_mode_masks_nwords,
* now send the real request
*/
ecmd.req.cmd = ETHTOOL_GLINKSETTINGS;
ecmd.req.link_mode_masks_nwords = -ecmd.req.link_mode_masks_nwords;
err = send_ioctl(ctx, &ecmd);
if (err < 0)
return NULL;
if (ecmd.req.link_mode_masks_nwords <= 0
|| ecmd.req.cmd != ETHTOOL_GLINKSETTINGS)
return NULL;
/* Convert to usettings struct */
link_usettings = calloc(1, sizeof(*link_usettings));
if (link_usettings == NULL)
return NULL;
/* keep transceiver 0 */
memcpy(&link_usettings->base, &ecmd.req, sizeof(link_usettings->base));
/* copy link mode bitmaps */
u32_offs = 0;
memcpy(link_usettings->link_modes.supported,
&ecmd.link_mode_data[u32_offs],
4 * ecmd.req.link_mode_masks_nwords);
u32_offs += ecmd.req.link_mode_masks_nwords;
memcpy(link_usettings->link_modes.advertising,
&ecmd.link_mode_data[u32_offs],
4 * ecmd.req.link_mode_masks_nwords);
u32_offs += ecmd.req.link_mode_masks_nwords;
memcpy(link_usettings->link_modes.lp_advertising,
&ecmd.link_mode_data[u32_offs],
4 * ecmd.req.link_mode_masks_nwords);
return link_usettings;
}
static int
do_ioctl_slinksettings(struct cmd_context *ctx,
const struct ethtool_link_usettings *link_usettings)
{
struct {
struct ethtool_link_settings req;
__u32 link_mode_data[3 * ETHTOOL_LINK_MODE_MASK_MAX_KERNEL_NU32];
} ecmd;
unsigned int u32_offs;
/* refuse to send ETHTOOL_SLINKSETTINGS ioctl if
* link_usettings was retrieved with ETHTOOL_GSET
*/
if (link_usettings->base.cmd != ETHTOOL_GLINKSETTINGS)
return -1;
/* refuse to send ETHTOOL_SLINKSETTINGS ioctl if deprecated fields
* were set
*/
if (link_usettings->deprecated.transceiver)
return -1;
if (link_usettings->base.link_mode_masks_nwords <= 0)
return -1;
memcpy(&ecmd.req, &link_usettings->base, sizeof(ecmd.req));
ecmd.req.cmd = ETHTOOL_SLINKSETTINGS;
/* copy link mode bitmaps */
u32_offs = 0;
memcpy(&ecmd.link_mode_data[u32_offs],
link_usettings->link_modes.supported,
4 * ecmd.req.link_mode_masks_nwords);
u32_offs += ecmd.req.link_mode_masks_nwords;
memcpy(&ecmd.link_mode_data[u32_offs],
link_usettings->link_modes.advertising,
4 * ecmd.req.link_mode_masks_nwords);
u32_offs += ecmd.req.link_mode_masks_nwords;
memcpy(&ecmd.link_mode_data[u32_offs],
link_usettings->link_modes.lp_advertising,
4 * ecmd.req.link_mode_masks_nwords);
return send_ioctl(ctx, &ecmd);
}
static struct ethtool_link_usettings *
do_ioctl_gset(struct cmd_context *ctx)
{
int err;
struct ethtool_cmd ecmd;
struct ethtool_link_usettings *link_usettings;
memset(&ecmd, 0, sizeof(ecmd));
ecmd.cmd = ETHTOOL_GSET;
err = send_ioctl(ctx, &ecmd);
if (err < 0)
return NULL;
link_usettings = calloc(1, sizeof(*link_usettings));
if (link_usettings == NULL)
return NULL;
/* remember that ETHTOOL_GSET was used */
link_usettings->base.cmd = ETHTOOL_GSET;
link_usettings->base.link_mode_masks_nwords = 1;
link_usettings->link_modes.supported[0] = ecmd.supported;
link_usettings->link_modes.advertising[0] = ecmd.advertising;
link_usettings->link_modes.lp_advertising[0] = ecmd.lp_advertising;
link_usettings->base.speed = ethtool_cmd_speed(&ecmd);
link_usettings->base.duplex = ecmd.duplex;
link_usettings->base.port = ecmd.port;
link_usettings->base.phy_address = ecmd.phy_address;
link_usettings->deprecated.transceiver = ecmd.transceiver;
link_usettings->base.autoneg = ecmd.autoneg;
link_usettings->base.mdio_support = ecmd.mdio_support;
/* ignored (fully deprecated): maxrxpkt, maxtxpkt */
link_usettings->base.eth_tp_mdix = ecmd.eth_tp_mdix;
link_usettings->base.eth_tp_mdix_ctrl = ecmd.eth_tp_mdix_ctrl;
return link_usettings;
}
static bool ethtool_link_mode_is_backward_compatible(const u32 *mask)
{
unsigned int i;
for (i = 1; i < ETHTOOL_LINK_MODE_MASK_MAX_KERNEL_NU32; ++i)
if (mask[i])
return false;
return true;
}
static int
do_ioctl_sset(struct cmd_context *ctx,
const struct ethtool_link_usettings *link_usettings)
{
struct ethtool_cmd ecmd;
/* refuse to send ETHTOOL_SSET ioctl if link_usettings was
* retrieved with ETHTOOL_GLINKSETTINGS
*/
if (link_usettings->base.cmd != ETHTOOL_GSET)
return -1;
if (link_usettings->base.link_mode_masks_nwords <= 0)
return -1;
/* refuse to sset if any bit > 31 is set */
if (!ethtool_link_mode_is_backward_compatible(
link_usettings->link_modes.supported))
return -1;
if (!ethtool_link_mode_is_backward_compatible(
link_usettings->link_modes.advertising))
return -1;
if (!ethtool_link_mode_is_backward_compatible(
link_usettings->link_modes.lp_advertising))
return -1;
memset(&ecmd, 0, sizeof(ecmd));
ecmd.cmd = ETHTOOL_SSET;
ecmd.supported = link_usettings->link_modes.supported[0];
ecmd.advertising = link_usettings->link_modes.advertising[0];
ecmd.lp_advertising = link_usettings->link_modes.lp_advertising[0];
ethtool_cmd_speed_set(&ecmd, link_usettings->base.speed);
ecmd.duplex = link_usettings->base.duplex;
ecmd.port = link_usettings->base.port;
ecmd.phy_address = link_usettings->base.phy_address;
ecmd.transceiver = link_usettings->deprecated.transceiver;
ecmd.autoneg = link_usettings->base.autoneg;
ecmd.mdio_support = link_usettings->base.mdio_support;
/* ignored (fully deprecated): maxrxpkt, maxtxpkt */
ecmd.eth_tp_mdix = link_usettings->base.eth_tp_mdix;
ecmd.eth_tp_mdix_ctrl = link_usettings->base.eth_tp_mdix_ctrl;
return send_ioctl(ctx, &ecmd);
}
static int do_gset(struct cmd_context *ctx)
{
int err;
struct ethtool_link_usettings *link_usettings;
struct ethtool_wolinfo wolinfo;
struct ethtool_value edata;
int allfail = 1;
if (ctx->argc != 0)
exit_bad_args();
fprintf(stdout, "Settings for %s:\n", ctx->devname);
link_usettings = do_ioctl_glinksettings(ctx);
if (link_usettings == NULL)
link_usettings = do_ioctl_gset(ctx);
if (link_usettings != NULL) {
err = dump_link_usettings(link_usettings);
free(link_usettings);
if (err)
return err;
allfail = 0;
} else if (errno != EOPNOTSUPP) {
perror("Cannot get device settings");
}
wolinfo.cmd = ETHTOOL_GWOL;
err = send_ioctl(ctx, &wolinfo);
if (err == 0) {
err = dump_wol(&wolinfo);
if (err)
return err;
allfail = 0;
} else if (errno != EOPNOTSUPP) {
perror("Cannot get wake-on-lan settings");
}
edata.cmd = ETHTOOL_GMSGLVL;
err = send_ioctl(ctx, &edata);
if (err == 0) {
fprintf(stdout, " Current message level: 0x%08x (%d)\n"
" ",
edata.data, edata.data);
print_flags(flags_msglvl, ARRAY_SIZE(flags_msglvl),
edata.data);
fprintf(stdout, "\n");
allfail = 0;
} else if (errno != EOPNOTSUPP) {
perror("Cannot get message level");
}
edata.cmd = ETHTOOL_GLINK;
err = send_ioctl(ctx, &edata);
if (err == 0) {
fprintf(stdout, " Link detected: %s\n",
edata.data ? "yes":"no");
allfail = 0;
} else if (errno != EOPNOTSUPP) {
perror("Cannot get link status");
}
if (allfail) {
fprintf(stdout, "No data available\n");
return 75;
}
return 0;
}
static int do_sset(struct cmd_context *ctx)
{
int speed_wanted = -1;
int duplex_wanted = -1;
int port_wanted = -1;
int mdix_wanted = -1;
int autoneg_wanted = -1;
int phyad_wanted = -1;
int xcvr_wanted = -1;
u32 *full_advertising_wanted = NULL;
u32 *advertising_wanted = NULL;
ETHTOOL_DECLARE_LINK_MODE_MASK(mask_full_advertising_wanted);
ETHTOOL_DECLARE_LINK_MODE_MASK(mask_advertising_wanted);
int gset_changed = 0; /* did anything in GSET change? */
u32 wol_wanted = 0;
int wol_change = 0;
u8 sopass_wanted[SOPASS_MAX];
int sopass_change = 0;
int gwol_changed = 0; /* did anything in GWOL change? */
int msglvl_changed = 0;
u32 msglvl_wanted = 0;
u32 msglvl_mask = 0;
struct cmdline_info cmdline_msglvl[ARRAY_SIZE(flags_msglvl)];
int argc = ctx->argc;
char **argp = ctx->argp;
int i;
int err = 0;
for (i = 0; i < ARRAY_SIZE(flags_msglvl); i++)
flag_to_cmdline_info(flags_msglvl[i].name,
flags_msglvl[i].value,
&msglvl_wanted, &msglvl_mask,
&cmdline_msglvl[i]);
for (i = 0; i < argc; i++) {
if (!strcmp(argp[i], "speed")) {
gset_changed = 1;
i += 1;
if (i >= argc)
exit_bad_args();
speed_wanted = get_int(argp[i], 10);
} else if (!strcmp(argp[i], "duplex")) {
gset_changed = 1;
i += 1;
if (i >= argc)
exit_bad_args();
if (!strcmp(argp[i], "half"))
duplex_wanted = DUPLEX_HALF;
else if (!strcmp(argp[i], "full"))
duplex_wanted = DUPLEX_FULL;
else
exit_bad_args();
} else if (!strcmp(argp[i], "port")) {
gset_changed = 1;
i += 1;
if (i >= argc)
exit_bad_args();
if (!strcmp(argp[i], "tp"))
port_wanted = PORT_TP;
else if (!strcmp(argp[i], "aui"))
port_wanted = PORT_AUI;
else if (!strcmp(argp[i], "bnc"))
port_wanted = PORT_BNC;
else if (!strcmp(argp[i], "mii"))
port_wanted = PORT_MII;
else if (!strcmp(argp[i], "fibre"))
port_wanted = PORT_FIBRE;
else
exit_bad_args();
} else if (!strcmp(argp[i], "mdix")) {
gset_changed = 1;
i += 1;
if (i >= argc)
exit_bad_args();
if (!strcmp(argp[i], "auto"))
mdix_wanted = ETH_TP_MDI_AUTO;
else if (!strcmp(argp[i], "on"))
mdix_wanted = ETH_TP_MDI_X;
else if (!strcmp(argp[i], "off"))
mdix_wanted = ETH_TP_MDI;
else
exit_bad_args();
} else if (!strcmp(argp[i], "autoneg")) {
i += 1;
if (i >= argc)
exit_bad_args();
if (!strcmp(argp[i], "on")) {
gset_changed = 1;
autoneg_wanted = AUTONEG_ENABLE;
} else if (!strcmp(argp[i], "off")) {
gset_changed = 1;
autoneg_wanted = AUTONEG_DISABLE;
} else {
exit_bad_args();
}
} else if (!strcmp(argp[i], "advertise")) {
gset_changed = 1;
i += 1;
if (i >= argc)
exit_bad_args();
if (parse_hex_u32_bitmap(
argp[i],
ETHTOOL_LINK_MODE_MASK_MAX_KERNEL_NBITS,
mask_full_advertising_wanted))
exit_bad_args();
full_advertising_wanted = mask_full_advertising_wanted;
} else if (!strcmp(argp[i], "phyad")) {
gset_changed = 1;
i += 1;
if (i >= argc)
exit_bad_args();
phyad_wanted = get_int(argp[i], 0);
} else if (!strcmp(argp[i], "xcvr")) {
gset_changed = 1;
i += 1;
if (i >= argc)
exit_bad_args();
if (!strcmp(argp[i], "internal"))
xcvr_wanted = XCVR_INTERNAL;
else if (!strcmp(argp[i], "external"))
xcvr_wanted = XCVR_EXTERNAL;
else
exit_bad_args();
} else if (!strcmp(argp[i], "wol")) {
gwol_changed = 1;
i++;
if (i >= argc)
exit_bad_args();
if (parse_wolopts(argp[i], &wol_wanted) < 0)
exit_bad_args();
wol_change = 1;
} else if (!strcmp(argp[i], "sopass")) {
gwol_changed = 1;
i++;
if (i >= argc)
exit_bad_args();
get_mac_addr(argp[i], sopass_wanted);
sopass_change = 1;
} else if (!strcmp(argp[i], "msglvl")) {
i++;
if (i >= argc)
exit_bad_args();
if (isdigit((unsigned char)argp[i][0])) {
msglvl_changed = 1;
msglvl_mask = ~0;
msglvl_wanted =
get_uint_range(argp[i], 0,
0xffffffff);
} else {
ctx->argc -= i;
ctx->argp += i;
parse_generic_cmdline(
ctx, &msglvl_changed,
cmdline_msglvl,
ARRAY_SIZE(cmdline_msglvl));
break;
}
} else {
exit_bad_args();
}
}
if (full_advertising_wanted == NULL) {
/* User didn't supply a full advertisement bitfield:
* construct one from the specified speed and duplex.
*/
int adv_bit = -1;
if (speed_wanted == SPEED_10 && duplex_wanted == DUPLEX_HALF)
adv_bit = ETHTOOL_LINK_MODE_10baseT_Half_BIT;
else if (speed_wanted == SPEED_10 &&
duplex_wanted == DUPLEX_FULL)
adv_bit = ETHTOOL_LINK_MODE_10baseT_Full_BIT;
else if (speed_wanted == SPEED_100 &&
duplex_wanted == DUPLEX_HALF)
adv_bit = ETHTOOL_LINK_MODE_100baseT_Half_BIT;
else if (speed_wanted == SPEED_100 &&
duplex_wanted == DUPLEX_FULL)
adv_bit = ETHTOOL_LINK_MODE_100baseT_Full_BIT;
else if (speed_wanted == SPEED_1000 &&
duplex_wanted == DUPLEX_HALF)
adv_bit = ETHTOOL_LINK_MODE_1000baseT_Half_BIT;
else if (speed_wanted == SPEED_1000 &&
duplex_wanted == DUPLEX_FULL)
adv_bit = ETHTOOL_LINK_MODE_1000baseT_Full_BIT;
else if (speed_wanted == SPEED_2500 &&
duplex_wanted == DUPLEX_FULL)
adv_bit = ETHTOOL_LINK_MODE_2500baseX_Full_BIT;
else if (speed_wanted == SPEED_10000 &&
duplex_wanted == DUPLEX_FULL)
adv_bit = ETHTOOL_LINK_MODE_10000baseT_Full_BIT;
if (adv_bit >= 0) {
advertising_wanted = mask_advertising_wanted;
ethtool_link_mode_zero(advertising_wanted);
ethtool_link_mode_set_bit(
adv_bit, advertising_wanted);
}
/* otherwise: auto negotiate without forcing,
* all supported speed will be assigned below
*/
}
if (gset_changed) {
struct ethtool_link_usettings *link_usettings;
link_usettings = do_ioctl_glinksettings(ctx);
if (link_usettings == NULL)
link_usettings = do_ioctl_gset(ctx);
if (link_usettings == NULL) {
perror("Cannot get current device settings");
err = -1;
} else {
/* Change everything the user specified. */
if (speed_wanted != -1)
link_usettings->base.speed = speed_wanted;
if (duplex_wanted != -1)
link_usettings->base.duplex = duplex_wanted;
if (port_wanted != -1)
link_usettings->base.port = port_wanted;
if (mdix_wanted != -1) {
/* check driver supports MDI-X */
if (link_usettings->base.eth_tp_mdix_ctrl
!= ETH_TP_MDI_INVALID)
link_usettings->base.eth_tp_mdix_ctrl
= mdix_wanted;
else
fprintf(stderr,
"setting MDI not supported\n");
}
if (autoneg_wanted != -1)
link_usettings->base.autoneg = autoneg_wanted;
if (phyad_wanted != -1)
link_usettings->base.phy_address = phyad_wanted;
if (xcvr_wanted != -1)
link_usettings->deprecated.transceiver
= xcvr_wanted;
/* XXX If the user specified speed or duplex
* then we should mask the advertised modes
* accordingly. For now, warn that we aren't
* doing that.
*/
if ((speed_wanted != -1 || duplex_wanted != -1) &&
link_usettings->base.autoneg &&
advertising_wanted == NULL) {
fprintf(stderr, "Cannot advertise");
if (speed_wanted >= 0)
fprintf(stderr, " speed %d",
speed_wanted);
if (duplex_wanted >= 0)
fprintf(stderr, " duplex %s",
duplex_wanted ?
"full" : "half");
fprintf(stderr, "\n");
}
if (autoneg_wanted == AUTONEG_ENABLE &&
advertising_wanted == NULL &&
full_advertising_wanted == NULL) {
unsigned int i;
/* Auto negotiation enabled, but with
* unspecified speed and duplex: enable all
* supported speeds and duplexes.
*/
ethtool_link_mode_for_each_u32(i) {
u32 sup = link_usettings->link_modes.supported[i];
u32 *adv = link_usettings->link_modes.advertising + i;
*adv = ((*adv & ~all_advertised_modes[i])
| (sup & all_advertised_modes[i]));
}
/* If driver supports unknown flags, we cannot
* be sure that we enable all link modes.
*/
ethtool_link_mode_for_each_u32(i) {
u32 sup = link_usettings->link_modes.supported[i];
if ((sup & all_advertised_flags[i]) != sup) {
fprintf(stderr, "Driver supports one or more unknown flags\n");
break;
}
}
} else if (advertising_wanted != NULL) {
unsigned int i;
/* Enable all requested modes */
ethtool_link_mode_for_each_u32(i) {
u32 *adv = link_usettings->link_modes.advertising + i;
*adv = ((*adv & ~all_advertised_modes[i])
| advertising_wanted[i]);
}
} else if (full_advertising_wanted != NULL) {
ethtool_link_mode_copy(
link_usettings->link_modes.advertising,
full_advertising_wanted);
}
/* Try to perform the update. */
if (link_usettings->base.cmd == ETHTOOL_GLINKSETTINGS)
err = do_ioctl_slinksettings(ctx,
link_usettings);
else
err = do_ioctl_sset(ctx, link_usettings);
free(link_usettings);
if (err < 0)
perror("Cannot set new settings");
}
if (err < 0) {
if (speed_wanted != -1)
fprintf(stderr, " not setting speed\n");
if (duplex_wanted != -1)
fprintf(stderr, " not setting duplex\n");
if (port_wanted != -1)
fprintf(stderr, " not setting port\n");
if (autoneg_wanted != -1)
fprintf(stderr, " not setting autoneg\n");
if (phyad_wanted != -1)
fprintf(stderr, " not setting phy_address\n");
if (xcvr_wanted != -1)
fprintf(stderr, " not setting transceiver\n");
if (mdix_wanted != -1)
fprintf(stderr, " not setting mdix\n");
}
}
if (gwol_changed) {
struct ethtool_wolinfo wol;
wol.cmd = ETHTOOL_GWOL;
err = send_ioctl(ctx, &wol);
if (err < 0) {
perror("Cannot get current wake-on-lan settings");
} else {
/* Change everything the user specified. */
if (wol_change)
wol.wolopts = wol_wanted;
if (sopass_change) {
int i;
for (i = 0; i < SOPASS_MAX; i++)
wol.sopass[i] = sopass_wanted[i];
}
/* Try to perform the update. */
wol.cmd = ETHTOOL_SWOL;
err = send_ioctl(ctx, &wol);
if (err < 0)
perror("Cannot set new wake-on-lan settings");
}
if (err < 0) {
if (wol_change)
fprintf(stderr, " not setting wol\n");
if (sopass_change)
fprintf(stderr, " not setting sopass\n");
}
}
if (msglvl_changed) {
struct ethtool_value edata;
edata.cmd = ETHTOOL_GMSGLVL;
err = send_ioctl(ctx, &edata);
if (err < 0) {
perror("Cannot get msglvl");
} else {
edata.cmd = ETHTOOL_SMSGLVL;
edata.data = ((edata.data & ~msglvl_mask) |
msglvl_wanted);
err = send_ioctl(ctx, &edata);
if (err < 0)
perror("Cannot set new msglvl");
}
}
return 0;
}
static int do_gregs(struct cmd_context *ctx)
{
int gregs_changed = 0;
int gregs_dump_raw = 0;
int gregs_dump_hex = 0;
char *gregs_dump_file = NULL;
struct cmdline_info cmdline_gregs[] = {
{ "raw", CMDL_BOOL, &gregs_dump_raw, NULL },
{ "hex", CMDL_BOOL, &gregs_dump_hex, NULL },
{ "file", CMDL_STR, &gregs_dump_file, NULL },
};
int err;
struct ethtool_drvinfo drvinfo;
struct ethtool_regs *regs;
parse_generic_cmdline(ctx, &gregs_changed,
cmdline_gregs, ARRAY_SIZE(cmdline_gregs));
drvinfo.cmd = ETHTOOL_GDRVINFO;
err = send_ioctl(ctx, &drvinfo);
if (err < 0) {
perror("Cannot get driver information");
return 72;
}
regs = calloc(1, sizeof(*regs)+drvinfo.regdump_len);
if (!regs) {
perror("Cannot allocate memory for register dump");
return 73;
}
regs->cmd = ETHTOOL_GREGS;
regs->len = drvinfo.regdump_len;
err = send_ioctl(ctx, regs);
if (err < 0) {
perror("Cannot get register dump");
free(regs);
return 74;
}
if (!gregs_dump_raw && gregs_dump_file != NULL) {
/* overwrite reg values from file dump */
FILE *f = fopen(gregs_dump_file, "r");
struct ethtool_regs *nregs;
struct stat st;
size_t nread;
if (!f || fstat(fileno(f), &st) < 0) {
fprintf(stderr, "Can't open '%s': %s\n",
gregs_dump_file, strerror(errno));
if (f)
fclose(f);
free(regs);
return 75;
}
nregs = realloc(regs, sizeof(*regs) + st.st_size);
if (!nregs) {
perror("Cannot allocate memory for register dump");
free(regs); /* was not freed by realloc */
return 73;
}
regs = nregs;
regs->len = st.st_size;
nread = fread(regs->data, regs->len, 1, f);
fclose(f);
if (nread != 1) {
free(regs);
return 75;
}
}
if (dump_regs(gregs_dump_raw, gregs_dump_hex,
&drvinfo, regs) < 0) {
fprintf(stderr, "Cannot dump registers\n");
free(regs);
return 75;
}
free(regs);
return 0;
}
static int do_nway_rst(struct cmd_context *ctx)
{
struct ethtool_value edata;
int err;
if (ctx->argc != 0)
exit_bad_args();
edata.cmd = ETHTOOL_NWAY_RST;
err = send_ioctl(ctx, &edata);
if (err < 0)
perror("Cannot restart autonegotiation");
return err;
}
static int do_geeprom(struct cmd_context *ctx)
{
int geeprom_changed = 0;
int geeprom_dump_raw = 0;
u32 geeprom_offset = 0;
u32 geeprom_length = -1;
struct cmdline_info cmdline_geeprom[] = {
{ "offset", CMDL_U32, &geeprom_offset, NULL },
{ "length", CMDL_U32, &geeprom_length, NULL },
{ "raw", CMDL_BOOL, &geeprom_dump_raw, NULL },
};
int err;
struct ethtool_drvinfo drvinfo;
struct ethtool_eeprom *eeprom;
parse_generic_cmdline(ctx, &geeprom_changed,
cmdline_geeprom, ARRAY_SIZE(cmdline_geeprom));
drvinfo.cmd = ETHTOOL_GDRVINFO;
err = send_ioctl(ctx, &drvinfo);
if (err < 0) {
perror("Cannot get driver information");
return 74;
}
if (geeprom_length == -1)
geeprom_length = drvinfo.eedump_len;
if (drvinfo.eedump_len < geeprom_offset + geeprom_length)
geeprom_length = drvinfo.eedump_len - geeprom_offset;
eeprom = calloc(1, sizeof(*eeprom)+geeprom_length);
if (!eeprom) {
perror("Cannot allocate memory for EEPROM data");
return 75;
}
eeprom->cmd = ETHTOOL_GEEPROM;
eeprom->len = geeprom_length;
eeprom->offset = geeprom_offset;
err = send_ioctl(ctx, eeprom);
if (err < 0) {
perror("Cannot get EEPROM data");
free(eeprom);
return 74;
}
err = dump_eeprom(geeprom_dump_raw, &drvinfo, eeprom);
free(eeprom);
return err;
}
static int do_seeprom(struct cmd_context *ctx)
{
int seeprom_changed = 0;
u32 seeprom_magic = 0;
u32 seeprom_length = -1;
u32 seeprom_offset = 0;
u8 seeprom_value = 0;
int seeprom_value_seen = 0;
struct cmdline_info cmdline_seeprom[] = {
{ "magic", CMDL_U32, &seeprom_magic, NULL },
{ "offset", CMDL_U32, &seeprom_offset, NULL },
{ "length", CMDL_U32, &seeprom_length, NULL },
{ "value", CMDL_U8, &seeprom_value, NULL,
0, &seeprom_value_seen },
};
int err;
struct ethtool_drvinfo drvinfo;
struct ethtool_eeprom *eeprom;
parse_generic_cmdline(ctx, &seeprom_changed,
cmdline_seeprom, ARRAY_SIZE(cmdline_seeprom));
drvinfo.cmd = ETHTOOL_GDRVINFO;
err = send_ioctl(ctx, &drvinfo);
if (err < 0) {
perror("Cannot get driver information");
return 74;
}
if (seeprom_value_seen)
seeprom_length = 1;
if (seeprom_length == -1)
seeprom_length = drvinfo.eedump_len;
if (drvinfo.eedump_len < seeprom_offset + seeprom_length) {
fprintf(stderr, "offset & length out of bounds\n");
return 1;
}
eeprom = calloc(1, sizeof(*eeprom)+seeprom_length);
if (!eeprom) {
perror("Cannot allocate memory for EEPROM data");
return 75;
}
eeprom->cmd = ETHTOOL_SEEPROM;
eeprom->len = seeprom_length;
eeprom->offset = seeprom_offset;
eeprom->magic = seeprom_magic;
eeprom->data[0] = seeprom_value;
/* Multi-byte write: read input from stdin */
if (!seeprom_value_seen) {
if (fread(eeprom->data, eeprom->len, 1, stdin) != 1) {
fprintf(stderr, "not enough data from stdin\n");
free(eeprom);
return 75;
}
if ((fgetc(stdin) != EOF) || !feof(stdin)) {
fprintf(stderr, "too much data from stdin\n");
free(eeprom);
return 75;
}
}
err = send_ioctl(ctx, eeprom);
if (err < 0) {
perror("Cannot set EEPROM data");
err = 87;
}
free(eeprom);
return err;
}
static int do_test(struct cmd_context *ctx)
{
enum {
ONLINE = 0,
OFFLINE,
EXTERNAL_LB,
} test_type;
int err;
struct ethtool_test *test;
struct ethtool_gstrings *strings;
if (ctx->argc > 1)
exit_bad_args();
if (ctx->argc == 1) {
if (!strcmp(ctx->argp[0], "online"))
test_type = ONLINE;
else if (!strcmp(*ctx->argp, "offline"))
test_type = OFFLINE;
else if (!strcmp(*ctx->argp, "external_lb"))
test_type = EXTERNAL_LB;
else
exit_bad_args();
} else {
test_type = OFFLINE;
}
strings = get_stringset(ctx, ETH_SS_TEST,
offsetof(struct ethtool_drvinfo, testinfo_len),
1);
if (!strings) {
perror("Cannot get strings");
return 74;
}
test = calloc(1, sizeof(*test) + strings->len * sizeof(u64));
if (!test) {
perror("Cannot allocate memory for test info");
free(strings);
return 73;
}
memset(test->data, 0, strings->len * sizeof(u64));
test->cmd = ETHTOOL_TEST;
test->len = strings->len;
if (test_type == EXTERNAL_LB)
test->flags = (ETH_TEST_FL_OFFLINE | ETH_TEST_FL_EXTERNAL_LB);
else if (test_type == OFFLINE)
test->flags = ETH_TEST_FL_OFFLINE;
else
test->flags = 0;
err = send_ioctl(ctx, test);
if (err < 0) {
perror("Cannot test");
free(test);
free(strings);
return 74;
}
err = dump_test(test, strings);
free(test);
free(strings);
return err;
}
static int do_phys_id(struct cmd_context *ctx)
{
int err;
struct ethtool_value edata;
int phys_id_time;
if (ctx->argc > 1)
exit_bad_args();
if (ctx->argc == 1)
phys_id_time = get_int(*ctx->argp, 0);
else
phys_id_time = 0;
edata.cmd = ETHTOOL_PHYS_ID;
edata.data = phys_id_time;
err = send_ioctl(ctx, &edata);
if (err < 0)
perror("Cannot identify NIC");
return err;
}
static int do_gstats(struct cmd_context *ctx, int cmd, int stringset,
const char *name)
{
struct ethtool_gstrings *strings;
struct ethtool_stats *stats;
unsigned int n_stats, sz_stats, i;
int err;
if (ctx->argc != 0)
exit_bad_args();
strings = get_stringset(ctx, stringset,
offsetof(struct ethtool_drvinfo, n_stats),
0);
if (!strings) {
perror("Cannot get stats strings information");
return 96;
}
n_stats = strings->len;
if (n_stats < 1) {
fprintf(stderr, "no stats available\n");
free(strings);
return 94;
}
sz_stats = n_stats * sizeof(u64);
stats = calloc(1, sz_stats + sizeof(struct ethtool_stats));
if (!stats) {
fprintf(stderr, "no memory available\n");
free(strings);
return 95;
}
stats->cmd = cmd;
stats->n_stats = n_stats;
err = send_ioctl(ctx, stats);
if (err < 0) {
perror("Cannot get stats information");
free(strings);
free(stats);
return 97;
}
/* todo - pretty-print the strings per-driver */
fprintf(stdout, "%s statistics:\n", name);
for (i = 0; i < n_stats; i++) {
fprintf(stdout, " %.*s: %llu\n",
ETH_GSTRING_LEN,
&strings->data[i * ETH_GSTRING_LEN],
stats->data[i]);
}
free(strings);
free(stats);
return 0;
}
static int do_gnicstats(struct cmd_context *ctx)
{
return do_gstats(ctx, ETHTOOL_GSTATS, ETH_SS_STATS, "NIC");
}
static int do_gphystats(struct cmd_context *ctx)
{
return do_gstats(ctx, ETHTOOL_GPHYSTATS, ETH_SS_PHY_STATS, "PHY");
}
static int do_srxntuple(struct cmd_context *ctx,
struct ethtool_rx_flow_spec *rx_rule_fs);
static int do_srxclass(struct cmd_context *ctx)
{
int err;
if (ctx->argc < 2)
exit_bad_args();
if (!strcmp(ctx->argp[0], "rx-flow-hash")) {
int rx_fhash_set;
u32 rx_fhash_val;
struct ethtool_rxnfc nfccmd;
bool flow_rss = false;
if (ctx->argc == 5) {
if (strcmp(ctx->argp[3], "context"))
exit_bad_args();
flow_rss = true;
nfccmd.rss_context = get_u32(ctx->argp[4], 0);
} else if (ctx->argc != 3) {
exit_bad_args();
}
rx_fhash_set = rxflow_str_to_type(ctx->argp[1]);
if (!rx_fhash_set)
exit_bad_args();
if (parse_rxfhashopts(ctx->argp[2], &rx_fhash_val) < 0)
exit_bad_args();
nfccmd.cmd = ETHTOOL_SRXFH;
nfccmd.flow_type = rx_fhash_set;
nfccmd.data = rx_fhash_val;
if (flow_rss)
nfccmd.flow_type |= FLOW_RSS;
err = send_ioctl(ctx, &nfccmd);
if (err < 0)
perror("Cannot change RX network flow hashing options");
} else if (!strcmp(ctx->argp[0], "flow-type")) {
struct ethtool_rx_flow_spec rx_rule_fs;
__u32 rss_context = 0;
ctx->argc--;
ctx->argp++;
if (rxclass_parse_ruleopts(ctx, &rx_rule_fs, &rss_context) < 0)
exit_bad_args();
/* attempt to add rule via N-tuple specifier */
err = do_srxntuple(ctx, &rx_rule_fs);
if (!err)
return 0;
/* attempt to add rule via network flow classifier */
err = rxclass_rule_ins(ctx, &rx_rule_fs, rss_context);
if (err < 0) {
fprintf(stderr, "Cannot insert"
" classification rule\n");
return 1;
}
} else if (!strcmp(ctx->argp[0], "delete")) {
int rx_class_rule_del =
get_uint_range(ctx->argp[1], 0, INT_MAX);
err = rxclass_rule_del(ctx, rx_class_rule_del);
if (err < 0) {
fprintf(stderr, "Cannot delete"
" classification rule\n");
return 1;
}
} else {
exit_bad_args();
}
return 0;
}
static int do_grxclass(struct cmd_context *ctx)
{
struct ethtool_rxnfc nfccmd;
int err;
if (ctx->argc > 0 && !strcmp(ctx->argp[0], "rx-flow-hash")) {
int rx_fhash_get;
bool flow_rss = false;
if (ctx->argc == 4) {
if (strcmp(ctx->argp[2], "context"))
exit_bad_args();
flow_rss = true;
nfccmd.rss_context = get_u32(ctx->argp[3], 0);
} else if (ctx->argc != 2) {
exit_bad_args();
}
rx_fhash_get = rxflow_str_to_type(ctx->argp[1]);
if (!rx_fhash_get)
exit_bad_args();
nfccmd.cmd = ETHTOOL_GRXFH;
nfccmd.flow_type = rx_fhash_get;
if (flow_rss)
nfccmd.flow_type |= FLOW_RSS;
err = send_ioctl(ctx, &nfccmd);
if (err < 0) {
perror("Cannot get RX network flow hashing options");
} else {
if (flow_rss)
fprintf(stdout, "For RSS context %u:\n",
nfccmd.rss_context);
dump_rxfhash(rx_fhash_get, nfccmd.data);
}
} else if (ctx->argc == 2 && !strcmp(ctx->argp[0], "rule")) {
int rx_class_rule_get =
get_uint_range(ctx->argp[1], 0, INT_MAX);
err = rxclass_rule_get(ctx, rx_class_rule_get);
if (err < 0)
fprintf(stderr, "Cannot get RX classification rule\n");
} else if (ctx->argc == 0) {
nfccmd.cmd = ETHTOOL_GRXRINGS;
err = send_ioctl(ctx, &nfccmd);
if (err < 0)
perror("Cannot get RX rings");
else
fprintf(stdout, "%d RX rings available\n",
(int)nfccmd.data);
err = rxclass_rule_getall(ctx);
if (err < 0)
fprintf(stderr, "RX classification rule retrieval failed\n");
} else {
exit_bad_args();
}
return err ? 1 : 0;
}
static void print_indir_table(struct cmd_context *ctx,
struct ethtool_rxnfc *ring_count,
u32 indir_size, u32 *indir)
{
u32 i;
printf("RX flow hash indirection table for %s with %llu RX ring(s):\n",
ctx->devname, ring_count->data);
if (!indir_size)
printf("Operation not supported\n");
for (i = 0; i < indir_size; i++) {
if (i % 8 == 0)
printf("%5u: ", i);
printf(" %5u", indir[i]);
if (i % 8 == 7 || i == indir_size - 1)
fputc('\n', stdout);
}
}
static int do_grxfhindir(struct cmd_context *ctx,
struct ethtool_rxnfc *ring_count)
{
struct ethtool_rxfh_indir indir_head;
struct ethtool_rxfh_indir *indir;
int err;
indir_head.cmd = ETHTOOL_GRXFHINDIR;
indir_head.size = 0;
err = send_ioctl(ctx, &indir_head);
if (err < 0) {
perror("Cannot get RX flow hash indirection table size");
return 1;
}
indir = malloc(sizeof(*indir) +
indir_head.size * sizeof(*indir->ring_index));
if (!indir) {
perror("Cannot allocate memory for indirection table");
return 1;
}
indir->cmd = ETHTOOL_GRXFHINDIR;
indir->size = indir_head.size;
err = send_ioctl(ctx, indir);
if (err < 0) {
perror("Cannot get RX flow hash indirection table");
free(indir);
return 1;
}
print_indir_table(ctx, ring_count, indir->size, indir->ring_index);
free(indir);
return 0;
}
static int do_grxfh(struct cmd_context *ctx)
{
struct ethtool_gstrings *hfuncs = NULL;
struct ethtool_rxfh rss_head = {0};
struct ethtool_rxnfc ring_count;
struct ethtool_rxfh *rss;
u32 rss_context = 0;
u32 i, indir_bytes;
int arg_num = 0;
char *hkey;
int err;
while (arg_num < ctx->argc) {
if (!strcmp(ctx->argp[arg_num], "context")) {
++arg_num;
rss_context = get_int_range(ctx->argp[arg_num], 0, 1,
ETH_RXFH_CONTEXT_ALLOC - 1);
++arg_num;
} else {
exit_bad_args();
}
}
ring_count.cmd = ETHTOOL_GRXRINGS;
err = send_ioctl(ctx, &ring_count);
if (err < 0) {
perror("Cannot get RX ring count");
return 1;
}
rss_head.cmd = ETHTOOL_GRSSH;
rss_head.rss_context = rss_context;
err = send_ioctl(ctx, &rss_head);
if (err < 0 && errno == EOPNOTSUPP && !rss_context) {
return do_grxfhindir(ctx, &ring_count);
} else if (err < 0) {
perror("Cannot get RX flow hash indir size and/or key size");
return 1;
}
rss = calloc(1, sizeof(*rss) +
rss_head.indir_size * sizeof(rss_head.rss_config[0]) +
rss_head.key_size);
if (!rss) {
perror("Cannot allocate memory for RX flow hash config");
return 1;
}
rss->cmd = ETHTOOL_GRSSH;
rss->rss_context = rss_context;
rss->indir_size = rss_head.indir_size;
rss->key_size = rss_head.key_size;
err = send_ioctl(ctx, rss);
if (err < 0) {
perror("Cannot get RX flow hash configuration");
free(rss);
return 1;
}
print_indir_table(ctx, &ring_count, rss->indir_size, rss->rss_config);
indir_bytes = rss->indir_size * sizeof(rss->rss_config[0]);
hkey = ((char *)rss->rss_config + indir_bytes);
printf("RSS hash key:\n");
if (!rss->key_size)
printf("Operation not supported\n");
for (i = 0; i < rss->key_size; i++) {
if (i == (rss->key_size - 1))
printf("%02x\n", (u8) hkey[i]);
else
printf("%02x:", (u8) hkey[i]);
}
printf("RSS hash function:\n");
if (!rss->hfunc) {
printf(" Operation not supported\n");
goto out;
}
hfuncs = get_stringset(ctx, ETH_SS_RSS_HASH_FUNCS, 0, 1);
if (!hfuncs) {
perror("Cannot get hash functions names");
free(rss);
return 1;
}
for (i = 0; i < hfuncs->len; i++)
printf(" %s: %s\n",
(const char *)hfuncs->data + i * ETH_GSTRING_LEN,
(rss->hfunc & (1 << i)) ? "on" : "off");
out:
free(hfuncs);
free(rss);
return 0;
}
static int fill_indir_table(u32 *indir_size, u32 *indir, int rxfhindir_default,
int rxfhindir_start, int rxfhindir_equal,
char **rxfhindir_weight, u32 num_weights)
{
u32 i;
if (rxfhindir_equal) {
for (i = 0; i < *indir_size; i++)
indir[i] = rxfhindir_start + (i % rxfhindir_equal);
} else if (rxfhindir_weight) {
u32 j, weight, sum = 0, partial = 0;
for (j = 0; j < num_weights; j++) {
weight = get_u32(rxfhindir_weight[j], 0);
sum += weight;
}
if (sum == 0) {
fprintf(stderr,
"At least one weight must be non-zero\n");
return 2;
}
if (sum > *indir_size) {
fprintf(stderr,
"Total weight exceeds the size of the "
"indirection table\n");
return 2;
}
j = -1;
for (i = 0; i < *indir_size; i++) {
while (i >= (*indir_size) * partial / sum) {
j += 1;
weight = get_u32(rxfhindir_weight[j], 0);
partial += weight;
}
indir[i] = rxfhindir_start + j;
}
} else if (rxfhindir_default) {
/* "*indir_size == 0" ==> reset indir to default */
*indir_size = 0;
} else {
*indir_size = ETH_RXFH_INDIR_NO_CHANGE;
}
return 0;
}
static int do_srxfhindir(struct cmd_context *ctx, int rxfhindir_default,
int rxfhindir_start, int rxfhindir_equal,
char **rxfhindir_weight, u32 num_weights)
{
struct ethtool_rxfh_indir indir_head;
struct ethtool_rxfh_indir *indir;
int err;
indir_head.cmd = ETHTOOL_GRXFHINDIR;
indir_head.size = 0;
err = send_ioctl(ctx, &indir_head);
if (err < 0) {
perror("Cannot get RX flow hash indirection table size");
return 1;
}
indir = malloc(sizeof(*indir) +
indir_head.size * sizeof(*indir->ring_index));
if (!indir) {
perror("Cannot allocate memory for indirection table");
return 1;
}
indir->cmd = ETHTOOL_SRXFHINDIR;
indir->size = indir_head.size;
if (fill_indir_table(&indir->size, indir->ring_index,
rxfhindir_default, rxfhindir_start,
rxfhindir_equal, rxfhindir_weight, num_weights)) {
free(indir);
return 1;
}
err = send_ioctl(ctx, indir);
if (err < 0) {
perror("Cannot set RX flow hash indirection table");
free(indir);
return 1;
}
free(indir);
return 0;
}
static int do_srxfh(struct cmd_context *ctx)
{
struct ethtool_rxfh rss_head = {0};
struct ethtool_rxfh *rss = NULL;
struct ethtool_rxnfc ring_count;
int rxfhindir_equal = 0, rxfhindir_default = 0, rxfhindir_start = 0;
struct ethtool_gstrings *hfuncs = NULL;
char **rxfhindir_weight = NULL;
char *rxfhindir_key = NULL;
char *req_hfunc_name = NULL;
char *hfunc_name = NULL;
char *hkey = NULL;
int err = 0;
int i;
u32 arg_num = 0, indir_bytes = 0;
u32 req_hfunc = 0;
u32 entry_size = sizeof(rss_head.rss_config[0]);
u32 num_weights = 0;
u32 rss_context = 0;
int delete = 0;
if (ctx->argc < 1)
exit_bad_args();
while (arg_num < ctx->argc) {
if (!strcmp(ctx->argp[arg_num], "equal")) {
++arg_num;
rxfhindir_equal = get_int_range(ctx->argp[arg_num],
0, 1, INT_MAX);
++arg_num;
} else if (!strcmp(ctx->argp[arg_num], "start")) {
++arg_num;
rxfhindir_start = get_int_range(ctx->argp[arg_num],
0, 0, INT_MAX);
++arg_num;
} else if (!strcmp(ctx->argp[arg_num], "weight")) {
++arg_num;
rxfhindir_weight = ctx->argp + arg_num;
while (arg_num < ctx->argc &&
isdigit((unsigned char)ctx->argp[arg_num][0])) {
++arg_num;
++num_weights;
}
if (!num_weights)
exit_bad_args();
} else if (!strcmp(ctx->argp[arg_num], "hkey")) {
++arg_num;
rxfhindir_key = ctx->argp[arg_num];
if (!rxfhindir_key)
exit_bad_args();
++arg_num;
} else if (!strcmp(ctx->argp[arg_num], "default")) {
++arg_num;
rxfhindir_default = 1;
} else if (!strcmp(ctx->argp[arg_num], "hfunc")) {
++arg_num;
req_hfunc_name = ctx->argp[arg_num];
if (!req_hfunc_name)
exit_bad_args();
++arg_num;
} else if (!strcmp(ctx->argp[arg_num], "context")) {
++arg_num;
if(!strcmp(ctx->argp[arg_num], "new"))
rss_context = ETH_RXFH_CONTEXT_ALLOC;
else
rss_context = get_int_range(
ctx->argp[arg_num], 0, 1,
ETH_RXFH_CONTEXT_ALLOC - 1);
++arg_num;
} else if (!strcmp(ctx->argp[arg_num], "delete")) {
++arg_num;
delete = 1;
} else {
exit_bad_args();
}
}
if (rxfhindir_equal && rxfhindir_weight) {
fprintf(stderr,
"Equal and weight options are mutually exclusive\n");
return 1;
}
if (rxfhindir_equal && rxfhindir_default) {
fprintf(stderr,
"Equal and default options are mutually exclusive\n");
return 1;
}
if (rxfhindir_weight && rxfhindir_default) {
fprintf(stderr,
"Weight and default options are mutually exclusive\n");
return 1;
}
if (rxfhindir_start && rxfhindir_default) {
fprintf(stderr,
"Start and default options are mutually exclusive\n");
return 1;
}
if (rxfhindir_start && !(rxfhindir_equal || rxfhindir_weight)) {
fprintf(stderr,
"Start must be used with equal or weight options\n");
return 1;
}
if (rxfhindir_default && rss_context) {
fprintf(stderr,
"Default and context options are mutually exclusive\n");
return 1;
}
if (delete && !rss_context) {
fprintf(stderr, "Delete option requires context option\n");
return 1;
}
if (delete && rxfhindir_weight) {
fprintf(stderr,
"Delete and weight options are mutually exclusive\n");
return 1;
}
if (delete && rxfhindir_equal) {
fprintf(stderr,
"Delete and equal options are mutually exclusive\n");
return 1;
}
if (delete && rxfhindir_default) {
fprintf(stderr,
"Delete and default options are mutually exclusive\n");
return 1;
}
if (delete && rxfhindir_key) {
fprintf(stderr,
"Delete and hkey options are mutually exclusive\n");
return 1;
}
ring_count.cmd = ETHTOOL_GRXRINGS;
err = send_ioctl(ctx, &ring_count);
if (err < 0) {
perror("Cannot get RX ring count");
return 1;
}
rss_head.cmd = ETHTOOL_GRSSH;
err = send_ioctl(ctx, &rss_head);
if (err < 0 && errno == EOPNOTSUPP && !rxfhindir_key &&
!req_hfunc_name && !rss_context) {
return do_srxfhindir(ctx, rxfhindir_default, rxfhindir_start,
rxfhindir_equal, rxfhindir_weight,
num_weights);
} else if (err < 0) {
perror("Cannot get RX flow hash indir size and key size");
return 1;
}
if (rxfhindir_key) {
err = parse_hkey(&hkey, rss_head.key_size,
rxfhindir_key);
if (err)
return err;
}
if (rxfhindir_equal || rxfhindir_weight)
indir_bytes = rss_head.indir_size * entry_size;
if (rss_head.hfunc && req_hfunc_name) {
hfuncs = get_stringset(ctx, ETH_SS_RSS_HASH_FUNCS, 0, 1);
if (!hfuncs) {
perror("Cannot get hash functions names");
err = 1;
goto free;
}
for (i = 0; i < hfuncs->len && !req_hfunc ; i++) {
hfunc_name = (char *)(hfuncs->data +
i * ETH_GSTRING_LEN);
if (!strncmp(hfunc_name, req_hfunc_name,
ETH_GSTRING_LEN))
req_hfunc = (u32)1 << i;
}
if (!req_hfunc) {
fprintf(stderr,
"Unknown hash function: %s\n", req_hfunc_name);
err = 1;
goto free;
}
}
rss = calloc(1, sizeof(*rss) + indir_bytes + rss_head.key_size);
if (!rss) {
perror("Cannot allocate memory for RX flow hash config");
err = 1;
goto free;
}
rss->cmd = ETHTOOL_SRSSH;
rss->rss_context = rss_context;
rss->hfunc = req_hfunc;
if (delete) {
rss->indir_size = rss->key_size = 0;
} else {
rss->indir_size = rss_head.indir_size;
rss->key_size = rss_head.key_size;
if (fill_indir_table(&rss->indir_size, rss->rss_config,
rxfhindir_default, rxfhindir_start,
rxfhindir_equal, rxfhindir_weight,
num_weights)) {
err = 1;
goto free;
}
}
if (hkey)
memcpy((char *)rss->rss_config + indir_bytes,
hkey, rss->key_size);
else
rss->key_size = 0;
err = send_ioctl(ctx, rss);
if (err < 0) {
perror("Cannot set RX flow hash configuration");
err = 1;
} else if (rss_context == ETH_RXFH_CONTEXT_ALLOC) {
printf("New RSS context is %d\n", rss->rss_context);
}
free:
free(hkey);
free(rss);
free(hfuncs);
return err;
}
static int do_flash(struct cmd_context *ctx)
{
char *flash_file;
int flash_region;
struct ethtool_flash efl;
int err;
if (ctx->argc < 1 || ctx->argc > 2)
exit_bad_args();
flash_file = ctx->argp[0];
if (ctx->argc == 2) {
flash_region = strtol(ctx->argp[1], NULL, 0);
if (flash_region < 0)
exit_bad_args();
} else {
flash_region = -1;
}
if (strlen(flash_file) > ETHTOOL_FLASH_MAX_FILENAME - 1) {
fprintf(stdout, "Filename too long\n");
return 99;
}
efl.cmd = ETHTOOL_FLASHDEV;
strcpy(efl.data, flash_file);
if (flash_region < 0)
efl.region = ETHTOOL_FLASH_ALL_REGIONS;
else
efl.region = flash_region;
err = send_ioctl(ctx, &efl);
if (err < 0)
perror("Flashing failed");
return err;
}
static int do_permaddr(struct cmd_context *ctx)
{
int i, err;
struct ethtool_perm_addr *epaddr;
epaddr = malloc(sizeof(struct ethtool_perm_addr) + MAX_ADDR_LEN);
if (!epaddr) {
perror("Cannot allocate memory for operation");
return 1;
}
epaddr->cmd = ETHTOOL_GPERMADDR;
epaddr->size = MAX_ADDR_LEN;
err = send_ioctl(ctx, epaddr);
if (err < 0)
perror("Cannot read permanent address");
else {
printf("Permanent address:");
for (i = 0; i < epaddr->size; i++)
printf("%c%02x", (i == 0) ? ' ' : ':',
epaddr->data[i]);
printf("\n");
}
free(epaddr);
return err;
}
static bool flow_type_is_ntuple_supported(__u32 flow_type)
{
switch (flow_type) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
case AH_V4_FLOW:
case ESP_V4_FLOW:
case IPV4_USER_FLOW:
case ETHER_FLOW:
return true;
default:
return false;
}
}
static int flow_spec_to_ntuple(struct ethtool_rx_flow_spec *fsp,
struct ethtool_rx_ntuple_flow_spec *ntuple)
{
size_t i;
/* verify location is not specified */
if (fsp->location != RX_CLS_LOC_ANY)
return -1;
/* destination MAC address in L3/L4 rules is not supported by ntuple */
if (fsp->flow_type & FLOW_MAC_EXT)
return -1;
/* verify ring cookie can transfer to action */
if (fsp->ring_cookie > INT_MAX && fsp->ring_cookie < (u64)(-2))
return -1;
/* verify only one field is setting data field */
if ((fsp->flow_type & FLOW_EXT) &&
(fsp->m_ext.data[0] || fsp->m_ext.data[1]) &&
fsp->m_ext.vlan_etype)
return -1;
/* IPv6 flow types are not supported by ntuple */
if (!flow_type_is_ntuple_supported(fsp->flow_type & ~FLOW_EXT))
return -1;
/* Set entire ntuple to ~0 to guarantee all masks are set */
memset(ntuple, ~0, sizeof(*ntuple));
/* set non-filter values */
ntuple->flow_type = fsp->flow_type;
ntuple->action = fsp->ring_cookie;
/*
* Copy over header union, they are identical in layout however
* the ntuple union contains additional padding on the end
*/
memcpy(&ntuple->h_u, &fsp->h_u, sizeof(fsp->h_u));
/*
* The same rule mentioned above applies to the mask union. However,
* in addition we need to invert the mask bits to match the ntuple
* mask which is 1 for masked, versus 0 for masked as seen in nfc.
*/
memcpy(&ntuple->m_u, &fsp->m_u, sizeof(fsp->m_u));
for (i = 0; i < sizeof(fsp->m_u); i++)
ntuple->m_u.hdata[i] ^= 0xFF;
/* copy extended fields */
if (fsp->flow_type & FLOW_EXT) {
ntuple->vlan_tag =
ntohs(fsp->h_ext.vlan_tci);
ntuple->vlan_tag_mask =
~ntohs(fsp->m_ext.vlan_tci);
if (fsp->m_ext.vlan_etype) {
/*
* vlan_etype and user data are mutually exclusive
* in ntuple configuration as they occupy the same
* space.
*/
if (fsp->m_ext.data[0] || fsp->m_ext.data[1])
return -1;
ntuple->data =
ntohl(fsp->h_ext.vlan_etype);
ntuple->data_mask =
~(u64)ntohl(fsp->m_ext.vlan_etype);
} else {
ntuple->data =
(u64)ntohl(fsp->h_ext.data[0]) << 32;
ntuple->data |=
(u64)ntohl(fsp->h_ext.data[1]);
ntuple->data_mask =
(u64)ntohl(~fsp->m_ext.data[0]) << 32;
ntuple->data_mask |=
(u64)ntohl(~fsp->m_ext.data[1]);
}
}
/* Mask out the extended bit, because ntuple does not know it! */
ntuple->flow_type &= ~FLOW_EXT;
return 0;
}
static int do_srxntuple(struct cmd_context *ctx,
struct ethtool_rx_flow_spec *rx_rule_fs)
{
struct ethtool_rx_ntuple ntuplecmd;
struct ethtool_value eval;
int err;
/* attempt to convert the flow classifier to an ntuple classifier */
err = flow_spec_to_ntuple(rx_rule_fs, &ntuplecmd.fs);
if (err)
return -1;
/*
* Check to see if the flag is set for N-tuple, this allows
* us to avoid the possible EINVAL response for the N-tuple
* flag not being set on the device
*/
eval.cmd = ETHTOOL_GFLAGS;
err = send_ioctl(ctx, &eval);
if (err || !(eval.data & ETH_FLAG_NTUPLE))
return -1;
/* send rule via N-tuple */
ntuplecmd.cmd = ETHTOOL_SRXNTUPLE;
err = send_ioctl(ctx, &ntuplecmd);
/*
* Display error only if response is something other than op not
* supported. It is possible that the interface uses the network
* flow classifier interface instead of N-tuple.
*/
if (err < 0) {
if (errno != EOPNOTSUPP)
perror("Cannot add new rule via N-tuple");
return -1;
}
return 0;
}
static int do_writefwdump(struct ethtool_dump *dump, const char *dump_file)
{
int err = 0;
FILE *f;
size_t bytes;
f = fopen(dump_file, "wb+");
if (!f) {
fprintf(stderr, "Can't open file %s: %s\n",
dump_file, strerror(errno));
return 1;
}
bytes = fwrite(dump->data, 1, dump->len, f);
if (bytes != dump->len) {
fprintf(stderr, "Can not write all of dump data\n");
err = 1;
}
if (fclose(f)) {
fprintf(stderr, "Can't close file %s: %s\n",
dump_file, strerror(errno));
err = 1;
}
return err;
}
static int do_getfwdump(struct cmd_context *ctx)
{
u32 dump_flag;
char *dump_file;
int err;
struct ethtool_dump edata;
struct ethtool_dump *data;
if (ctx->argc == 2 && !strcmp(ctx->argp[0], "data")) {
dump_flag = ETHTOOL_GET_DUMP_DATA;
dump_file = ctx->argp[1];
} else if (ctx->argc == 0) {
dump_flag = 0;
dump_file = NULL;
} else {
exit_bad_args();
}
edata.cmd = ETHTOOL_GET_DUMP_FLAG;
err = send_ioctl(ctx, &edata);
if (err < 0) {
perror("Can not get dump level\n");
return 1;
}
if (dump_flag != ETHTOOL_GET_DUMP_DATA) {
fprintf(stdout, "flag: %u, version: %u, length: %u\n",
edata.flag, edata.version, edata.len);
return 0;
}
data = calloc(1, offsetof(struct ethtool_dump, data) + edata.len);
if (!data) {
perror("Can not allocate enough memory\n");
return 1;
}
data->cmd = ETHTOOL_GET_DUMP_DATA;
data->len = edata.len;
err = send_ioctl(ctx, data);
if (err < 0) {
perror("Can not get dump data\n");
err = 1;
goto free;
}
err = do_writefwdump(data, dump_file);
free:
free(data);
return err;
}
static int do_setfwdump(struct cmd_context *ctx)
{
u32 dump_flag;
int err;
struct ethtool_dump dump;
if (ctx->argc != 1)
exit_bad_args();
dump_flag = get_u32(ctx->argp[0], 0);
dump.cmd = ETHTOOL_SET_DUMP;
dump.flag = dump_flag;
err = send_ioctl(ctx, &dump);
if (err < 0) {
perror("Can not set dump level\n");
return 1;
}
return 0;
}
static int do_gprivflags(struct cmd_context *ctx)
{
struct ethtool_gstrings *strings;
struct ethtool_value flags;
unsigned int i;
int max_len = 0, cur_len, rc;
if (ctx->argc != 0)
exit_bad_args();
strings = get_stringset(ctx, ETH_SS_PRIV_FLAGS,
offsetof(struct ethtool_drvinfo, n_priv_flags),
1);
if (!strings) {
perror("Cannot get private flag names");
return 1;
}
if (strings->len == 0) {
fprintf(stderr, "No private flags defined\n");
rc = 1;
goto err;
}
if (strings->len > 32) {
/* ETHTOOL_GPFLAGS can only cover 32 flags */
fprintf(stderr, "Only showing first 32 private flags\n");
strings->len = 32;
}
flags.cmd = ETHTOOL_GPFLAGS;
if (send_ioctl(ctx, &flags)) {
perror("Cannot get private flags");
rc = 1;
goto err;
}
/* Find longest string and align all strings accordingly */
for (i = 0; i < strings->len; i++) {
cur_len = strlen((const char *)strings->data +
i * ETH_GSTRING_LEN);
if (cur_len > max_len)
max_len = cur_len;
}
printf("Private flags for %s:\n", ctx->devname);
for (i = 0; i < strings->len; i++)
printf("%-*s: %s\n",
max_len,
(const char *)strings->data + i * ETH_GSTRING_LEN,
(flags.data & (1U << i)) ? "on" : "off");
rc = 0;
err:
free(strings);
return rc;
}
static int do_sprivflags(struct cmd_context *ctx)
{
struct ethtool_gstrings *strings;
struct cmdline_info *cmdline;
struct ethtool_value flags;
u32 wanted_flags = 0, seen_flags = 0;
int any_changed, rc;
unsigned int i;
strings = get_stringset(ctx, ETH_SS_PRIV_FLAGS,
offsetof(struct ethtool_drvinfo, n_priv_flags),
1);
if (!strings) {
perror("Cannot get private flag names");
return 1;
}
if (strings->len == 0) {
fprintf(stderr, "No private flags defined\n");
rc = 1;
goto err;
}
if (strings->len > 32) {
/* ETHTOOL_{G,S}PFLAGS can only cover 32 flags */
fprintf(stderr, "Only setting first 32 private flags\n");
strings->len = 32;
}
cmdline = calloc(strings->len, sizeof(*cmdline));
if (!cmdline) {
perror("Cannot parse arguments");
rc = 1;
goto err;
}
for (i = 0; i < strings->len; i++) {
cmdline[i].name = ((const char *)strings->data +
i * ETH_GSTRING_LEN);
cmdline[i].type = CMDL_FLAG;
cmdline[i].wanted_val = &wanted_flags;
cmdline[i].flag_val = 1U << i;
cmdline[i].seen_val = &seen_flags;
}
parse_generic_cmdline(ctx, &any_changed, cmdline, strings->len);
free(cmdline);
flags.cmd = ETHTOOL_GPFLAGS;
if (send_ioctl(ctx, &flags)) {
perror("Cannot get private flags");
rc = 1;
goto err;
}
flags.cmd = ETHTOOL_SPFLAGS;
flags.data = (flags.data & ~seen_flags) | wanted_flags;
if (send_ioctl(ctx, &flags)) {
perror("Cannot set private flags");
rc = 1;
goto err;
}
rc = 0;
err:
free(strings);
return rc;
}
static int do_tsinfo(struct cmd_context *ctx)
{
struct ethtool_ts_info info;
if (ctx->argc != 0)
exit_bad_args();
fprintf(stdout, "Time stamping parameters for %s:\n", ctx->devname);
info.cmd = ETHTOOL_GET_TS_INFO;
if (send_ioctl(ctx, &info)) {
perror("Cannot get device time stamping settings");
return -1;
}
dump_tsinfo(&info);
return 0;
}
static int do_getmodule(struct cmd_context *ctx)
{
struct ethtool_modinfo modinfo;
struct ethtool_eeprom *eeprom;
u32 geeprom_offset = 0;
u32 geeprom_length = -1;
int geeprom_changed = 0;
int geeprom_dump_raw = 0;
int geeprom_dump_hex = 0;
int err;
struct cmdline_info cmdline_geeprom[] = {
{ "offset", CMDL_U32, &geeprom_offset, NULL },
{ "length", CMDL_U32, &geeprom_length, NULL },
{ "raw", CMDL_BOOL, &geeprom_dump_raw, NULL },
{ "hex", CMDL_BOOL, &geeprom_dump_hex, NULL },
};
parse_generic_cmdline(ctx, &geeprom_changed,
cmdline_geeprom, ARRAY_SIZE(cmdline_geeprom));
if (geeprom_dump_raw && geeprom_dump_hex) {
printf("Hex and raw dump cannot be specified together\n");
return 1;
}
modinfo.cmd = ETHTOOL_GMODULEINFO;
err = send_ioctl(ctx, &modinfo);
if (err < 0) {
perror("Cannot get module EEPROM information");
return 1;
}
if (geeprom_length == -1)
geeprom_length = modinfo.eeprom_len;
if (modinfo.eeprom_len < geeprom_offset + geeprom_length)
geeprom_length = modinfo.eeprom_len - geeprom_offset;
eeprom = calloc(1, sizeof(*eeprom)+geeprom_length);
if (!eeprom) {
perror("Cannot allocate memory for Module EEPROM data");
return 1;
}
eeprom->cmd = ETHTOOL_GMODULEEEPROM;
eeprom->len = geeprom_length;
eeprom->offset = geeprom_offset;
err = send_ioctl(ctx, eeprom);
if (err < 0) {
perror("Cannot get Module EEPROM data");
free(eeprom);
return 1;
}
/*
* SFF-8079 EEPROM layout contains the memory available at A0 address on
* the PHY EEPROM.
* SFF-8472 defines a virtual extension of the EEPROM, where the
* microcontroller on the SFP/SFP+ generates a page at the A2 address,
* which contains data relative to optical diagnostics.
* The current kernel implementation returns a blob, which contains:
* - ETH_MODULE_SFF_8079 => The A0 page only.
* - ETH_MODULE_SFF_8472 => The A0 and A2 page concatenated.
*/
if (geeprom_dump_raw) {
fwrite(eeprom->data, 1, eeprom->len, stdout);
} else {
if (eeprom->offset != 0 ||
(eeprom->len != modinfo.eeprom_len)) {
geeprom_dump_hex = 1;
} else if (!geeprom_dump_hex) {
switch (modinfo.type) {
#ifdef ETHTOOL_ENABLE_PRETTY_DUMP
case ETH_MODULE_SFF_8079:
sff8079_show_all(eeprom->data);
break;
case ETH_MODULE_SFF_8472:
sff8079_show_all(eeprom->data);
sff8472_show_all(eeprom->data);
break;
case ETH_MODULE_SFF_8436:
case ETH_MODULE_SFF_8636:
sff8636_show_all(eeprom->data,
modinfo.eeprom_len);
break;
#endif
default:
geeprom_dump_hex = 1;
break;
}
}
if (geeprom_dump_hex)
dump_hex(stdout, eeprom->data,
eeprom->len, eeprom->offset);
}
free(eeprom);
return 0;
}
static int do_geee(struct cmd_context *ctx)
{
struct ethtool_eee eeecmd;
if (ctx->argc != 0)
exit_bad_args();
eeecmd.cmd = ETHTOOL_GEEE;
if (send_ioctl(ctx, &eeecmd)) {
perror("Cannot get EEE settings");
return 1;
}
fprintf(stdout, "EEE Settings for %s:\n", ctx->devname);
dump_eeecmd(&eeecmd);
return 0;
}
static int do_seee(struct cmd_context *ctx)
{
int adv_c = -1, lpi_c = -1, lpi_time_c = -1, eee_c = -1;
int change = -1, change2 = 0;
struct ethtool_eee eeecmd;
struct cmdline_info cmdline_eee[] = {
{ "advertise", CMDL_U32, &adv_c, &eeecmd.advertised },
{ "tx-lpi", CMDL_BOOL, &lpi_c, &eeecmd.tx_lpi_enabled },
{ "tx-timer", CMDL_U32, &lpi_time_c, &eeecmd.tx_lpi_timer},
{ "eee", CMDL_BOOL, &eee_c, &eeecmd.eee_enabled},
};
if (ctx->argc == 0)
exit_bad_args();
parse_generic_cmdline(ctx, &change, cmdline_eee,
ARRAY_SIZE(cmdline_eee));
eeecmd.cmd = ETHTOOL_GEEE;
if (send_ioctl(ctx, &eeecmd)) {
perror("Cannot get EEE settings");
return 1;
}
do_generic_set(cmdline_eee, ARRAY_SIZE(cmdline_eee), &change2);
if (change2) {
eeecmd.cmd = ETHTOOL_SEEE;
if (send_ioctl(ctx, &eeecmd)) {
perror("Cannot set EEE settings");
return 1;
}
}
return 0;
}
static int do_get_phy_tunable(struct cmd_context *ctx)
{
int argc = ctx->argc;
char **argp = ctx->argp;
if (argc < 1)
exit_bad_args();
if (!strcmp(argp[0], "downshift")) {
struct {
struct ethtool_tunable ds;
u8 count;
} cont;
cont.ds.cmd = ETHTOOL_PHY_GTUNABLE;
cont.ds.id = ETHTOOL_PHY_DOWNSHIFT;
cont.ds.type_id = ETHTOOL_TUNABLE_U8;
cont.ds.len = 1;
if (send_ioctl(ctx, &cont.ds) < 0) {
perror("Cannot Get PHY downshift count");
return 87;
}
if (cont.count)
fprintf(stdout, "Downshift count: %d\n", cont.count);
else
fprintf(stdout, "Downshift disabled\n");
} else if (!strcmp(argp[0], "fast-link-down")) {
struct {
struct ethtool_tunable fld;
u8 msecs;
} cont;
cont.fld.cmd = ETHTOOL_PHY_GTUNABLE;
cont.fld.id = ETHTOOL_PHY_FAST_LINK_DOWN;
cont.fld.type_id = ETHTOOL_TUNABLE_U8;
cont.fld.len = 1;
if (send_ioctl(ctx, &cont.fld) < 0) {
perror("Cannot Get PHY Fast Link Down value");
return 87;
}
if (cont.msecs == ETHTOOL_PHY_FAST_LINK_DOWN_ON)
fprintf(stdout, "Fast Link Down enabled\n");
else if (cont.msecs == ETHTOOL_PHY_FAST_LINK_DOWN_OFF)
fprintf(stdout, "Fast Link Down disabled\n");
else
fprintf(stdout, "Fast Link Down enabled, %d msecs\n",
cont.msecs);
} else if (!strcmp(argp[0], "energy-detect-power-down")) {
struct {
struct ethtool_tunable ds;
u16 msecs;
} cont;
cont.ds.cmd = ETHTOOL_PHY_GTUNABLE;
cont.ds.id = ETHTOOL_PHY_EDPD;
cont.ds.type_id = ETHTOOL_TUNABLE_U16;
cont.ds.len = 2;
if (send_ioctl(ctx, &cont.ds) < 0) {
perror("Cannot Get PHY Energy Detect Power Down value");
return 87;
}
if (cont.msecs == ETHTOOL_PHY_EDPD_DISABLE)
fprintf(stdout, "Energy Detect Power Down: disabled\n");
else if (cont.msecs == ETHTOOL_PHY_EDPD_NO_TX)
fprintf(stdout,
"Energy Detect Power Down: enabled, TX disabled\n");
else
fprintf(stdout,
"Energy Detect Power Down: enabled, TX %u msecs\n",
cont.msecs);
} else {
exit_bad_args();
}
return 0;
}
static __u32 parse_reset(char *val, __u32 bitset, char *arg, __u32 *data)
{
__u32 bitval = 0;
int i;
/* Check for component match */
for (i = 0; val[i] != '\0'; i++)
if (arg[i] != val[i])
return 0;
/* Check if component has -shared specified or not */
if (arg[i] == '\0')
bitval = bitset;
else if (!strcmp(arg+i, "-shared"))
bitval = bitset << ETH_RESET_SHARED_SHIFT;
if (bitval) {
*data |= bitval;
return 1;
}
return 0;
}
static int do_reset(struct cmd_context *ctx)
{
struct ethtool_value resetinfo;
__u32 data;
int argc = ctx->argc;
char **argp = ctx->argp;
int i;
if (argc == 0)
exit_bad_args();
data = 0;
for (i = 0; i < argc; i++) {
if (!strcmp(argp[i], "flags")) {
__u32 flags;
i++;
if (i >= argc)
exit_bad_args();
flags = strtoul(argp[i], NULL, 0);
if (flags == 0)
exit_bad_args();
else
data |= flags;
} else if (parse_reset("mgmt", ETH_RESET_MGMT,
argp[i], &data)) {
} else if (parse_reset("irq", ETH_RESET_IRQ,
argp[i], &data)) {
} else if (parse_reset("dma", ETH_RESET_DMA,
argp[i], &data)) {
} else if (parse_reset("filter", ETH_RESET_FILTER,
argp[i], &data)) {
} else if (parse_reset("offload", ETH_RESET_OFFLOAD,
argp[i], &data)) {
} else if (parse_reset("mac", ETH_RESET_MAC,
argp[i], &data)) {
} else if (parse_reset("phy", ETH_RESET_PHY,
argp[i], &data)) {
} else if (parse_reset("ram", ETH_RESET_RAM,
argp[i], &data)) {
} else if (parse_reset("ap", ETH_RESET_AP,
argp[i], &data)) {
} else if (!strcmp(argp[i], "dedicated")) {
data |= ETH_RESET_DEDICATED;
} else if (!strcmp(argp[i], "all")) {
data |= ETH_RESET_ALL;
} else {
exit_bad_args();
}
}
resetinfo.cmd = ETHTOOL_RESET;
resetinfo.data = data;
fprintf(stdout, "ETHTOOL_RESET 0x%x\n", resetinfo.data);
if (send_ioctl(ctx, &resetinfo)) {
perror("Cannot issue ETHTOOL_RESET");
return 1;
}
fprintf(stdout, "Components reset: 0x%x\n", data & ~resetinfo.data);
if (resetinfo.data)
fprintf(stdout, "Components not reset: 0x%x\n", resetinfo.data);
return 0;
}
static int parse_named_bool(struct cmd_context *ctx, const char *name, u8 *on)
{
if (ctx->argc < 2)
return 0;
if (strcmp(*ctx->argp, name))
return 0;
if (!strcmp(*(ctx->argp + 1), "on")) {
*on = 1;
} else if (!strcmp(*(ctx->argp + 1), "off")) {
*on = 0;
} else {
fprintf(stderr, "Invalid boolean\n");
exit_bad_args();
}
ctx->argc -= 2;
ctx->argp += 2;
return 1;
}
static int parse_named_uint(struct cmd_context *ctx,
const char *name,
unsigned long long *val,
unsigned long long max)
{
if (ctx->argc < 2)
return 0;
if (strcmp(*ctx->argp, name))
return 0;
*val = get_uint_range(*(ctx->argp + 1), 0, max);
ctx->argc -= 2;
ctx->argp += 2;
return 1;
}
static int parse_named_u8(struct cmd_context *ctx, const char *name, u8 *val)
{
unsigned long long val1;
int ret;
ret = parse_named_uint(ctx, name, &val1, 0xff);
if (ret)
*val = val1;
return ret;
}
static int parse_named_u16(struct cmd_context *ctx, const char *name, u16 *val)
{
unsigned long long val1;
int ret;
ret = parse_named_uint(ctx, name, &val1, 0xffff);
if (ret)
*val = val1;
return ret;
}
static int do_set_phy_tunable(struct cmd_context *ctx)
{
int err = 0;
u8 ds_cnt = DOWNSHIFT_DEV_DEFAULT_COUNT;
u8 ds_changed = 0, ds_has_cnt = 0, ds_enable = 0;
u8 fld_changed = 0, fld_enable = 0;
u8 fld_msecs = ETHTOOL_PHY_FAST_LINK_DOWN_ON;
u8 edpd_changed = 0, edpd_enable = 0;
u16 edpd_tx_interval = ETHTOOL_PHY_EDPD_DFLT_TX_MSECS;
/* Parse arguments */
if (parse_named_bool(ctx, "downshift", &ds_enable)) {
ds_changed = 1;
ds_has_cnt = parse_named_u8(ctx, "count", &ds_cnt);
} else if (parse_named_bool(ctx, "fast-link-down", &fld_enable)) {
fld_changed = 1;
if (fld_enable)
parse_named_u8(ctx, "msecs", &fld_msecs);
} else if (parse_named_bool(ctx, "energy-detect-power-down",
&edpd_enable)) {
edpd_changed = 1;
if (edpd_enable)
parse_named_u16(ctx, "msecs", &edpd_tx_interval);
} else {
exit_bad_args();
}
/* Validate parameters */
if (ds_changed) {
if (!ds_enable && ds_has_cnt) {
fprintf(stderr, "'count' may not be set when downshift "
"is off.\n");
exit_bad_args();
}
if (ds_enable && ds_has_cnt && ds_cnt == 0) {
fprintf(stderr, "'count' may not be zero.\n");
exit_bad_args();
}
if (!ds_enable)
ds_cnt = DOWNSHIFT_DEV_DISABLE;
} else if (fld_changed) {
if (!fld_enable)
fld_msecs = ETHTOOL_PHY_FAST_LINK_DOWN_OFF;
else if (fld_msecs == ETHTOOL_PHY_FAST_LINK_DOWN_OFF)
exit_bad_args();
} else if (edpd_changed) {
if (!edpd_enable)
edpd_tx_interval = ETHTOOL_PHY_EDPD_DISABLE;
else if (edpd_tx_interval == 0)
edpd_tx_interval = ETHTOOL_PHY_EDPD_NO_TX;
else if (edpd_tx_interval > ETHTOOL_PHY_EDPD_NO_TX) {
fprintf(stderr, "'msecs' max value is %d.\n",
(ETHTOOL_PHY_EDPD_NO_TX - 1));
exit_bad_args();
}
}
/* Do it */
if (ds_changed) {
struct {
struct ethtool_tunable ds;
u8 count;
} cont;
cont.ds.cmd = ETHTOOL_PHY_STUNABLE;
cont.ds.id = ETHTOOL_PHY_DOWNSHIFT;
cont.ds.type_id = ETHTOOL_TUNABLE_U8;
cont.ds.len = 1;
cont.count = ds_cnt;
err = send_ioctl(ctx, &cont.ds);
if (err < 0) {
perror("Cannot Set PHY downshift count");
err = 87;
}
} else if (fld_changed) {
struct {
struct ethtool_tunable fld;
u8 msecs;
} cont;
cont.fld.cmd = ETHTOOL_PHY_STUNABLE;
cont.fld.id = ETHTOOL_PHY_FAST_LINK_DOWN;
cont.fld.type_id = ETHTOOL_TUNABLE_U8;
cont.fld.len = 1;
cont.msecs = fld_msecs;
err = send_ioctl(ctx, &cont.fld);
if (err < 0) {
perror("Cannot Set PHY Fast Link Down value");
err = 87;
}
} else if (edpd_changed) {
struct {
struct ethtool_tunable fld;
u16 msecs;
} cont;
cont.fld.cmd = ETHTOOL_PHY_STUNABLE;
cont.fld.id = ETHTOOL_PHY_EDPD;
cont.fld.type_id = ETHTOOL_TUNABLE_U16;
cont.fld.len = 2;
cont.msecs = edpd_tx_interval;
err = send_ioctl(ctx, &cont.fld);
if (err < 0) {
perror("Cannot Set PHY Energy Detect Power Down");
err = 87;
}
}
return err;
}
static int fecmode_str_to_type(const char *str)
{
if (!strcasecmp(str, "auto"))
return ETHTOOL_FEC_AUTO;
if (!strcasecmp(str, "off"))
return ETHTOOL_FEC_OFF;
if (!strcasecmp(str, "rs"))
return ETHTOOL_FEC_RS;
if (!strcasecmp(str, "baser"))
return ETHTOOL_FEC_BASER;
return 0;
}
static int do_gfec(struct cmd_context *ctx)
{
struct ethtool_fecparam feccmd = { 0 };
int rv;
if (ctx->argc != 0)
exit_bad_args();
feccmd.cmd = ETHTOOL_GFECPARAM;
rv = send_ioctl(ctx, &feccmd);
if (rv != 0) {
perror("Cannot get FEC settings");
return rv;
}
fprintf(stdout, "FEC parameters for %s:\n", ctx->devname);
fprintf(stdout, "Configured FEC encodings:");
dump_fec(feccmd.fec);
fprintf(stdout, "\n");
fprintf(stdout, "Active FEC encoding:");
dump_fec(feccmd.active_fec);
fprintf(stdout, "\n");
return 0;
}
static int do_sfec(struct cmd_context *ctx)
{
enum { ARG_NONE, ARG_ENCODING } state = ARG_NONE;
struct ethtool_fecparam feccmd;
int fecmode = 0, newmode;
int rv, i;
for (i = 0; i < ctx->argc; i++) {
if (!strcmp(ctx->argp[i], "encoding")) {
state = ARG_ENCODING;
continue;
}
if (state == ARG_ENCODING) {
newmode = fecmode_str_to_type(ctx->argp[i]);
if (!newmode)
exit_bad_args();
fecmode |= newmode;
continue;
}
exit_bad_args();
}
if (!fecmode)
exit_bad_args();
feccmd.cmd = ETHTOOL_SFECPARAM;
feccmd.fec = fecmode;
rv = send_ioctl(ctx, &feccmd);
if (rv != 0) {
perror("Cannot set FEC settings");
return rv;
}
return 0;
}
static int do_perqueue(struct cmd_context *ctx);
#ifndef TEST_ETHTOOL
int send_ioctl(struct cmd_context *ctx, void *cmd)
{
ctx->ifr.ifr_data = cmd;
return ioctl(ctx->fd, SIOCETHTOOL, &ctx->ifr);
}
#endif
static int show_usage(struct cmd_context *ctx);
static const struct option {
const char *opts;
int want_device;
int (*func)(struct cmd_context *);
char *help;
char *opthelp;
} args[] = {
{ "-s|--change", 1, do_sset, "Change generic options",
" [ speed %d ]\n"
" [ duplex half|full ]\n"
" [ port tp|aui|bnc|mii|fibre ]\n"
" [ mdix auto|on|off ]\n"
" [ autoneg on|off ]\n"
" [ advertise %x ]\n"
" [ phyad %d ]\n"
" [ xcvr internal|external ]\n"
" [ wol p|u|m|b|a|g|s|f|d... ]\n"
" [ sopass %x:%x:%x:%x:%x:%x ]\n"
" [ msglvl %d | msglvl type on|off ... ]\n" },
{ "-a|--show-pause", 1, do_gpause, "Show pause options" },
{ "-A|--pause", 1, do_spause, "Set pause options",
" [ autoneg on|off ]\n"
" [ rx on|off ]\n"
" [ tx on|off ]\n" },
{ "-c|--show-coalesce", 1, do_gcoalesce, "Show coalesce options" },
{ "-C|--coalesce", 1, do_scoalesce, "Set coalesce options",
" [adaptive-rx on|off]\n"
" [adaptive-tx on|off]\n"
" [rx-usecs N]\n"
" [rx-frames N]\n"
" [rx-usecs-irq N]\n"
" [rx-frames-irq N]\n"
" [tx-usecs N]\n"
" [tx-frames N]\n"
" [tx-usecs-irq N]\n"
" [tx-frames-irq N]\n"
" [stats-block-usecs N]\n"
" [pkt-rate-low N]\n"
" [rx-usecs-low N]\n"
" [rx-frames-low N]\n"
" [tx-usecs-low N]\n"
" [tx-frames-low N]\n"
" [pkt-rate-high N]\n"
" [rx-usecs-high N]\n"
" [rx-frames-high N]\n"
" [tx-usecs-high N]\n"
" [tx-frames-high N]\n"
" [sample-interval N]\n" },
{ "-g|--show-ring", 1, do_gring, "Query RX/TX ring parameters" },
{ "-G|--set-ring", 1, do_sring, "Set RX/TX ring parameters",
" [ rx N ]\n"
" [ rx-mini N ]\n"
" [ rx-jumbo N ]\n"
" [ tx N ]\n" },
{ "-k|--show-features|--show-offload", 1, do_gfeatures,
"Get state of protocol offload and other features" },
{ "-K|--features|--offload", 1, do_sfeatures,
"Set protocol offload and other features",
" FEATURE on|off ...\n" },
{ "-i|--driver", 1, do_gdrv, "Show driver information" },
{ "-d|--register-dump", 1, do_gregs, "Do a register dump",
" [ raw on|off ]\n"
" [ file FILENAME ]\n" },
{ "-e|--eeprom-dump", 1, do_geeprom, "Do a EEPROM dump",
" [ raw on|off ]\n"
" [ offset N ]\n"
" [ length N ]\n" },
{ "-E|--change-eeprom", 1, do_seeprom,
"Change bytes in device EEPROM",
" [ magic N ]\n"
" [ offset N ]\n"
" [ length N ]\n"
" [ value N ]\n" },
{ "-r|--negotiate", 1, do_nway_rst, "Restart N-WAY negotiation" },
{ "-p|--identify", 1, do_phys_id,
"Show visible port identification (e.g. blinking)",
" [ TIME-IN-SECONDS ]\n" },
{ "-t|--test", 1, do_test, "Execute adapter self test",
" [ online | offline | external_lb ]\n" },
{ "-S|--statistics", 1, do_gnicstats, "Show adapter statistics" },
{ "--phy-statistics", 1, do_gphystats,
"Show phy statistics" },
{ "-n|-u|--show-nfc|--show-ntuple", 1, do_grxclass,
"Show Rx network flow classification options or rules",
" [ rx-flow-hash tcp4|udp4|ah4|esp4|sctp4|"
"tcp6|udp6|ah6|esp6|sctp6 [context %d] |\n"
" rule %d ]\n" },
{ "-N|-U|--config-nfc|--config-ntuple", 1, do_srxclass,
"Configure Rx network flow classification options or rules",
" rx-flow-hash tcp4|udp4|ah4|esp4|sctp4|"
"tcp6|udp6|ah6|esp6|sctp6 m|v|t|s|d|f|n|r... [context %d] |\n"
" flow-type ether|ip4|tcp4|udp4|sctp4|ah4|esp4|"
"ip6|tcp6|udp6|ah6|esp6|sctp6\n"
" [ src %x:%x:%x:%x:%x:%x [m %x:%x:%x:%x:%x:%x] ]\n"
" [ dst %x:%x:%x:%x:%x:%x [m %x:%x:%x:%x:%x:%x] ]\n"
" [ proto %d [m %x] ]\n"
" [ src-ip IP-ADDRESS [m IP-ADDRESS] ]\n"
" [ dst-ip IP-ADDRESS [m IP-ADDRESS] ]\n"
" [ tos %d [m %x] ]\n"
" [ tclass %d [m %x] ]\n"
" [ l4proto %d [m %x] ]\n"
" [ src-port %d [m %x] ]\n"
" [ dst-port %d [m %x] ]\n"
" [ spi %d [m %x] ]\n"
" [ vlan-etype %x [m %x] ]\n"
" [ vlan %x [m %x] ]\n"
" [ user-def %x [m %x] ]\n"
" [ dst-mac %x:%x:%x:%x:%x:%x [m %x:%x:%x:%x:%x:%x] ]\n"
" [ action %d ] | [ vf %d queue %d ]\n"
" [ context %d ]\n"
" [ loc %d]] |\n"
" delete %d\n" },
{ "-T|--show-time-stamping", 1, do_tsinfo,
"Show time stamping capabilities" },
{ "-x|--show-rxfh-indir|--show-rxfh", 1, do_grxfh,
"Show Rx flow hash indirection table and/or RSS hash key",
" [ context %d ]\n" },
{ "-X|--set-rxfh-indir|--rxfh", 1, do_srxfh,
"Set Rx flow hash indirection table and/or RSS hash key",
" [ context %d|new ]\n"
" [ equal N | weight W0 W1 ... | default ]\n"
" [ hkey %x:%x:%x:%x:%x:.... ]\n"
" [ hfunc FUNC ]\n"
" [ delete ]\n" },
{ "-f|--flash", 1, do_flash,
"Flash firmware image from the specified file to a region on the device",
" FILENAME [ REGION-NUMBER-TO-FLASH ]\n" },
{ "-P|--show-permaddr", 1, do_permaddr,
"Show permanent hardware address" },
{ "-w|--get-dump", 1, do_getfwdump,
"Get dump flag, data",
" [ data FILENAME ]\n" },
{ "-W|--set-dump", 1, do_setfwdump,
"Set dump flag of the device",
" N\n"},
{ "-l|--show-channels", 1, do_gchannels, "Query Channels" },
{ "-L|--set-channels", 1, do_schannels, "Set Channels",
" [ rx N ]\n"
" [ tx N ]\n"
" [ other N ]\n"
" [ combined N ]\n" },
{ "--show-priv-flags", 1, do_gprivflags, "Query private flags" },
{ "--set-priv-flags", 1, do_sprivflags, "Set private flags",
" FLAG on|off ...\n" },
{ "-m|--dump-module-eeprom|--module-info", 1, do_getmodule,
"Query/Decode Module EEPROM information and optical diagnostics if available",
" [ raw on|off ]\n"
" [ hex on|off ]\n"
" [ offset N ]\n"
" [ length N ]\n" },
{ "--show-eee", 1, do_geee, "Show EEE settings"},
{ "--set-eee", 1, do_seee, "Set EEE settings",
" [ eee on|off ]\n"
" [ advertise %x ]\n"
" [ tx-lpi on|off ]\n"
" [ tx-timer %d ]\n"},
{ "--set-phy-tunable", 1, do_set_phy_tunable, "Set PHY tunable",
" [ downshift on|off [count N] ]\n"
" [ fast-link-down on|off [msecs N] ]\n"
" [ energy-detect-power-down on|off [msecs N] ]\n"},
{ "--get-phy-tunable", 1, do_get_phy_tunable, "Get PHY tunable",
" [ downshift ]\n"
" [ fast-link-down ]\n"
" [ energy-detect-power-down ]\n"},
{ "--reset", 1, do_reset, "Reset components",
" [ flags %x ]\n"
" [ mgmt ]\n"
" [ mgmt-shared ]\n"
" [ irq ]\n"
" [ irq-shared ]\n"
" [ dma ]\n"
" [ dma-shared ]\n"
" [ filter ]\n"
" [ filter-shared ]\n"
" [ offload ]\n"
" [ offload-shared ]\n"
" [ mac ]\n"
" [ mac-shared ]\n"
" [ phy ]\n"
" [ phy-shared ]\n"
" [ ram ]\n"
" [ ram-shared ]\n"
" [ ap ]\n"
" [ ap-shared ]\n"
" [ dedicated ]\n"
" [ all ]\n"},
{ "--show-fec", 1, do_gfec, "Show FEC settings"},
{ "--set-fec", 1, do_sfec, "Set FEC settings",
" [ encoding auto|off|rs|baser [...]]\n"},
{ "-Q|--per-queue", 1, do_perqueue, "Apply per-queue command."
"The supported sub commands include --show-coalesce, --coalesce",
" [queue_mask %x] SUB_COMMAND\n"},
{ "-h|--help", 0, show_usage, "Show this help" },
{ "--version", 0, do_version, "Show version number" },
{}
};
static int show_usage(struct cmd_context *ctx maybe_unused)
{
int i;
/* ethtool -h */
fprintf(stdout, PACKAGE " version " VERSION "\n");
fprintf(stdout,
"Usage:\n"
" ethtool DEVNAME\t"
"Display standard information about device\n");
for (i = 0; args[i].opts; i++) {
fputs(" ethtool ", stdout);
fprintf(stdout, "%s %s\t%s\n",
args[i].opts,
args[i].want_device ? "DEVNAME" : "\t",
args[i].help);
if (args[i].opthelp)
fputs(args[i].opthelp, stdout);
}
return 0;
}
static int find_option(char *arg)
{
const char *opt;
size_t len;
int k;
for (k = 0; args[k].opts; k++) {
opt = args[k].opts;
for (;;) {
len = strcspn(opt, "|");
if (strncmp(arg, opt, len) == 0 && arg[len] == 0)
return k;
if (opt[len] == 0)
break;
opt += len + 1;
}
}
return -1;
}
#define MAX(x, y) (x > y ? x : y)
static int find_max_num_queues(struct cmd_context *ctx)
{
struct ethtool_channels echannels;
echannels.cmd = ETHTOOL_GCHANNELS;
if (send_ioctl(ctx, &echannels))
return -1;
return MAX(echannels.rx_count, echannels.tx_count) +
echannels.combined_count;
}
static struct ethtool_per_queue_op *
get_per_queue_coalesce(struct cmd_context *ctx, __u32 *queue_mask, int n_queues)
{
struct ethtool_per_queue_op *per_queue_opt;
per_queue_opt = malloc(sizeof(*per_queue_opt) + n_queues *
sizeof(struct ethtool_coalesce));
if (!per_queue_opt)
return NULL;
memcpy(per_queue_opt->queue_mask, queue_mask,
__KERNEL_DIV_ROUND_UP(MAX_NUM_QUEUE, 32) * sizeof(__u32));
per_queue_opt->cmd = ETHTOOL_PERQUEUE;
per_queue_opt->sub_command = ETHTOOL_GCOALESCE;
if (send_ioctl(ctx, per_queue_opt)) {
free(per_queue_opt);
perror("Cannot get device per queue parameters");
return NULL;
}
return per_queue_opt;
}
static void set_per_queue_coalesce(struct cmd_context *ctx,
struct ethtool_per_queue_op *per_queue_opt,
int n_queues)
{
struct ethtool_coalesce ecoal;
DECLARE_COALESCE_OPTION_VARS();
struct cmdline_info cmdline_coalesce[] = COALESCE_CMDLINE_INFO(ecoal);
__u32 *queue_mask = per_queue_opt->queue_mask;
struct ethtool_coalesce *ecoal_q;
int gcoalesce_changed = 0;
int i, idx = 0;
parse_generic_cmdline(ctx, &gcoalesce_changed,
cmdline_coalesce, ARRAY_SIZE(cmdline_coalesce));
ecoal_q = (struct ethtool_coalesce *)(per_queue_opt + 1);
for (i = 0; i < __KERNEL_DIV_ROUND_UP(MAX_NUM_QUEUE, 32); i++) {
int queue = i * 32;
__u32 mask = queue_mask[i];
while (mask > 0) {
if (mask & 0x1) {
int changed = 0;
memcpy(&ecoal, ecoal_q + idx,
sizeof(struct ethtool_coalesce));
do_generic_set(cmdline_coalesce,
ARRAY_SIZE(cmdline_coalesce),
&changed);
if (!changed)
fprintf(stderr,
"Queue %d, no coalesce parameters changed\n",
queue);
memcpy(ecoal_q + idx, &ecoal,
sizeof(struct ethtool_coalesce));
idx++;
}
mask = mask >> 1;
queue++;
}
if (idx == n_queues)
break;
}
per_queue_opt->cmd = ETHTOOL_PERQUEUE;
per_queue_opt->sub_command = ETHTOOL_SCOALESCE;
if (send_ioctl(ctx, per_queue_opt))
perror("Cannot set device per queue parameters");
}
static int do_perqueue(struct cmd_context *ctx)
{
struct ethtool_per_queue_op *per_queue_opt;
__u32 queue_mask[__KERNEL_DIV_ROUND_UP(MAX_NUM_QUEUE, 32)] = {0};
int i, n_queues = 0;
if (ctx->argc == 0)
exit_bad_args();
/*
* The sub commands will be applied to
* all queues if no queue_mask set
*/
if (strncmp(*ctx->argp, "queue_mask", 11)) {
n_queues = find_max_num_queues(ctx);
if (n_queues < 0) {
perror("Cannot get number of queues");
return -EFAULT;
} else if (n_queues > MAX_NUM_QUEUE) {
n_queues = MAX_NUM_QUEUE;
}
for (i = 0; i < n_queues / 32; i++)
queue_mask[i] = ~0;
if (n_queues % 32)
queue_mask[i] = (1 << (n_queues - i * 32)) - 1;
fprintf(stdout,
"The sub commands will be applied to all %d queues\n",
n_queues);
} else {
ctx->argc--;
ctx->argp++;
if (parse_hex_u32_bitmap(*ctx->argp, MAX_NUM_QUEUE,
queue_mask)) {
fprintf(stdout, "Invalid queue mask\n");
return -1;
}
for (i = 0; i < __KERNEL_DIV_ROUND_UP(MAX_NUM_QUEUE, 32); i++) {
__u32 mask = queue_mask[i];
while (mask > 0) {
if (mask & 0x1)
n_queues++;
mask = mask >> 1;
}
}
ctx->argc--;
ctx->argp++;
}
i = find_option(ctx->argp[0]);
if (i < 0)
exit_bad_args();
if (strstr(args[i].opts, "--show-coalesce") != NULL) {
per_queue_opt = get_per_queue_coalesce(ctx, queue_mask,
n_queues);
if (per_queue_opt == NULL) {
perror("Cannot get device per queue parameters");
return -EFAULT;
}
dump_per_queue_coalesce(per_queue_opt, queue_mask, n_queues);
free(per_queue_opt);
} else if (strstr(args[i].opts, "--coalesce") != NULL) {
ctx->argc--;
ctx->argp++;
per_queue_opt = get_per_queue_coalesce(ctx, queue_mask,
n_queues);
if (per_queue_opt == NULL) {
perror("Cannot get device per queue parameters");
return -EFAULT;
}
set_per_queue_coalesce(ctx, per_queue_opt, n_queues);
free(per_queue_opt);
} else {
perror("The subcommand is not supported yet");
return -EOPNOTSUPP;
}
return 0;
}
int main(int argc, char **argp)
{
int (*func)(struct cmd_context *);
int want_device;
struct cmd_context ctx;
int k;
init_global_link_mode_masks();
/* Skip command name */
argp++;
argc--;
/* First argument must be either a valid option or a device
* name to get settings for (which we don't expect to begin
* with '-').
*/
if (argc == 0)
exit_bad_args();
k = find_option(*argp);
if (k >= 0) {
argp++;
argc--;
func = args[k].func;
want_device = args[k].want_device;
goto opt_found;
}
if ((*argp)[0] == '-')
exit_bad_args();
func = do_gset;
want_device = 1;
opt_found:
if (want_device) {
ctx.devname = *argp++;
argc--;
if (ctx.devname == NULL)
exit_bad_args();
if (strlen(ctx.devname) >= IFNAMSIZ)
exit_bad_args();
/* Setup our control structures. */
memset(&ctx.ifr, 0, sizeof(ctx.ifr));
strcpy(ctx.ifr.ifr_name, ctx.devname);
/* Open control socket. */
ctx.fd = socket(AF_INET, SOCK_DGRAM, 0);
if (ctx.fd < 0)
ctx.fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (ctx.fd < 0) {
perror("Cannot get control socket");
return 70;
}
} else {
ctx.fd = -1;
}
ctx.argc = argc;
ctx.argp = argp;
return func(&ctx);
}