aosp12/external/f2fs-tools/lib/libf2fs_io.c

805 lines
18 KiB
C

/**
* libf2fs.c
*
* Copyright (c) 2013 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
* Copyright (c) 2019 Google Inc.
* http://www.google.com/
* Copyright (c) 2020 Google Inc.
* Robin Hsu <robinhsu@google.com>
* : add quick-buffer for sload compression support
*
* Dual licensed under the GPL or LGPL version 2 licenses.
*/
#define _LARGEFILE64_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#ifdef HAVE_MNTENT_H
#include <mntent.h>
#endif
#include <time.h>
#ifndef ANDROID_WINDOWS_HOST
#include <sys/stat.h>
#include <sys/mount.h>
#include <sys/ioctl.h>
#endif
#ifdef HAVE_LINUX_HDREG_H
#include <linux/hdreg.h>
#endif
#include <stdbool.h>
#include <assert.h>
#include <inttypes.h>
#include "f2fs_fs.h"
struct f2fs_configuration c;
#ifdef WITH_ANDROID
#include <sparse/sparse.h>
struct sparse_file *f2fs_sparse_file;
static char **blocks;
u_int64_t blocks_count;
static char *zeroed_block;
#endif
static int __get_device_fd(__u64 *offset)
{
__u64 blk_addr = *offset >> F2FS_BLKSIZE_BITS;
int i;
for (i = 0; i < c.ndevs; i++) {
if (c.devices[i].start_blkaddr <= blk_addr &&
c.devices[i].end_blkaddr >= blk_addr) {
*offset -=
c.devices[i].start_blkaddr << F2FS_BLKSIZE_BITS;
return c.devices[i].fd;
}
}
return -1;
}
#ifndef HAVE_LSEEK64
typedef off_t off64_t;
static inline off64_t lseek64(int fd, __u64 offset, int set)
{
return lseek(fd, offset, set);
}
#endif
/* ---------- dev_cache, Least Used First (LUF) policy ------------------- */
/*
* Least used block will be the first victim to be replaced when max hash
* collision exceeds
*/
static bool *dcache_valid; /* is the cached block valid? */
static off64_t *dcache_blk; /* which block it cached */
static uint64_t *dcache_lastused; /* last used ticks for cache entries */
static char *dcache_buf; /* cached block data */
static uint64_t dcache_usetick; /* current use tick */
static uint64_t dcache_raccess;
static uint64_t dcache_rhit;
static uint64_t dcache_rmiss;
static uint64_t dcache_rreplace;
static bool dcache_exit_registered = false;
/*
* Shadow config:
*
* Active set of the configurations.
* Global configuration 'dcache_config' will be transferred here when
* when dcache_init() is called
*/
static dev_cache_config_t dcache_config = {0, 16, 1};
static bool dcache_initialized = false;
#define MIN_NUM_CACHE_ENTRY 1024L
#define MAX_MAX_HASH_COLLISION 16
static long dcache_relocate_offset0[] = {
20, -20, 40, -40, 80, -80, 160, -160,
320, -320, 640, -640, 1280, -1280, 2560, -2560,
};
static int dcache_relocate_offset[16];
static void dcache_print_statistics(void)
{
long i;
long useCnt;
/* Number of used cache entries */
useCnt = 0;
for (i = 0; i < dcache_config.num_cache_entry; i++)
if (dcache_valid[i])
++useCnt;
/*
* c: number of cache entries
* u: used entries
* RA: number of read access blocks
* CH: cache hit
* CM: cache miss
* Repl: read cache replaced
*/
printf ("\nc, u, RA, CH, CM, Repl=\n");
printf ("%ld %ld %" PRIu64 " %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
dcache_config.num_cache_entry,
useCnt,
dcache_raccess,
dcache_rhit,
dcache_rmiss,
dcache_rreplace);
}
void dcache_release(void)
{
if (!dcache_initialized)
return;
dcache_initialized = false;
if (c.cache_config.dbg_en)
dcache_print_statistics();
if (dcache_blk != NULL)
free(dcache_blk);
if (dcache_lastused != NULL)
free(dcache_lastused);
if (dcache_buf != NULL)
free(dcache_buf);
if (dcache_valid != NULL)
free(dcache_valid);
dcache_config.num_cache_entry = 0;
dcache_blk = NULL;
dcache_lastused = NULL;
dcache_buf = NULL;
dcache_valid = NULL;
}
// return 0 for success, error code for failure.
static int dcache_alloc_all(long n)
{
if (n <= 0)
return -1;
if ((dcache_blk = (off64_t *) malloc(sizeof(off64_t) * n)) == NULL
|| (dcache_lastused = (uint64_t *)
malloc(sizeof(uint64_t) * n)) == NULL
|| (dcache_buf = (char *) malloc (F2FS_BLKSIZE * n)) == NULL
|| (dcache_valid = (bool *) malloc(sizeof(bool) * n)) == NULL)
{
dcache_release();
return -1;
}
dcache_config.num_cache_entry = n;
return 0;
}
static void dcache_relocate_init(void)
{
int i;
int n0 = (sizeof(dcache_relocate_offset0)
/ sizeof(dcache_relocate_offset0[0]));
int n = (sizeof(dcache_relocate_offset)
/ sizeof(dcache_relocate_offset[0]));
ASSERT(n == n0);
for (i = 0; i < n && i < dcache_config.max_hash_collision; i++) {
if (labs(dcache_relocate_offset0[i])
> dcache_config.num_cache_entry / 2) {
dcache_config.max_hash_collision = i;
break;
}
dcache_relocate_offset[i] =
dcache_config.num_cache_entry
+ dcache_relocate_offset0[i];
}
}
void dcache_init(void)
{
long n;
if (c.cache_config.num_cache_entry <= 0)
return;
/* release previous cache init, if any */
dcache_release();
dcache_blk = NULL;
dcache_lastused = NULL;
dcache_buf = NULL;
dcache_valid = NULL;
dcache_config = c.cache_config;
n = max(MIN_NUM_CACHE_ENTRY, dcache_config.num_cache_entry);
/* halve alloc size until alloc succeed, or min cache reached */
while (dcache_alloc_all(n) != 0 && n != MIN_NUM_CACHE_ENTRY)
n = max(MIN_NUM_CACHE_ENTRY, n/2);
/* must be the last: data dependent on num_cache_entry */
dcache_relocate_init();
dcache_initialized = true;
if (!dcache_exit_registered) {
dcache_exit_registered = true;
atexit(dcache_release); /* auto release */
}
dcache_raccess = 0;
dcache_rhit = 0;
dcache_rmiss = 0;
dcache_rreplace = 0;
}
static inline char *dcache_addr(long entry)
{
return dcache_buf + F2FS_BLKSIZE * entry;
}
/* relocate on (n+1)-th collision */
static inline long dcache_relocate(long entry, int n)
{
assert(dcache_config.num_cache_entry != 0);
return (entry + dcache_relocate_offset[n]) %
dcache_config.num_cache_entry;
}
static long dcache_find(off64_t blk)
{
register long n = dcache_config.num_cache_entry;
register unsigned m = dcache_config.max_hash_collision;
long entry, least_used, target;
unsigned try;
assert(n > 0);
target = least_used = entry = blk % n; /* simple modulo hash */
for (try = 0; try < m; try++) {
if (!dcache_valid[target] || dcache_blk[target] == blk)
return target; /* found target or empty cache slot */
if (dcache_lastused[target] < dcache_lastused[least_used])
least_used = target;
target = dcache_relocate(entry, try); /* next target */
}
return least_used; /* max search reached, return least used slot */
}
/* Physical read into cache */
static int dcache_io_read(int fd, long entry, off64_t offset, off64_t blk)
{
if (lseek64(fd, offset, SEEK_SET) < 0) {
MSG(0, "\n lseek64 fail.\n");
return -1;
}
if (read(fd, dcache_buf + entry * F2FS_BLKSIZE, F2FS_BLKSIZE) < 0) {
MSG(0, "\n read() fail.\n");
return -1;
}
dcache_lastused[entry] = ++dcache_usetick;
dcache_valid[entry] = true;
dcache_blk[entry] = blk;
return 0;
}
/*
* - Note: Read/Write are not symmetric:
* For read, we need to do it block by block, due to the cache nature:
* some blocks may be cached, and others don't.
* For write, since we always do a write-thru, we can join all writes into one,
* and write it once at the caller. This function updates the cache for write, but
* not the do a physical write. The caller is responsible for the physical write.
* - Note: We concentrate read/write together, due to the fact of similar structure to find
* the relavant cache entries
* - Return values:
* 0: success
* 1: cache not available (uninitialized)
* -1: error
*/
static int dcache_update_rw(int fd, void *buf, off64_t offset,
size_t byte_count, bool is_write)
{
off64_t blk;
int addr_in_blk;
off64_t start;
if (!dcache_initialized)
dcache_init(); /* auto initialize */
if (!dcache_initialized)
return 1; /* not available */
blk = offset / F2FS_BLKSIZE;
addr_in_blk = offset % F2FS_BLKSIZE;
start = blk * F2FS_BLKSIZE;
while (byte_count != 0) {
size_t cur_size = min(byte_count,
(size_t)(F2FS_BLKSIZE - addr_in_blk));
long entry = dcache_find(blk);
if (!is_write)
++dcache_raccess;
if (dcache_valid[entry] && dcache_blk[entry] == blk) {
/* cache hit */
if (is_write) /* write: update cache */
memcpy(dcache_addr(entry) + addr_in_blk,
buf, cur_size);
else
++dcache_rhit;
} else {
/* cache miss */
if (!is_write) {
int err;
++dcache_rmiss;
if (dcache_valid[entry])
++dcache_rreplace;
/* read: physical I/O read into cache */
err = dcache_io_read(fd, entry, start, blk);
if (err)
return err;
}
}
/* read: copy data from cache */
/* write: nothing to do, since we don't do physical write. */
if (!is_write)
memcpy(buf, dcache_addr(entry) + addr_in_blk,
cur_size);
/* next block */
++blk;
buf += cur_size;
start += F2FS_BLKSIZE;
byte_count -= cur_size;
addr_in_blk = 0;
}
return 0;
}
/*
* dcache_update_cache() just update cache, won't do physical I/O.
* Thus even no error, we need normal non-cache I/O for actual write
*
* return value: 1: cache not available
* 0: success, -1: I/O error
*/
int dcache_update_cache(int fd, void *buf, off64_t offset, size_t count)
{
return dcache_update_rw(fd, buf, offset, count, true);
}
/* handles read into cache + read into buffer */
int dcache_read(int fd, void *buf, off64_t offset, size_t count)
{
return dcache_update_rw(fd, buf, offset, count, false);
}
/*
* IO interfaces
*/
int dev_read_version(void *buf, __u64 offset, size_t len)
{
if (c.sparse_mode)
return 0;
if (lseek64(c.kd, (off64_t)offset, SEEK_SET) < 0)
return -1;
if (read(c.kd, buf, len) < 0)
return -1;
return 0;
}
#ifdef WITH_ANDROID
static int sparse_read_blk(__u64 block, int count, void *buf)
{
int i;
char *out = buf;
__u64 cur_block;
for (i = 0; i < count; ++i) {
cur_block = block + i;
if (blocks[cur_block])
memcpy(out + (i * F2FS_BLKSIZE),
blocks[cur_block], F2FS_BLKSIZE);
else if (blocks)
memset(out + (i * F2FS_BLKSIZE), 0, F2FS_BLKSIZE);
}
return 0;
}
static int sparse_write_blk(__u64 block, int count, const void *buf)
{
int i;
__u64 cur_block;
const char *in = buf;
for (i = 0; i < count; ++i) {
cur_block = block + i;
if (blocks[cur_block] == zeroed_block)
blocks[cur_block] = NULL;
if (!blocks[cur_block]) {
blocks[cur_block] = calloc(1, F2FS_BLKSIZE);
if (!blocks[cur_block])
return -ENOMEM;
}
memcpy(blocks[cur_block], in + (i * F2FS_BLKSIZE),
F2FS_BLKSIZE);
}
return 0;
}
static int sparse_write_zeroed_blk(__u64 block, int count)
{
int i;
__u64 cur_block;
for (i = 0; i < count; ++i) {
cur_block = block + i;
if (blocks[cur_block])
continue;
blocks[cur_block] = zeroed_block;
}
return 0;
}
#ifdef SPARSE_CALLBACK_USES_SIZE_T
static int sparse_import_segment(void *UNUSED(priv), const void *data,
size_t len, unsigned int block, unsigned int nr_blocks)
#else
static int sparse_import_segment(void *UNUSED(priv), const void *data, int len,
unsigned int block, unsigned int nr_blocks)
#endif
{
/* Ignore chunk headers, only write the data */
if (!nr_blocks || len % F2FS_BLKSIZE)
return 0;
return sparse_write_blk(block, nr_blocks, data);
}
static int sparse_merge_blocks(uint64_t start, uint64_t num, int zero)
{
char *buf;
uint64_t i;
if (zero) {
blocks[start] = NULL;
return sparse_file_add_fill(f2fs_sparse_file, 0x0,
F2FS_BLKSIZE * num, start);
}
buf = calloc(num, F2FS_BLKSIZE);
if (!buf) {
fprintf(stderr, "failed to alloc %llu\n",
(unsigned long long)num * F2FS_BLKSIZE);
return -ENOMEM;
}
for (i = 0; i < num; i++) {
memcpy(buf + i * F2FS_BLKSIZE, blocks[start + i], F2FS_BLKSIZE);
free(blocks[start + i]);
blocks[start + i] = NULL;
}
/* free_sparse_blocks will release this buf. */
blocks[start] = buf;
return sparse_file_add_data(f2fs_sparse_file, blocks[start],
F2FS_BLKSIZE * num, start);
}
#else
static int sparse_read_blk(__u64 block, int count, void *buf) { return 0; }
static int sparse_write_blk(__u64 block, int count, const void *buf) { return 0; }
static int sparse_write_zeroed_blk(__u64 block, int count) { return 0; }
#endif
int dev_read(void *buf, __u64 offset, size_t len)
{
int fd;
int err;
if (c.max_size < (offset + len))
c.max_size = offset + len;
if (c.sparse_mode)
return sparse_read_blk(offset / F2FS_BLKSIZE,
len / F2FS_BLKSIZE, buf);
fd = __get_device_fd(&offset);
if (fd < 0)
return fd;
/* err = 1: cache not available, fall back to non-cache R/W */
/* err = 0: success, err=-1: I/O error */
err = dcache_read(fd, buf, (off64_t)offset, len);
if (err <= 0)
return err;
if (lseek64(fd, (off64_t)offset, SEEK_SET) < 0)
return -1;
if (read(fd, buf, len) < 0)
return -1;
return 0;
}
#ifdef POSIX_FADV_WILLNEED
int dev_readahead(__u64 offset, size_t len)
#else
int dev_readahead(__u64 offset, size_t UNUSED(len))
#endif
{
int fd = __get_device_fd(&offset);
if (fd < 0)
return fd;
#ifdef POSIX_FADV_WILLNEED
return posix_fadvise(fd, offset, len, POSIX_FADV_WILLNEED);
#else
return 0;
#endif
}
int dev_write(void *buf, __u64 offset, size_t len)
{
int fd;
if (c.max_size < (offset + len))
c.max_size = offset + len;
if (c.dry_run)
return 0;
if (c.sparse_mode)
return sparse_write_blk(offset / F2FS_BLKSIZE,
len / F2FS_BLKSIZE, buf);
fd = __get_device_fd(&offset);
if (fd < 0)
return fd;
/*
* dcache_update_cache() just update cache, won't do I/O.
* Thus even no error, we need normal non-cache I/O for actual write
*/
if (dcache_update_cache(fd, buf, (off64_t)offset, len) < 0)
return -1;
if (lseek64(fd, (off64_t)offset, SEEK_SET) < 0)
return -1;
if (write(fd, buf, len) < 0)
return -1;
return 0;
}
int dev_write_block(void *buf, __u64 blk_addr)
{
return dev_write(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
}
int dev_write_dump(void *buf, __u64 offset, size_t len)
{
if (lseek64(c.dump_fd, (off64_t)offset, SEEK_SET) < 0)
return -1;
if (write(c.dump_fd, buf, len) < 0)
return -1;
return 0;
}
int dev_fill(void *buf, __u64 offset, size_t len)
{
int fd;
if (c.max_size < (offset + len))
c.max_size = offset + len;
if (c.sparse_mode)
return sparse_write_zeroed_blk(offset / F2FS_BLKSIZE,
len / F2FS_BLKSIZE);
fd = __get_device_fd(&offset);
if (fd < 0)
return fd;
/* Only allow fill to zero */
if (*((__u8*)buf))
return -1;
if (lseek64(fd, (off64_t)offset, SEEK_SET) < 0)
return -1;
if (write(fd, buf, len) < 0)
return -1;
return 0;
}
int dev_fill_block(void *buf, __u64 blk_addr)
{
return dev_fill(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
}
int dev_read_block(void *buf, __u64 blk_addr)
{
return dev_read(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
}
int dev_reada_block(__u64 blk_addr)
{
return dev_readahead(blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
}
int f2fs_fsync_device(void)
{
#ifndef ANDROID_WINDOWS_HOST
int i;
for (i = 0; i < c.ndevs; i++) {
if (fsync(c.devices[i].fd) < 0) {
MSG(0, "\tError: Could not conduct fsync!!!\n");
return -1;
}
}
#endif
return 0;
}
int f2fs_init_sparse_file(void)
{
#ifdef WITH_ANDROID
if (c.func == MKFS) {
f2fs_sparse_file = sparse_file_new(F2FS_BLKSIZE, c.device_size);
if (!f2fs_sparse_file)
return -1;
} else {
f2fs_sparse_file = sparse_file_import(c.devices[0].fd,
true, false);
if (!f2fs_sparse_file)
return -1;
c.device_size = sparse_file_len(f2fs_sparse_file, 0, 0);
c.device_size &= (~((u_int64_t)(F2FS_BLKSIZE - 1)));
}
if (sparse_file_block_size(f2fs_sparse_file) != F2FS_BLKSIZE) {
MSG(0, "\tError: Corrupted sparse file\n");
return -1;
}
blocks_count = c.device_size / F2FS_BLKSIZE;
blocks = calloc(blocks_count, sizeof(char *));
if (!blocks) {
MSG(0, "\tError: Calloc Failed for blocks!!!\n");
return -1;
}
zeroed_block = calloc(1, F2FS_BLKSIZE);
if (!zeroed_block) {
MSG(0, "\tError: Calloc Failed for zeroed block!!!\n");
return -1;
}
return sparse_file_foreach_chunk(f2fs_sparse_file, true, false,
sparse_import_segment, NULL);
#else
MSG(0, "\tError: Sparse mode is only supported for android\n");
return -1;
#endif
}
void f2fs_release_sparse_resource(void)
{
#ifdef WITH_ANDROID
int j;
if (c.sparse_mode) {
if (f2fs_sparse_file != NULL) {
sparse_file_destroy(f2fs_sparse_file);
f2fs_sparse_file = NULL;
}
for (j = 0; j < blocks_count; j++)
free(blocks[j]);
free(blocks);
blocks = NULL;
free(zeroed_block);
zeroed_block = NULL;
}
#endif
}
#define MAX_CHUNK_SIZE (1 * 1024 * 1024 * 1024ULL)
#define MAX_CHUNK_COUNT (MAX_CHUNK_SIZE / F2FS_BLKSIZE)
int f2fs_finalize_device(void)
{
int i;
int ret = 0;
#ifdef WITH_ANDROID
if (c.sparse_mode) {
int64_t chunk_start = (blocks[0] == NULL) ? -1 : 0;
uint64_t j;
if (c.func != MKFS) {
sparse_file_destroy(f2fs_sparse_file);
ret = ftruncate(c.devices[0].fd, 0);
ASSERT(!ret);
lseek(c.devices[0].fd, 0, SEEK_SET);
f2fs_sparse_file = sparse_file_new(F2FS_BLKSIZE,
c.device_size);
}
for (j = 0; j < blocks_count; ++j) {
if (chunk_start != -1) {
if (j - chunk_start >= MAX_CHUNK_COUNT) {
ret = sparse_merge_blocks(chunk_start,
j - chunk_start, 0);
ASSERT(!ret);
chunk_start = -1;
}
}
if (chunk_start == -1) {
if (!blocks[j])
continue;
if (blocks[j] == zeroed_block) {
ret = sparse_merge_blocks(j, 1, 1);
ASSERT(!ret);
} else {
chunk_start = j;
}
} else {
if (blocks[j] && blocks[j] != zeroed_block)
continue;
ret = sparse_merge_blocks(chunk_start,
j - chunk_start, 0);
ASSERT(!ret);
if (blocks[j] == zeroed_block) {
ret = sparse_merge_blocks(j, 1, 1);
ASSERT(!ret);
}
chunk_start = -1;
}
}
if (chunk_start != -1) {
ret = sparse_merge_blocks(chunk_start,
blocks_count - chunk_start, 0);
ASSERT(!ret);
}
sparse_file_write(f2fs_sparse_file, c.devices[0].fd,
/*gzip*/0, /*sparse*/1, /*crc*/0);
f2fs_release_sparse_resource();
}
#endif
/*
* We should call fsync() to flush out all the dirty pages
* in the block device page cache.
*/
for (i = 0; i < c.ndevs; i++) {
#ifndef ANDROID_WINDOWS_HOST
ret = fsync(c.devices[i].fd);
if (ret < 0) {
MSG(0, "\tError: Could not conduct fsync!!!\n");
break;
}
#endif
ret = close(c.devices[i].fd);
if (ret < 0) {
MSG(0, "\tError: Failed to close device file!!!\n");
break;
}
free(c.devices[i].path);
free(c.devices[i].zone_cap_blocks);
}
close(c.kd);
return ret;
}