aosp12/external/gemmlowp/fixedpoint/fixedpoint.h

915 lines
35 KiB
C++

// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// fixedpoint.h: fixed-point arithmetic, with basic operations and
// a few math functions such as tanh.
#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_H_
#define GEMMLOWP_INTERNAL_FIXEDPOINT_H_
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <limits>
#include "../internal/detect_platform.h"
namespace gemmlowp {
// Part 1: Low-level integer-arithmetic primitives.
// The implementations here are generic implementations valid for
// scalar types (e.g. std::int32_t). Architecture-specific SIMD types
// (e.g. NEON int32x4_t) may be supported by providing
// specializations for them in separate files.
//
// The purpose of these primitives is two-fold:
// - They will be used to implement higher-level fixed-point
// abstractions, namely the FixedPoint class and its arithmetic
// operators.
// - They will be directly used to implement some more involved
// fixed-point computations, e.g. the fixed-point implementation
// of math functions such as tanh.
// Some compile-time traits around raw types to handle SIMD aspects:
// number of lanes, underlying scalar type.
template <typename tIntegerType>
struct FixedPointRawTypeTraits {};
template <>
struct FixedPointRawTypeTraits<std::int32_t> {
typedef std::int32_t ScalarRawType;
static constexpr int kLanes = 1;
};
template <>
struct FixedPointRawTypeTraits<std::int16_t> {
typedef std::int16_t ScalarRawType;
static constexpr int kLanes = 1;
};
// Returns a SIMD value duplicating a scalar value across all lanes.
template <typename tRawType>
tRawType Dup(typename FixedPointRawTypeTraits<tRawType>::ScalarRawType x) {
return x;
}
// Plain bit-wise AND
template <typename tIntegerType>
tIntegerType BitAnd(tIntegerType a, tIntegerType b) {
return a & b;
}
// Plain bit-wise OR
template <typename tIntegerType>
tIntegerType BitOr(tIntegerType a, tIntegerType b) {
return a | b;
}
// Plain bit-wise XOR
template <typename tIntegerType>
tIntegerType BitXor(tIntegerType a, tIntegerType b) {
return a ^ b;
}
// Plain bit-wise NOT
template <typename tIntegerType>
tIntegerType BitNot(tIntegerType a) {
return ~a;
}
// Integer addition. Not saturating. Overflow is undefined behavior.
template <typename tIntegerType>
tIntegerType Add(tIntegerType a, tIntegerType b) {
return a + b;
}
// Integer multiplication. Not saturating. Overflow is undefined behavior.
template <typename tIntegerType>
tIntegerType Mul(tIntegerType a, tIntegerType b) {
return a * b;
}
// Integer subtraction. Not saturating. Overflow is undefined behavior.
template <typename tIntegerType>
tIntegerType Sub(tIntegerType a, tIntegerType b) {
return a - b;
}
// Integer unary negative. Not saturating. Overflow is undefined behavior.
template <typename tIntegerType>
tIntegerType Neg(tIntegerType a) {
return -a;
}
// Integer arithmetic left-shift, equivalent to multiplying with a power of two.
// Negative values are OK. In case of overflow, no Undefined
// Behavior, but the results are implementation-defined (in practice,
// they currently are saturated, but we make no commitment to that). The idea
// is that the caller will want to implement the overflowing cases with
// saturation with compare-and-mask, so we don't care about the results
// in the overflow case, we just want to avoid undefined behavior.
//
// tIntegerType may be int32 or any narrower signed type.
template <typename tIntegerType, typename OffsetType>
tIntegerType ShiftLeft(tIntegerType a, OffsetType offset) {
const std::int64_t wide_a = static_cast<std::int64_t>(a);
const std::int64_t wide_shifted = wide_a * (1 << offset);
const auto min = std::numeric_limits<tIntegerType>::min();
const auto max = std::numeric_limits<tIntegerType>::max();
return wide_shifted < min
? min
: wide_shifted > max ? max
: static_cast<tIntegerType>(wide_shifted);
}
// Integer arithmetic right-shift. Not rounding.
// Relying on implementation-defined, but in-practice-consistent,
// C++ compiler behavior.
template <typename tIntegerType>
tIntegerType ShiftRight(tIntegerType a, int offset) {
return a >> offset;
}
// Each bit of the result is set to the corresponding bit of either then_val or
// else_val depending on whether the corresponding bit of if_mask is set.
// Equivalent to the VBSL instruction in ARM NEON.
template <typename tIntegerType>
tIntegerType SelectUsingMask(tIntegerType if_mask, tIntegerType then_val,
tIntegerType else_val) {
return BitXor(BitAnd(if_mask, then_val), BitAnd(BitNot(if_mask), else_val));
}
// For each input scalar, the corresponding bits of the result are set if the
// input scalar is non-zero.
template <typename tIntegerType>
tIntegerType MaskIfNonZero(tIntegerType a) {
static constexpr tIntegerType zero = 0;
return a ? BitNot(zero) : zero;
}
// For each input scalar, the corresponding bits of the result are set if the
// input scalar is zero.
template <typename tIntegerType>
tIntegerType MaskIfZero(tIntegerType a) {
return MaskIfNonZero<tIntegerType>(!a);
}
// For each pair of input scalars, the corresponding bits of the result are
// set if the input scalars are equal.
template <typename tIntegerType>
tIntegerType MaskIfEqual(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a == b);
}
// For each pair of input scalars, the corresponding bits of the result are
// set if the input scalars are not equal.
template <typename tIntegerType>
tIntegerType MaskIfNotEqual(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a != b);
}
// For each pair of input scalars, the corresponding bits of the result are
// set if the input scalars a, b satisfy a > b.
template <typename tIntegerType>
tIntegerType MaskIfGreaterThan(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a > b);
}
// For each pair of input scalars, the corresponding bits of the result are
// set if the input scalars a, b satisfy a >= b.
template <typename tIntegerType>
tIntegerType MaskIfGreaterThanOrEqual(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a >= b);
}
// For each pair of input scalars, the corresponding bits of the result are
// set if the input scalars a, b satisfy a < b.
template <typename tIntegerType>
tIntegerType MaskIfLessThan(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a < b);
}
// For each pair of input scalars, the corresponding bits of the result are
// set if the input scalars a, b satisfy a <= b.
template <typename tIntegerType>
tIntegerType MaskIfLessThanOrEqual(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a <= b);
}
// Returns true if all of the input scalars are nonzero.
// This function may currently assume that each of the input scalars has either
// all or none of its bits set. Otherwise, its behavior is currently undefined.
template <typename tIntegerType>
bool All(tIntegerType a) {
return a;
}
// Returns true if any of the input scalars are nonzero.
// This function may currently assume that each of the input scalars has either
// all or none of its bits set. Otherwise, its behavior is currently undefined.
template <typename tIntegerType>
bool Any(tIntegerType a) {
return a;
}
// Returns (a+b)/2, rounded to the nearest integer.
// Equivalent to VRHADD in the ARM NEON instruction set.
template <typename IntegerType>
IntegerType RoundingHalfSum(IntegerType a, IntegerType b) {
static_assert(std::is_same<IntegerType, void>::value, "unimplemented");
(void)b;
return a;
}
template <>
inline std::int32_t RoundingHalfSum(std::int32_t a, std::int32_t b) {
std::int64_t a64 = a;
std::int64_t b64 = b;
std::int64_t sum = a64 + b64;
std::int64_t sign = sum >= 0 ? 1 : -1;
return static_cast<std::int32_t>((sum + sign) / 2);
}
template <>
inline std::int16_t RoundingHalfSum(std::int16_t a, std::int16_t b) {
std::int32_t a32 = a;
std::int32_t b32 = b;
std::int32_t sum = a32 + b32;
std::int32_t sign = sum >= 0 ? 1 : -1;
return static_cast<std::int16_t>((sum + sign) / 2);
}
template <typename IntegerType>
IntegerType SaturatingAdd(IntegerType a, IntegerType b) {
static_assert(std::is_same<IntegerType, void>::value, "unimplemented");
(void)b;
return a;
}
// So far this is only needed for int16.
template <>
inline std::int16_t SaturatingAdd(std::int16_t a, std::int16_t b) {
std::int32_t a32 = a;
std::int32_t b32 = b;
std::int32_t sum = a32 + b32;
return static_cast<std::int16_t>(
std::min(static_cast<std::int32_t>(32767),
std::max(static_cast<std::int32_t>(-32768), sum)));
}
template <>
inline std::int8_t SaturatingAdd(std::int8_t a, std::int8_t b) {
std::int16_t a16 = a;
std::int16_t b16 = b;
std::int16_t sum = a16 + b16;
return static_cast<std::int8_t>(std::min(
static_cast<int16_t>(std::numeric_limits<int8_t>::max()),
std::max(static_cast<int16_t>(std::numeric_limits<int8_t>::min()), sum)));
}
// Returns a+b, saturating if the integers are 16bit or narrower,
// otherwise just a plain addition.
template <typename IntegerType, bool Is16Bit>
struct AddSaturatingIf16BitImpl {
static IntegerType Run(IntegerType a, IntegerType b) { return Add(a, b); }
};
template <typename IntegerType>
struct AddSaturatingIf16BitImpl<IntegerType, true> {
static IntegerType Run(IntegerType a, IntegerType b) {
return SaturatingAdd(a, b);
}
};
template <typename IntegerType>
IntegerType AddSaturatingIf16Bit(IntegerType a, IntegerType b) {
using ScalarType =
typename FixedPointRawTypeTraits<IntegerType>::ScalarRawType;
return AddSaturatingIf16BitImpl<IntegerType, sizeof(ScalarType) == 2>::Run(a,
b);
}
// Returns the integer that represents the product of two fixed-point
// numbers, interpreting all integers as fixed-point values in the
// interval [-1, 1), rounding to the nearest value, and saturating
// -1 * -1 to the maximum value (since 1 is not in the half-open
// interval [-1, 1)).
//
// [The explanation below specializes to std::int32_t for example purpose.]
//
// The mapping between IntegerType and the interval [-1, 1) is unique and
// implied by IntegerType, which is assumed to be signed. For example,
// for IntegerType==std::int32_t, the mapping is
// real_value = integer_value / 2^31.
// So in this case, and leaving aside rounding and saturating, this
// function computes ((a / 2^31) * (b / 2^31)) * 2^31, which simplifies to
// (a * b) / 2^31.
//
// The 'doubling' part in the name of this function comes from the fact that
// this operation is very close to a "multiply-high" operation, keeping only
// the top half bits, except that that would be effectively computing
// (a * b) / 2^32,
// so here we are computing 2x that, since
// 1/2^31 = 2 * 1/2^32.
// The idea is to use all of the available 32 bits in the destination int32
// value.
//
// [End of the explanation specializing to int32.]
//
// This is equivalent to the VQRDMULH instruction in ARM NEON.
template <typename IntegerType>
IntegerType SaturatingRoundingDoublingHighMul(IntegerType a, IntegerType b) {
static_assert(std::is_same<IntegerType, void>::value, "unimplemented");
(void)b;
return a;
}
// This function implements the same computation as the ARMv7 NEON VQRDMULH
// instruction.
template <>
inline std::int32_t SaturatingRoundingDoublingHighMul(std::int32_t a,
std::int32_t b) {
bool overflow = a == b && a == std::numeric_limits<std::int32_t>::min();
std::int64_t a_64(a);
std::int64_t b_64(b);
std::int64_t ab_64 = a_64 * b_64;
std::int32_t nudge = ab_64 >= 0 ? (1 << 30) : (1 - (1 << 30));
std::int32_t ab_x2_high32 =
static_cast<std::int32_t>((ab_64 + nudge) / (1ll << 31));
return overflow ? std::numeric_limits<std::int32_t>::max() : ab_x2_high32;
}
template <>
inline std::int16_t SaturatingRoundingDoublingHighMul(std::int16_t a,
std::int16_t b) {
bool overflow = a == b && a == std::numeric_limits<std::int16_t>::min();
std::int32_t a_32(a);
std::int32_t b_32(b);
std::int32_t ab_32 = a_32 * b_32;
std::int16_t nudge = ab_32 >= 0 ? (1 << 14) : (1 - (1 << 14));
std::int16_t ab_x2_high16 =
static_cast<std::int16_t>((ab_32 + nudge) / (1 << 15));
return overflow ? std::numeric_limits<std::int16_t>::max() : ab_x2_high16;
}
// Correctly-rounded-to-nearest division by a power-of-two.
// Also known as a rounding arithmetic right shift.
template <typename IntegerType, typename ExponentType>
inline IntegerType RoundingDivideByPOT(IntegerType x, ExponentType exponent) {
assert(exponent >= 0);
assert(exponent <= 31);
const IntegerType mask = Dup<IntegerType>((1ll << exponent) - 1);
const IntegerType zero = Dup<IntegerType>(0);
const IntegerType one = Dup<IntegerType>(1);
const IntegerType remainder = BitAnd(x, mask);
const IntegerType threshold =
Add(ShiftRight(mask, 1), BitAnd(MaskIfLessThan(x, zero), one));
return Add(ShiftRight(x, exponent),
BitAnd(MaskIfGreaterThan(remainder, threshold), one));
}
// Returns the product of a run-time integer value by a compile-time power
// of two, with either a positive exponent (equivalent to an arithmetic
// left shift, saturating) or a negative exponent (equivalent to an arithmetic
// right shift, rounding to nearest).
template <int Exponent, typename IntegerType,
int ExponentSign = (Exponent > 0 ? 1 : Exponent < 0 ? -1 : 0)>
struct ImplSaturatingRoundingMultiplyByPOT {};
template <int Exponent, typename IntegerType>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType, 0> {
static IntegerType eval(IntegerType x) { return x; }
};
template <int Exponent, typename IntegerType>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType, 1> {
static IntegerType eval(IntegerType x) {
using ScalarIntegerType =
typename FixedPointRawTypeTraits<IntegerType>::ScalarRawType;
const IntegerType min =
Dup<IntegerType>(std::numeric_limits<ScalarIntegerType>::min());
const IntegerType max =
Dup<IntegerType>(std::numeric_limits<ScalarIntegerType>::max());
const int ScalarIntegerTypeBits = 8 * sizeof(ScalarIntegerType);
const std::int32_t threshold =
((1 << (ScalarIntegerTypeBits - 1 - Exponent)) - 1);
const IntegerType positive_mask =
MaskIfGreaterThan(x, Dup<IntegerType>(threshold));
const IntegerType negative_mask =
MaskIfLessThan(x, Dup<IntegerType>(-threshold));
IntegerType result = ShiftLeft(x, Exponent);
result = SelectUsingMask(positive_mask, max, result);
result = SelectUsingMask(negative_mask, min, result);
return result;
}
};
template <int Exponent, typename IntegerType>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType, -1> {
static IntegerType eval(IntegerType x) {
return RoundingDivideByPOT<IntegerType>(x, -Exponent);
}
};
template <int Exponent, typename IntegerType>
IntegerType SaturatingRoundingMultiplyByPOT(IntegerType x) {
return ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType>::eval(x);
}
// Part 2: the FixedPoint class.
// A FixedPoint object represents a fixed-point value stored in the underlying
// integer type tRawType, if tRawType is a plain scalar integer type.
// Alternatively, tRawType may be a SIMD type (e.g. NEON int32x4_t) in which
// case a FixedPoint object represents a corresponding SIMD vector of fixed
// point values.
//
// tIntegerBits describes the range of the fixed-point format: if
// tIntegerBits == m then the range of representable values is the half-open
// interval [-2^m; 2^m) where the open boundary on the right side means that
// 2^m is not representable (how close the maximum representable value is to
// it, depends on bit-depth of tRawType).
//
// In "Q format notation",
// https://en.wikipedia.org/wiki/Q_(number_format)
// we are describing the format
// Qm.n
// where
// m = tIntegerBits
// and
// n = NumberOfBits(tRawType) - (m + 1)
// Note that the (m + 1) in the above line is because we adopt the convention
// that we count the integer bits exclusively of the sign bit; so (m + 1) is
// the total number of integer bits inclusive of the sign bit.
//
// Accordingly, the number of integral representable values in our range
// [-2^m ; 2^m)
// is equal to 2^(m+1).
template <typename tRawType, int tIntegerBits>
class FixedPoint {
public:
typedef tRawType RawType;
typedef FixedPointRawTypeTraits<RawType> RawTypeTraits;
typedef typename RawTypeTraits::ScalarRawType ScalarRawType;
static constexpr int kTotalBits = 8 * sizeof(ScalarRawType);
static constexpr int kIntegerBits = tIntegerBits;
static constexpr int kFractionalBits = kTotalBits - 1 - kIntegerBits;
static_assert(kIntegerBits >= 0 && kIntegerBits < kTotalBits,
"bad IntegerBits");
typedef FixedPoint<ScalarRawType, kIntegerBits> ScalarFixedPointType;
static const ScalarRawType ScalarRawMin() {
return std::numeric_limits<ScalarRawType>::min();
}
static const ScalarRawType ScalarRawMax() {
return std::numeric_limits<ScalarRawType>::max();
}
static const ScalarRawType RawMin() {
return VectorFromScalar(ScalarRawMin());
}
static const ScalarRawType RawMax() {
return VectorFromScalar(ScalarRawMax());
}
static FixedPoint FromRaw(RawType x) {
FixedPoint retval;
retval.raw() = x;
return retval;
}
static FixedPoint FromScalarRaw(ScalarRawType x) {
FixedPoint retval;
retval.raw() = Dup<RawType>(x);
return retval;
}
static FixedPoint FromScalarFixedPoint(ScalarFixedPointType x) {
return FromScalarRaw(x.raw());
}
template <int Exponent>
static FixedPoint ConstantPOT() {
static constexpr int kOffset = kFractionalBits + Exponent;
static_assert(
kOffset < 31,
"Constant not exactly representable in this fixed-point format");
return FromScalarRaw(ScalarRawType(1) << kOffset);
}
static FixedPoint Zero() { return FromScalarRaw(0); }
static FixedPoint One() {
return FromScalarRaw(
kIntegerBits == 0
? ScalarRawMax()
: (ScalarRawType(1) << (kIntegerBits == 0 ? 0 : kFractionalBits)));
}
static FixedPoint FromDouble(double x) {
const double min_bound = static_cast<double>(ScalarRawMin());
const double max_bound = static_cast<double>(ScalarRawMax());
return FromScalarRaw(static_cast<ScalarRawType>(std::min(
std::max(round(x * static_cast<double>(1ll << kFractionalBits)),
min_bound),
max_bound)));
}
RawType raw() const { return i_; }
RawType& raw() { return i_; }
private:
RawType i_;
};
// Part 3: implementation of arithmetic operators for the
// FixedPoint class, and a few related functions.
// A FixedPoint multiplication is just a
// SaturatingRoundingDoublingHighMul operation on the underlying
// raw integer values. The IntegerBits simply add up, as is obvious
// from the fact that the range is [-2^IntegerBits, 2^IntegerBits).
template <typename tRawType, int tIntegerBits_a, int tIntegerBits_b>
FixedPoint<tRawType, tIntegerBits_a + tIntegerBits_b> operator*(
FixedPoint<tRawType, tIntegerBits_a> a,
FixedPoint<tRawType, tIntegerBits_b> b) {
FixedPoint<tRawType, tIntegerBits_a + tIntegerBits_b> c;
c.raw() = SaturatingRoundingDoublingHighMul(a.raw(), b.raw());
return c;
}
// Tweaking IntegerBits gives exact multiplication by a power of two.
template <int tExponent, typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tExponent + tIntegerBits> ExactMulByPot(
FixedPoint<tRawType, tIntegerBits> a) {
FixedPoint<tRawType, tExponent + tIntegerBits> c;
c.raw() = a.raw();
return c;
}
// If we want to leave IntegerBits fixed, then multiplication
// by a power of two has to be saturating/rounding, not exact anymore.
template <int tExponent, typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tIntegerBits> SaturatingRoundingMultiplyByPOT(
FixedPoint<tRawType, tIntegerBits> a) {
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
SaturatingRoundingMultiplyByPOT<tExponent>(a.raw()));
}
// Generic arithmetic operators.
#define MAKE_FIXEDPOINT_UNARY_FUNC(FuncName, ImplFuncName) \
template <typename tRawType, int tIntegerBits> \
FixedPoint<tRawType, tIntegerBits> FuncName( \
FixedPoint<tRawType, tIntegerBits> a) { \
return FixedPoint<tRawType, tIntegerBits>::FromRaw(ImplFuncName(a.raw())); \
}
#define MAKE_FIXEDPOINT_BINARY_FUNC(FuncName, ImplFuncName) \
template <typename tRawType, int tIntegerBits> \
FixedPoint<tRawType, tIntegerBits> FuncName( \
FixedPoint<tRawType, tIntegerBits> a, \
FixedPoint<tRawType, tIntegerBits> b) { \
return FixedPoint<tRawType, tIntegerBits>::FromRaw( \
ImplFuncName(a.raw(), b.raw())); \
}
MAKE_FIXEDPOINT_UNARY_FUNC(operator-, Neg)
MAKE_FIXEDPOINT_UNARY_FUNC(operator~, BitNot)
MAKE_FIXEDPOINT_BINARY_FUNC(operator+, Add)
MAKE_FIXEDPOINT_BINARY_FUNC(operator-, Sub)
MAKE_FIXEDPOINT_BINARY_FUNC(operator&, BitAnd)
MAKE_FIXEDPOINT_BINARY_FUNC(operator^, BitXor)
MAKE_FIXEDPOINT_BINARY_FUNC(operator|, BitOr)
MAKE_FIXEDPOINT_BINARY_FUNC(RoundingHalfSum, RoundingHalfSum)
#undef MAKE_FIXEDPOINT_UNARY_FUNC
#undef MAKE_FIXEDPOINT_BINARY_FUNC
#define MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(FuncName) \
template <typename tRawType, int tIntegerBits> \
tRawType FuncName(FixedPoint<tRawType, tIntegerBits> a) { \
return FuncName(a.raw()); \
}
#define MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(FuncName) \
template <typename tRawType, int tIntegerBits> \
tRawType FuncName(FixedPoint<tRawType, tIntegerBits> a, \
FixedPoint<tRawType, tIntegerBits> b) { \
return FuncName(a.raw(), b.raw()); \
}
MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(MaskIfZero)
MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(MaskIfNonZero)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfEqual)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfNotEqual)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfGreaterThan)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfGreaterThanOrEqual)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfLessThan)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfLessThanOrEqual)
#undef MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW
#undef MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tIntegerBits> SelectUsingMask(
tRawType if_mask, FixedPoint<tRawType, tIntegerBits> then_val,
FixedPoint<tRawType, tIntegerBits> else_val) {
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
SelectUsingMask(if_mask, then_val.raw(), else_val.raw()));
}
template <typename tRawType, int tIntegerBits>
bool operator==(FixedPoint<tRawType, tIntegerBits> a,
FixedPoint<tRawType, tIntegerBits> b) {
return All(MaskIfEqual(a.raw(), b.raw()));
}
template <typename tRawType, int tIntegerBits>
bool operator!=(FixedPoint<tRawType, tIntegerBits> a,
FixedPoint<tRawType, tIntegerBits> b) {
return !(a == b);
}
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tIntegerBits> SaturatingAdd(
FixedPoint<tRawType, tIntegerBits> a,
FixedPoint<tRawType, tIntegerBits> b) {
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
SaturatingAdd(a.raw(), b.raw()));
}
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tIntegerBits> AddSaturatingIf16Bit(
FixedPoint<tRawType, tIntegerBits> a,
FixedPoint<tRawType, tIntegerBits> b) {
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
AddSaturatingIf16Bit(a.raw(), b.raw()));
}
// Conversion to floating-point.
template <typename tRawType, int tIntegerBits>
double ToDouble(FixedPoint<tRawType, tIntegerBits> x) {
static_assert(FixedPointRawTypeTraits<tRawType>::kLanes == 1,
"not applicable to SIMD types");
typedef FixedPoint<tRawType, tIntegerBits> F;
return x.raw() / static_cast<double>(1ll << F::kFractionalBits);
}
// Rescale changes the number of IntegerBits and updates the underlying
// raw integer value accordingly.
template <int tIntegerBitsDst, typename tRawType, int tIntegerBitsSrc>
FixedPoint<tRawType, tIntegerBitsDst> Rescale(
FixedPoint<tRawType, tIntegerBitsSrc> x) {
static constexpr int kExponent = tIntegerBitsSrc - tIntegerBitsDst;
FixedPoint<tRawType, tIntegerBitsDst> result;
result.raw() = SaturatingRoundingMultiplyByPOT<kExponent>(x.raw());
return result;
}
// CheckedFixedPointConstant allows to specify fixed-point constants
// initialized as real numbers, in a way that does not compile floating-point
// arithmetic in production code, yet still checks agreement with the
// floating-point expressions when asserts are enabled.
//
// The raw integer value provided is always a int32, encoding a 32-bit
// fixed-point value, regardless of the actual Scalar type. This allows
// writing generic code that applies just as well to the 32-bit and 16-bit
// cases. In the 16-bit case, the raw integer value is internally
// rounding-shifted by 16 bits to the right.
template <typename FixedPointType>
inline typename FixedPointType::ScalarRawType RescaleConstantInitializer(
std::int32_t int32_value) {
typedef typename FixedPointType::ScalarRawType ScalarRawType;
static constexpr int ScalarTypeBits = 8 * sizeof(ScalarRawType);
return static_cast<ScalarRawType>(
RoundingDivideByPOT<std::int32_t>(int32_value, 32 - ScalarTypeBits));
}
#ifdef GEMMLOWP_ENABLE_FIXEDPOINT_CONSTANTS_CHECKS
template <typename FixedPointType>
FixedPointType CheckedFixedPointConstant(std::int32_t raw_value,
double double_value) {
const FixedPointType result = FixedPointType::FromScalarRaw(raw_value);
assert(result == FixedPointType::FromDouble(double_value));
return result;
}
#define GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(FixedPointType, \
ScalarRawInt32Value, DoubleValue) \
(gemmlowp::CheckedFixedPointConstant<FixedPointType>( \
gemmlowp::RescaleConstantInitializer<FixedPointType>( \
ScalarRawInt32Value), \
DoubleValue))
#else
#define GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(FixedPointType, \
ScalarRawInt32Value, DoubleValue) \
(FixedPointType::FromScalarRaw( \
gemmlowp::RescaleConstantInitializer<FixedPointType>( \
ScalarRawInt32Value)))
#endif
// Implementation of exponential function.
// Returns exp(x) for x in [-1/4, 0).
template <typename tRawType>
FixedPoint<tRawType, 0> exp_on_interval_between_negative_one_quarter_and_0_excl(
FixedPoint<tRawType, 0> a) {
typedef FixedPoint<tRawType, 0> F;
const F constant_term =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F, 1895147668, std::exp(-1.0 / 8.0));
const F constant_1_over_3 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F, 715827883, 1.0 / 3.0);
// We're evaluating a Taylor expansion around -1/8, so we do the change of
// variable: x = a + 1/8.
// In fixed-point with 0 integer bits, 1/8 is represented by 1 << 28.
F x = a + F::template ConstantPOT<-3>();
F x2 = x * x;
F x3 = x2 * x;
F x4 = x2 * x2;
F x4_over_4 = SaturatingRoundingMultiplyByPOT<-2>(x4);
F x4_over_24_plus_x3_over_6_plus_x2_over_2 =
SaturatingRoundingMultiplyByPOT<-1>(
((x4_over_4 + x3) * constant_1_over_3) + x2);
return AddSaturatingIf16Bit(
constant_term,
constant_term * (x + x4_over_24_plus_x3_over_6_plus_x2_over_2));
}
// Returns exp(x) for x < 0.
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, 0> exp_on_negative_values(
FixedPoint<tRawType, tIntegerBits> a) {
typedef FixedPoint<tRawType, tIntegerBits> InputF;
typedef FixedPoint<tRawType, 0> ResultF;
static constexpr int kFractionalBits = InputF::kFractionalBits;
static constexpr int kIntegerBits = InputF::kIntegerBits;
const InputF kOneQuarter = InputF::template ConstantPOT<-2>();
InputF mask = kOneQuarter - InputF::FromScalarRaw(1);
InputF a_mod_quarter_minus_one_quarter = (a & mask) - kOneQuarter;
ResultF result = exp_on_interval_between_negative_one_quarter_and_0_excl(
Rescale<0>(a_mod_quarter_minus_one_quarter));
tRawType remainder = (a_mod_quarter_minus_one_quarter - a).raw();
#define GEMMLOWP_EXP_BARREL_SHIFTER(Exponent, FixedPointMultiplier) \
if (kIntegerBits > Exponent) { \
const ResultF kMultiplier = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT( \
ResultF, FixedPointMultiplier, std::exp(-std::pow(2.0, Exponent))); \
static constexpr int kShiftAmount = \
kIntegerBits > Exponent ? kFractionalBits + Exponent : 0; \
result = SelectUsingMask( \
MaskIfNonZero(BitAnd(remainder, Dup<tRawType>(1 << kShiftAmount))), \
result * kMultiplier, result); \
}
// Constants below are Q0 representations of negative exp fractionals:
GEMMLOWP_EXP_BARREL_SHIFTER(-2, 1672461947); // exp(-1/4)
GEMMLOWP_EXP_BARREL_SHIFTER(-1, 1302514674); // exp(-1/2)
GEMMLOWP_EXP_BARREL_SHIFTER(+0, 790015084); // exp(-1)
GEMMLOWP_EXP_BARREL_SHIFTER(+1, 290630308); // exp(-2)
GEMMLOWP_EXP_BARREL_SHIFTER(+2, 39332535); // exp(-4)
GEMMLOWP_EXP_BARREL_SHIFTER(+3, 720401); // exp(-8)
GEMMLOWP_EXP_BARREL_SHIFTER(+4, 242); // exp(-16)
#undef GEMMLOWP_EXP_BARREL_SHIFTER
static constexpr int clampB = kIntegerBits > 5 ? 36 - kIntegerBits : 0;
if (kIntegerBits > 5) {
const InputF clamp =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(InputF, -(1 << clampB), -32.0);
result = SelectUsingMask(MaskIfLessThan(a, clamp), ResultF::Zero(), result);
}
result = SelectUsingMask(MaskIfZero(a), ResultF::One(), result);
return result;
}
// Implementation of tanh: (1 - exp(-2x)) / (1 + exp(-2x)).
// Returns (1 - x) / (1 + x) for x in (0, 1).
template <typename tRawType>
FixedPoint<tRawType, 0> one_minus_x_over_one_plus_x_for_x_in_0_1(
FixedPoint<tRawType, 0> a) {
typedef FixedPoint<tRawType, 0> F0;
typedef FixedPoint<tRawType, 2> F2;
F0 half_denominator = RoundingHalfSum(a, F0::One());
// Newton-Raphson division
// https://en.wikipedia.org/wiki/Division_algorithm#Newton.E2.80.93Raphson_division
// Refer to that page for the logic behind the 48/17 and 32/17 constants.
const F2 constant_48_over_17 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, 1515870810, 48.0 / 17.0);
const F2 constant_neg_32_over_17 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, -1010580540, -32.0 / 17.0);
F2 x = constant_48_over_17 + half_denominator * constant_neg_32_over_17;
for (int i = 0; i < 3; i++) {
F2 half_denominator_times_x = half_denominator * x;
F2 one_minus_half_denominator_times_x =
F2::One() - half_denominator_times_x;
x = x + Rescale<2>(x * one_minus_half_denominator_times_x);
}
return Rescale<0>(x - F2::One());
}
// Returns -tanh(x) for x < 0.
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, 0> neg_tanh_on_negative_values(
FixedPoint<tRawType, tIntegerBits> a) {
return one_minus_x_over_one_plus_x_for_x_in_0_1(
exp_on_negative_values(ExactMulByPot<1>(a)));
}
// Returns tanh(x) for any x.
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, 0> tanh(FixedPoint<tRawType, tIntegerBits> a) {
typedef FixedPoint<tRawType, tIntegerBits> InputF;
typedef FixedPoint<tRawType, 0> ResultF;
tRawType mask_if_negative = MaskIfLessThan(a, InputF::Zero());
tRawType mask_if_zero = MaskIfZero(a);
InputF n = SelectUsingMask(mask_if_negative, a, -a);
ResultF t = neg_tanh_on_negative_values(n);
return SelectUsingMask(mask_if_zero, ResultF::Zero(),
SelectUsingMask(mask_if_negative, -t, t));
}
// Implementation of logistic function.
// Returns 1 / (1 + x) for x in (0, 1).
template <typename tRawType>
FixedPoint<tRawType, 0> one_over_one_plus_x_for_x_in_0_1(
FixedPoint<tRawType, 0> a) {
typedef FixedPoint<tRawType, 0> F0;
typedef FixedPoint<tRawType, 2> F2;
F0 half_denominator = RoundingHalfSum(a, F0::One());
// Newton-Raphson division
// https://en.wikipedia.org/wiki/Division_algorithm#Newton.E2.80.93Raphson_division
// Refer to that page for the logic behind the 48/17 and 32/17 constants.
const F2 constant_48_over_17 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, 1515870810, 48.0 / 17.0);
const F2 constant_neg_32_over_17 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, -1010580540, -32.0 / 17.0);
F2 x = constant_48_over_17 + half_denominator * constant_neg_32_over_17;
for (int i = 0; i < 3; i++) {
F2 half_denominator_times_x = half_denominator * x;
F2 one_minus_half_denominator_times_x =
F2::One() - half_denominator_times_x;
x = x + Rescale<2>(x * one_minus_half_denominator_times_x);
}
return Rescale<0>(ExactMulByPot<-1>(x));
}
// Returns logistic(x) = 1 / (1 + exp(-x)) for x > 0.
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, 0> logistic_on_positive_values(
FixedPoint<tRawType, tIntegerBits> a) {
return one_over_one_plus_x_for_x_in_0_1(exp_on_negative_values(-a));
}
// Returns logistic(x) = 1 / (1 + exp(-x)) for any x.
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, 0> logistic(FixedPoint<tRawType, tIntegerBits> a) {
typedef FixedPoint<tRawType, tIntegerBits> InputF;
typedef FixedPoint<tRawType, 0> ResultF;
tRawType mask_if_positive = MaskIfGreaterThan(a, InputF::Zero());
tRawType mask_if_zero = MaskIfZero(a);
InputF abs_input = SelectUsingMask(mask_if_positive, a, -a);
ResultF result_if_positive = logistic_on_positive_values(abs_input);
ResultF result_if_negative = ResultF::One() - result_if_positive;
const ResultF one_half =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(ResultF, 1 << 30, 0.5);
return SelectUsingMask(mask_if_zero, one_half,
SelectUsingMask(mask_if_positive, result_if_positive,
result_if_negative));
}
} // end namespace gemmlowp
#ifdef GEMMLOWP_NEON
#include "./fixedpoint_neon.h"
#elif defined(GEMMLOWP_AVX2)
#include "./fixedpoint_avx.h"
#elif defined(GEMMLOWP_SSE4)
#include "./fixedpoint_sse.h"
#elif defined(GEMMLOWP_MSA)
#include "./fixedpoint_msa.h"
#elif defined(GEMMLOWP_WASMSIMD)
#include "./fixedpoint_wasmsimd.h"
#endif
#endif // GEMMLOWP_INTERNAL_FIXEDPOINT_H_