aosp12/external/igt-gpu-tools/lib/ioctl_wrappers.c

1493 lines
35 KiB
C

/*
* Copyright © 2007, 2011, 2013, 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Daniel Vetter <daniel.vetter@ffwll.ch>
*
*/
#ifdef HAVE_LIBGEN_H
#include <libgen.h>
#endif
#include <stdio.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <string.h>
#include <sys/mman.h>
#include <signal.h>
#include <pciaccess.h>
#include <getopt.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <sys/syscall.h>
#include <sys/utsname.h>
#include <termios.h>
#include <errno.h>
#include "drmtest.h"
#include "i915_drm.h"
#include "intel_batchbuffer.h"
#include "intel_chipset.h"
#include "intel_io.h"
#include "igt_debugfs.h"
#include "igt_sysfs.h"
#include "config.h"
#ifdef HAVE_VALGRIND
#include <valgrind/valgrind.h>
#include <valgrind/memcheck.h>
#define VG(x) x
#else
#define VG(x) do {} while (0)
#endif
#include "ioctl_wrappers.h"
/**
* SECTION:ioctl_wrappers
* @short_description: ioctl wrappers and related functions
* @title: ioctl wrappers
* @include: igt.h
*
* This helper library contains simple functions to wrap the raw drm/i915 kernel
* ioctls. The normal versions never pass any error codes to the caller and use
* igt_assert() to check for error conditions instead. For some ioctls raw
* wrappers which do pass on error codes are available. These raw wrappers have
* a __ prefix.
*
* For wrappers which check for feature bits there can also be two versions: The
* normal one simply returns a boolean to the caller. But when skipping the
* testcase entirely is the right action then it's better to use igt_skip()
* directly in the wrapper. Such functions have _require_ in their name to
* distinguish them.
*/
int (*igt_ioctl)(int fd, unsigned long request, void *arg) = drmIoctl;
/**
* gem_handle_to_libdrm_bo:
* @bufmgr: libdrm buffer manager instance
* @fd: open i915 drm file descriptor
* @name: buffer name in libdrm
* @handle: gem buffer object handle
*
* This helper function imports a raw gem buffer handle into the libdrm buffer
* manager.
*
* Returns: The imported libdrm buffer manager object.
*/
drm_intel_bo *
gem_handle_to_libdrm_bo(drm_intel_bufmgr *bufmgr, int fd, const char *name, uint32_t handle)
{
struct drm_gem_flink flink;
int ret;
drm_intel_bo *bo;
memset(&flink, 0, sizeof(handle));
flink.handle = handle;
ret = ioctl(fd, DRM_IOCTL_GEM_FLINK, &flink);
igt_assert(ret == 0);
errno = 0;
bo = drm_intel_bo_gem_create_from_name(bufmgr, name, flink.name);
igt_assert(bo);
return bo;
}
static int
__gem_get_tiling(int fd, struct drm_i915_gem_get_tiling *arg)
{
int err;
err = 0;
if (igt_ioctl(fd, DRM_IOCTL_I915_GEM_GET_TILING, arg))
err = -errno;
errno = 0;
return err;
}
/**
* gem_get_tiling:
* @fd: open i915 drm file descriptor
* @handle: gem buffer object handle
* @tiling: (out) tiling mode of the gem buffer
* @swizzle: (out) bit 6 swizzle mode
*
* This wraps the GET_TILING ioctl.
*
* Returns whether the actual physical tiling matches the reported tiling.
*/
bool
gem_get_tiling(int fd, uint32_t handle, uint32_t *tiling, uint32_t *swizzle)
{
struct drm_i915_gem_get_tiling get_tiling;
memset(&get_tiling, 0, sizeof(get_tiling));
get_tiling.handle = handle;
igt_assert_eq(__gem_get_tiling(fd, &get_tiling), 0);
*tiling = get_tiling.tiling_mode;
*swizzle = get_tiling.swizzle_mode;
return get_tiling.phys_swizzle_mode == get_tiling.swizzle_mode;
}
int __gem_set_tiling(int fd, uint32_t handle, uint32_t tiling, uint32_t stride)
{
struct drm_i915_gem_set_tiling st;
int ret;
/* The kernel doesn't know about these tiling modes, expects NONE */
if (tiling == I915_TILING_Yf || tiling == I915_TILING_Ys)
tiling = I915_TILING_NONE;
memset(&st, 0, sizeof(st));
do {
st.handle = handle;
st.tiling_mode = tiling;
st.stride = tiling ? stride : 0;
ret = ioctl(fd, DRM_IOCTL_I915_GEM_SET_TILING, &st);
} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
if (ret != 0)
return -errno;
errno = 0;
igt_assert(st.tiling_mode == tiling);
return 0;
}
/**
* gem_set_tiling:
* @fd: open i915 drm file descriptor
* @handle: gem buffer object handle
* @tiling: tiling mode bits
* @stride: stride of the buffer when using a tiled mode, otherwise must be 0
*
* This wraps the SET_TILING ioctl.
*/
void gem_set_tiling(int fd, uint32_t handle, uint32_t tiling, uint32_t stride)
{
igt_assert(__gem_set_tiling(fd, handle, tiling, stride) == 0);
}
int __gem_set_caching(int fd, uint32_t handle, uint32_t caching)
{
struct drm_i915_gem_caching arg;
int err;
memset(&arg, 0, sizeof(arg));
arg.handle = handle;
arg.caching = caching;
err = 0;
if (igt_ioctl(fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg))
err = -errno;
errno = 0;
return err;
}
/**
* gem_set_caching:
* @fd: open i915 drm file descriptor
* @handle: gem buffer object handle
* @caching: caching mode bits
*
* This wraps the SET_CACHING ioctl. Note that this function internally calls
* igt_require() when SET_CACHING isn't available, hence automatically skips the
* test. Therefore always extract test logic which uses this into its own
* subtest.
*/
void gem_set_caching(int fd, uint32_t handle, uint32_t caching)
{
igt_require(__gem_set_caching(fd, handle, caching) == 0);
}
/**
* gem_get_caching:
* @fd: open i915 drm file descriptor
* @handle: gem buffer object handle
*
* This wraps the GET_CACHING ioctl.
*
* Returns: The current caching mode bits.
*/
uint32_t gem_get_caching(int fd, uint32_t handle)
{
struct drm_i915_gem_caching arg;
int ret;
memset(&arg, 0, sizeof(arg));
arg.handle = handle;
ret = ioctl(fd, DRM_IOCTL_I915_GEM_GET_CACHING, &arg);
igt_assert(ret == 0);
errno = 0;
return arg.caching;
}
/**
* gem_open:
* @fd: open i915 drm file descriptor
* @name: flink buffer name
*
* This wraps the GEM_OPEN ioctl, which is used to import an flink name.
*
* Returns: gem file-private buffer handle of the open object.
*/
uint32_t gem_open(int fd, uint32_t name)
{
struct drm_gem_open open_struct;
int ret;
memset(&open_struct, 0, sizeof(open_struct));
open_struct.name = name;
ret = ioctl(fd, DRM_IOCTL_GEM_OPEN, &open_struct);
igt_assert(ret == 0);
igt_assert(open_struct.handle != 0);
errno = 0;
return open_struct.handle;
}
/**
* gem_flink:
* @fd: open i915 drm file descriptor
* @handle: file-private gem buffer object handle
*
* This wraps the GEM_FLINK ioctl, which is used to export a gem buffer object
* into the device-global flink namespace. See gem_open() for opening such a
* buffer name on a different i915 drm file descriptor.
*
* Returns: The created flink buffer name.
*/
uint32_t gem_flink(int fd, uint32_t handle)
{
struct drm_gem_flink flink;
int ret;
memset(&flink, 0, sizeof(flink));
flink.handle = handle;
ret = ioctl(fd, DRM_IOCTL_GEM_FLINK, &flink);
igt_assert(ret == 0);
errno = 0;
return flink.name;
}
/**
* gem_close:
* @fd: open i915 drm file descriptor
* @handle: gem buffer object handle
*
* This wraps the GEM_CLOSE ioctl, which to release a file-private gem buffer
* handle.
*/
void gem_close(int fd, uint32_t handle)
{
struct drm_gem_close close_bo;
igt_assert_neq(handle, 0);
memset(&close_bo, 0, sizeof(close_bo));
close_bo.handle = handle;
do_ioctl(fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
}
int __gem_write(int fd, uint32_t handle, uint64_t offset, const void *buf, uint64_t length)
{
struct drm_i915_gem_pwrite gem_pwrite;
int err;
memset(&gem_pwrite, 0, sizeof(gem_pwrite));
gem_pwrite.handle = handle;
gem_pwrite.offset = offset;
gem_pwrite.size = length;
gem_pwrite.data_ptr = to_user_pointer(buf);
err = 0;
if (drmIoctl(fd, DRM_IOCTL_I915_GEM_PWRITE, &gem_pwrite))
err = -errno;
return err;
}
/**
* gem_write:
* @fd: open i915 drm file descriptor
* @handle: gem buffer object handle
* @offset: offset within the buffer of the subrange
* @buf: pointer to the data to write into the buffer
* @length: size of the subrange
*
* This wraps the PWRITE ioctl, which is to upload a linear data to a subrange
* of a gem buffer object.
*/
void gem_write(int fd, uint32_t handle, uint64_t offset, const void *buf, uint64_t length)
{
igt_assert_eq(__gem_write(fd, handle, offset, buf, length), 0);
}
static int __gem_read(int fd, uint32_t handle, uint64_t offset, void *buf, uint64_t length)
{
struct drm_i915_gem_pread gem_pread;
int err;
memset(&gem_pread, 0, sizeof(gem_pread));
gem_pread.handle = handle;
gem_pread.offset = offset;
gem_pread.size = length;
gem_pread.data_ptr = to_user_pointer(buf);
err = 0;
if (drmIoctl(fd, DRM_IOCTL_I915_GEM_PREAD, &gem_pread))
err = -errno;
return err;
}
/**
* gem_read:
* @fd: open i915 drm file descriptor
* @handle: gem buffer object handle
* @offset: offset within the buffer of the subrange
* @buf: pointer to the data to read into
* @length: size of the subrange
*
* This wraps the PREAD ioctl, which is to download a linear data to a subrange
* of a gem buffer object.
*/
void gem_read(int fd, uint32_t handle, uint64_t offset, void *buf, uint64_t length)
{
igt_assert_eq(__gem_read(fd, handle, offset, buf, length), 0);
}
int __gem_set_domain(int fd, uint32_t handle, uint32_t read, uint32_t write)
{
struct drm_i915_gem_set_domain set_domain;
int err;
memset(&set_domain, 0, sizeof(set_domain));
set_domain.handle = handle;
set_domain.read_domains = read;
set_domain.write_domain = write;
err = 0;
if (igt_ioctl(fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain))
err = -errno;
return err;
}
/**
* gem_set_domain:
* @fd: open i915 drm file descriptor
* @handle: gem buffer object handle
* @read: gem domain bits for read access
* @write: gem domain bit for write access
*
* This wraps the SET_DOMAIN ioctl, which is used to control the coherency of
* the gem buffer object between the cpu and gtt mappings. It is also use to
* synchronize with outstanding rendering in general, but for that use-case
* please have a look at gem_sync().
*/
void gem_set_domain(int fd, uint32_t handle, uint32_t read, uint32_t write)
{
igt_assert_eq(__gem_set_domain(fd, handle, read, write), 0);
}
/**
* __gem_wait:
* @fd: open i915 drm file descriptor
* @handle: gem buffer object handle
* @timeout_ns: [in] time to wait, [out] remaining time (in nanoseconds)
*
* This functions waits for outstanding rendering to complete, upto
* the timeout_ns. If no timeout_ns is provided, the wait is indefinite and
* only returns upon an error or when the rendering is complete.
*/
int gem_wait(int fd, uint32_t handle, int64_t *timeout_ns)
{
struct drm_i915_gem_wait wait;
int ret;
memset(&wait, 0, sizeof(wait));
wait.bo_handle = handle;
wait.timeout_ns = timeout_ns ? *timeout_ns : -1;
wait.flags = 0;
ret = 0;
if (igt_ioctl(fd, DRM_IOCTL_I915_GEM_WAIT, &wait))
ret = -errno;
if (timeout_ns)
*timeout_ns = wait.timeout_ns;
return ret;
}
/**
* gem_sync:
* @fd: open i915 drm file descriptor
* @handle: gem buffer object handle
*
* This functions waits for outstanding rendering to complete.
*/
void gem_sync(int fd, uint32_t handle)
{
if (gem_wait(fd, handle, NULL))
gem_set_domain(fd, handle,
I915_GEM_DOMAIN_GTT,
I915_GEM_DOMAIN_GTT);
errno = 0;
}
bool gem_create__has_stolen_support(int fd)
{
static int has_stolen_support = -1;
struct drm_i915_getparam gp;
int val = -1;
if (has_stolen_support < 0) {
memset(&gp, 0, sizeof(gp));
gp.param = 38; /* CREATE_VERSION */
gp.value = &val;
/* Do we have the extended gem_create_ioctl? */
ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
has_stolen_support = val >= 2;
}
return has_stolen_support;
}
struct local_i915_gem_create_v2 {
uint64_t size;
uint32_t handle;
uint32_t pad;
#define I915_CREATE_PLACEMENT_STOLEN (1<<0)
uint32_t flags;
};
#define LOCAL_IOCTL_I915_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct local_i915_gem_create_v2)
uint32_t __gem_create_stolen(int fd, uint64_t size)
{
struct local_i915_gem_create_v2 create;
int ret;
memset(&create, 0, sizeof(create));
create.handle = 0;
create.size = size;
create.flags = I915_CREATE_PLACEMENT_STOLEN;
ret = igt_ioctl(fd, LOCAL_IOCTL_I915_GEM_CREATE, &create);
if (ret < 0)
return 0;
errno = 0;
return create.handle;
}
/**
* gem_create_stolen:
* @fd: open i915 drm file descriptor
* @size: desired size of the buffer
*
* This wraps the new GEM_CREATE ioctl, which allocates a new gem buffer
* object of @size and placement in stolen memory region.
*
* Returns: The file-private handle of the created buffer object
*/
uint32_t gem_create_stolen(int fd, uint64_t size)
{
struct local_i915_gem_create_v2 create;
memset(&create, 0, sizeof(create));
create.handle = 0;
create.size = size;
create.flags = I915_CREATE_PLACEMENT_STOLEN;
do_ioctl(fd, LOCAL_IOCTL_I915_GEM_CREATE, &create);
igt_assert(create.handle);
return create.handle;
}
int __gem_create(int fd, uint64_t size, uint32_t *handle)
{
struct drm_i915_gem_create create = {
.size = size,
};
int err = 0;
if (igt_ioctl(fd, DRM_IOCTL_I915_GEM_CREATE, &create) == 0) {
*handle = create.handle;
} else {
err = -errno;
igt_assume(err != 0);
}
errno = 0;
return err;
}
/**
* gem_create:
* @fd: open i915 drm file descriptor
* @size: desired size of the buffer
*
* This wraps the GEM_CREATE ioctl, which allocates a new gem buffer object of
* @size.
*
* Returns: The file-private handle of the created buffer object
*/
uint32_t gem_create(int fd, uint64_t size)
{
uint32_t handle;
igt_assert_eq(__gem_create(fd, size, &handle), 0);
return handle;
}
/**
* __gem_execbuf:
* @fd: open i915 drm file descriptor
* @execbuf: execbuffer data structure
*
* This wraps the EXECBUFFER2 ioctl, which submits a batchbuffer for the gpu to
* run. This is allowed to fail, with -errno returned.
*/
int __gem_execbuf(int fd, struct drm_i915_gem_execbuffer2 *execbuf)
{
int err = 0;
if (igt_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, execbuf)) {
err = -errno;
igt_assume(err != 0);
}
errno = 0;
return err;
}
/**
* gem_execbuf:
* @fd: open i915 drm file descriptor
* @execbuf: execbuffer data structure
*
* This wraps the EXECBUFFER2 ioctl, which submits a batchbuffer for the gpu to
* run.
*/
void gem_execbuf(int fd, struct drm_i915_gem_execbuffer2 *execbuf)
{
igt_assert_eq(__gem_execbuf(fd, execbuf), 0);
}
/**
* __gem_execbuf_wr:
* @fd: open i915 drm file descriptor
* @execbuf: execbuffer data structure
*
* This wraps the EXECBUFFER2_WR ioctl, which submits a batchbuffer for the gpu to
* run. This is allowed to fail, with -errno returned.
*/
int __gem_execbuf_wr(int fd, struct drm_i915_gem_execbuffer2 *execbuf)
{
int err = 0;
if (igt_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2_WR, execbuf)) {
err = -errno;
igt_assume(err != 0);
}
errno = 0;
return err;
}
/**
* gem_execbuf_wr:
* @fd: open i915 drm file descriptor
* @execbuf: execbuffer data structure
*
* This wraps the EXECBUFFER2_WR ioctl, which submits a batchbuffer for the gpu to
* run.
*/
void gem_execbuf_wr(int fd, struct drm_i915_gem_execbuffer2 *execbuf)
{
igt_assert_eq(__gem_execbuf_wr(fd, execbuf), 0);
}
/**
* gem_madvise:
* @fd: open i915 drm file descriptor
* @handle: gem buffer object handle
* @state: desired madvise state
*
* This wraps the MADVISE ioctl, which is used in libdrm to implement
* opportunistic buffer object caching. Objects in the cache are set to DONTNEED
* (internally in the kernel tracked as purgeable objects). When such a cached
* object is in need again it must be set back to WILLNEED before first use.
*
* Returns: When setting the madvise state to WILLNEED this returns whether the
* backing storage was still available or not.
*/
int gem_madvise(int fd, uint32_t handle, int state)
{
struct drm_i915_gem_madvise madv;
memset(&madv, 0, sizeof(madv));
madv.handle = handle;
madv.madv = state;
madv.retained = 1;
do_ioctl(fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
return madv.retained;
}
int __gem_userptr(int fd, void *ptr, uint64_t size, int read_only, uint32_t flags, uint32_t *handle)
{
struct drm_i915_gem_userptr userptr;
memset(&userptr, 0, sizeof(userptr));
userptr.user_ptr = to_user_pointer(ptr);
userptr.user_size = size;
userptr.flags = flags;
if (read_only)
userptr.flags |= I915_USERPTR_READ_ONLY;
if (igt_ioctl(fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr))
return -errno;
*handle = userptr.handle;
return 0;
}
/**
* gem_userptr:
* @fd: open i915 drm file descriptor
* @ptr: userptr pointer to be passed
* @size: desired size of the buffer
* @read_only: specify whether userptr is opened read only
* @flags: other userptr flags
* @handle: returned handle for the object
*
* Returns userptr handle for the GEM object.
*/
void gem_userptr(int fd, void *ptr, uint64_t size, int read_only, uint32_t flags, uint32_t *handle)
{
igt_assert_eq(__gem_userptr(fd, ptr, size, read_only, flags, handle), 0);
}
/**
* gem_sw_finish:
* @fd: open i915 drm file descriptor
* @handle: gem buffer object handle
*
* This wraps the SW_FINISH ioctl, which is used to flush out frontbuffer
* rendering done through the direct cpu memory mappings. Shipping userspace
* does _not_ call this after frontbuffer rendering through gtt memory mappings.
*/
void gem_sw_finish(int fd, uint32_t handle)
{
struct drm_i915_gem_sw_finish finish;
memset(&finish, 0, sizeof(finish));
finish.handle = handle;
do_ioctl(fd, DRM_IOCTL_I915_GEM_SW_FINISH, &finish);
}
/**
* gem_bo_busy:
* @fd: open i915 drm file descriptor
* @handle: gem buffer object handle
*
* This wraps the BUSY ioctl, which tells whether a buffer object is still
* actively used by the gpu in a execbuffer.
*
* Returns: The busy state of the buffer object.
*/
bool gem_bo_busy(int fd, uint32_t handle)
{
struct drm_i915_gem_busy busy;
memset(&busy, 0, sizeof(busy));
busy.handle = handle;
do_ioctl(fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
return !!busy.busy;
}
/* feature test helpers */
/**
* gem_gtt_type:
* @fd: open i915 drm file descriptor
*
* Feature test macro to check what type of gtt is being used by the kernel:
* 0 - global gtt
* 1 - aliasing ppgtt
* 2 - full ppgtt
*
* Returns: Type of gtt being used.
*/
static int gem_gtt_type(int fd)
{
struct drm_i915_getparam gp;
int val = 0;
memset(&gp, 0, sizeof(gp));
gp.param = I915_PARAM_HAS_ALIASING_PPGTT;
gp.value = &val;
if (ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp)))
return 0;
errno = 0;
return val;
}
/**
* gem_uses_ppgtt:
* @fd: open i915 drm file descriptor
*
* Feature test macro to check whether the kernel internally uses ppgtt to
* execute batches. Note that this is also true when we're using full ppgtt.
*
* Returns: Whether batches are run through ppgtt.
*/
bool gem_uses_ppgtt(int fd)
{
return gem_gtt_type(fd) > 0;
}
/**
* gem_uses_full_ppgtt:
* @fd: open i915 drm file descriptor
*
* Feature test macro to check whether the kernel internally uses full
* per-process gtt to execute batches. Note that this is also true when we're
* using full 64b ppgtt.
*
* Returns: Whether batches are run through full ppgtt.
*/
bool gem_uses_full_ppgtt(int fd)
{
return gem_gtt_type(fd) > 1;
}
/**
* gem_gpu_reset_type:
* @fd: open i915 drm file descriptor
*
* Query whether reset-engine (2), global-reset (1) or reset-disable (0)
* is available.
*
* Returns: GPU reset type available
*/
int gem_gpu_reset_type(int fd)
{
struct drm_i915_getparam gp;
int gpu_reset_type = -1;
memset(&gp, 0, sizeof(gp));
gp.param = I915_PARAM_HAS_GPU_RESET;
gp.value = &gpu_reset_type;
drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
return gpu_reset_type;
}
/**
* gem_gpu_reset_enabled:
* @fd: open i915 drm file descriptor
*
* Feature test macro to check whether the kernel internally uses hangchecks
* and can reset the GPU upon hang detection. Note that this is also true when
* reset-engine (the lightweight, single engine reset) is available.
*
* Returns: Whether the driver will detect hangs and perform a reset.
*/
bool gem_gpu_reset_enabled(int fd)
{
return gem_gpu_reset_type(fd) > 0;
}
/**
* gem_engine_reset_enabled:
* @fd: open i915 drm file descriptor
*
* Feature test macro to check whether the kernel internally uses hangchecks
* and can reset individual engines upon hang detection.
*
* Returns: Whether the driver will detect hangs and perform an engine reset.
*/
bool gem_engine_reset_enabled(int fd)
{
return gem_gpu_reset_type(fd) > 1;
}
/**
* gem_available_fences:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query the kernel for the number of available fences
* usable in a batchbuffer. Only relevant for pre-gen4.
*
* Returns: The number of available fences.
*/
int gem_available_fences(int fd)
{
static int num_fences = -1;
if (num_fences < 0) {
struct drm_i915_getparam gp;
memset(&gp, 0, sizeof(gp));
gp.param = I915_PARAM_NUM_FENCES_AVAIL;
gp.value = &num_fences;
num_fences = 0;
ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp));
errno = 0;
}
return num_fences;
}
bool gem_has_llc(int fd)
{
static int has_llc = -1;
if (has_llc < 0) {
struct drm_i915_getparam gp;
memset(&gp, 0, sizeof(gp));
gp.param = I915_PARAM_HAS_LLC;
gp.value = &has_llc;
has_llc = 0;
ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp));
errno = 0;
}
return has_llc;
}
static bool has_param(int fd, int param)
{
drm_i915_getparam_t gp;
int tmp = 0;
memset(&gp, 0, sizeof(gp));
gp.value = &tmp;
gp.param = param;
if (igt_ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
return false;
errno = 0;
return tmp > 0;
}
/**
* gem_has_bsd:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query whether the BSD ring is available.
*
* Note that recent Bspec calls this the VCS ring for Video Command Submission.
*
* Returns: Whether the BSD ring is available or not.
*/
bool gem_has_bsd(int fd)
{
static int has_bsd = -1;
if (has_bsd < 0)
has_bsd = has_param(fd, I915_PARAM_HAS_BSD);
return has_bsd;
}
/**
* gem_has_blt:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query whether the blitter ring is available.
*
* Note that recent Bspec calls this the BCS ring for Blitter Command Submission.
*
* Returns: Whether the blitter ring is available or not.
*/
bool gem_has_blt(int fd)
{
static int has_blt = -1;
if (has_blt < 0)
has_blt = has_param(fd, I915_PARAM_HAS_BLT);
return has_blt;
}
/**
* gem_has_vebox:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query whether the vebox ring is available.
*
* Note that recent Bspec calls this the VECS ring for Video Enhancement Command
* Submission.
*
* Returns: Whether the vebox ring is available or not.
*/
bool gem_has_vebox(int fd)
{
static int has_vebox = -1;
if (has_vebox < 0)
has_vebox = has_param(fd, I915_PARAM_HAS_VEBOX);
return has_vebox;
}
#define I915_PARAM_HAS_BSD2 31
/**
* gem_has_bsd2:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query whether the BSD2 ring is available.
*
* Note that recent Bspec calls this the VCS ring for Video Command Submission.
*
* Returns: Whether the BSD ring is avaible or not.
*/
bool gem_has_bsd2(int fd)
{
static int has_bsd2 = -1;
if (has_bsd2 < 0)
has_bsd2 = has_param(fd, I915_PARAM_HAS_BSD2);
return has_bsd2;
}
struct local_i915_gem_get_aperture {
__u64 aper_size;
__u64 aper_available_size;
__u64 version;
__u64 map_total_size;
__u64 stolen_total_size;
};
#define DRM_I915_GEM_GET_APERTURE 0x23
#define LOCAL_IOCTL_I915_GEM_GET_APERTURE DRM_IOR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct local_i915_gem_get_aperture)
/**
* gem_total_mappable_size:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query the kernel for the total mappable size.
*
* Returns: Total mappable address space size.
*/
uint64_t gem_total_mappable_size(int fd)
{
struct local_i915_gem_get_aperture aperture;
memset(&aperture, 0, sizeof(aperture));
do_ioctl(fd, LOCAL_IOCTL_I915_GEM_GET_APERTURE, &aperture);
return aperture.map_total_size;
}
/**
* gem_total_stolen_size:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query the kernel for the total stolen size.
*
* Returns: Total stolen memory.
*/
uint64_t gem_total_stolen_size(int fd)
{
struct local_i915_gem_get_aperture aperture;
memset(&aperture, 0, sizeof(aperture));
do_ioctl(fd, LOCAL_IOCTL_I915_GEM_GET_APERTURE, &aperture);
return aperture.stolen_total_size;
}
/**
* gem_available_aperture_size:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query the kernel for the available gpu aperture size
* usable in a batchbuffer.
*
* Returns: The available gtt address space size.
*/
uint64_t gem_available_aperture_size(int fd)
{
struct drm_i915_gem_get_aperture aperture;
memset(&aperture, 0, sizeof(aperture));
aperture.aper_size = 256*1024*1024;
do_ioctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture);
return aperture.aper_available_size;
}
/**
* gem_aperture_size:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query the kernel for the total gpu aperture size.
*
* Returns: The total gtt address space size.
*/
uint64_t gem_aperture_size(int fd)
{
static uint64_t aperture_size = 0;
if (aperture_size == 0) {
struct drm_i915_gem_context_param p;
memset(&p, 0, sizeof(p));
p.param = 0x3;
if (__gem_context_get_param(fd, &p) == 0) {
aperture_size = p.value;
} else {
struct drm_i915_gem_get_aperture aperture;
memset(&aperture, 0, sizeof(aperture));
aperture.aper_size = 256*1024*1024;
do_ioctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture);
aperture_size = aperture.aper_size;
}
}
return aperture_size;
}
/**
* gem_mappable_aperture_size:
*
* Feature test macro to query the kernel for the mappable gpu aperture size.
* This is the area available for GTT memory mappings.
*
* Returns: The mappable gtt address space size.
*/
uint64_t gem_mappable_aperture_size(void)
{
#if defined(USE_INTEL)
struct pci_device *pci_dev = intel_get_pci_device();
int bar;
if (intel_gen(pci_dev->device_id) < 3)
bar = 0;
else
bar = 2;
return pci_dev->regions[bar].size;
#else
return 0;
#endif
}
/**
* gem_global_aperture_size:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query the kernel for the global gpu aperture size.
* This is the area available for the kernel to perform address translations.
*
* Returns: The mappable gtt address space size.
*/
uint64_t gem_global_aperture_size(int fd)
{
struct drm_i915_gem_get_aperture aperture;
memset(&aperture, 0, sizeof(aperture));
aperture.aper_size = 256*1024*1024;
do_ioctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture);
return aperture.aper_size;
}
/**
* gem_has_softpin:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query whether the softpinning functionality is
* supported.
*
* Returns: Whether softpin support is available
*/
bool gem_has_softpin(int fd)
{
static int has_softpin = -1;
if (has_softpin < 0) {
struct drm_i915_getparam gp;
memset(&gp, 0, sizeof(gp));
gp.param = I915_PARAM_HAS_EXEC_SOFTPIN;
gp.value = &has_softpin;
has_softpin = 0;
ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp));
errno = 0;
}
return has_softpin;
}
/**
* gem_has_exec_fence:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query whether in/out fence support in execbuffer is
* available.
*
* Returns: Whether fence support is available
*/
bool gem_has_exec_fence(int fd)
{
static int has_exec_fence = -1;
if (has_exec_fence < 0) {
struct drm_i915_getparam gp;
memset(&gp, 0, sizeof(gp));
gp.param = I915_PARAM_HAS_EXEC_FENCE;
gp.value = &has_exec_fence;
has_exec_fence = 0;
ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp));
errno = 0;
}
return has_exec_fence;
}
/**
* gem_require_caching:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query whether buffer object caching control is
* available. Automatically skips through igt_require() if not.
*/
void gem_require_caching(int fd)
{
uint32_t handle;
handle = gem_create(fd, 4096);
gem_set_caching(fd, handle, 0);
gem_close(fd, handle);
errno = 0;
}
static void reset_device(int fd)
{
int dir;
dir = igt_debugfs_dir(fd);
igt_require(dir >= 0);
if (ioctl(fd, DRM_IOCTL_I915_GEM_THROTTLE)) {
igt_info("Found wedged device, trying to reset and continue\n");
igt_sysfs_set(dir, "i915_wedged", "-1");
}
igt_sysfs_set(dir, "i915_next_seqno", "1");
close(dir);
}
void igt_require_gem(int fd)
{
char path[256];
int err;
igt_require_intel(fd);
/*
* We only want to use the throttle-ioctl for its -EIO reporting
* of a wedged device, not for actually waiting on outstanding
* requests! So create a new drm_file for the device that is clean.
*/
snprintf(path, sizeof(path), "/proc/self/fd/%d", fd);
fd = open(path, O_RDWR);
igt_assert_lte(0, fd);
/*
* Reset the global seqno at the start of each test. This ensures that
* the test will not wrap unless it explicitly sets up seqno wrapping
* itself, which avoids accidentally hanging when setting up long
* sequences of batches.
*/
reset_device(fd);
err = 0;
if (ioctl(fd, DRM_IOCTL_I915_GEM_THROTTLE))
err = -errno;
close(fd);
igt_require_f(err == 0, "Unresponsive i915/GEM device\n");
}
/**
* gem_require_ring:
* @fd: open i915 drm file descriptor
* @ring: ring flag bit as used in gem_execbuf()
*
* Feature test macro to query whether a specific ring is available.
* This automagically skips if the ring isn't available by
* calling igt_require().
*/
void gem_require_ring(int fd, unsigned ring)
{
igt_require(gem_has_ring(fd, ring));
}
/**
* gem_has_mocs_registers:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query whether the device has MOCS registers.
* These exist gen 9+.
*/
bool gem_has_mocs_registers(int fd)
{
return intel_gen(intel_get_drm_devid(fd)) >= 9;
}
/**
* gem_require_mocs_registers:
* @fd: open i915 drm file descriptor
*
* Feature test macro to query whether the device has MOCS registers.
* These exist gen 9+.
*/
void gem_require_mocs_registers(int fd)
{
igt_require(gem_has_mocs_registers(fd));
}
/* prime */
/**
* prime_handle_to_fd:
* @fd: open i915 drm file descriptor
* @handle: file-private gem buffer object handle
*
* This wraps the PRIME_HANDLE_TO_FD ioctl, which is used to export a gem buffer
* object into a global (i.e. potentially cross-device) dma-buf file-descriptor
* handle.
*
* Returns: The created dma-buf fd handle.
*/
int prime_handle_to_fd(int fd, uint32_t handle)
{
struct drm_prime_handle args;
memset(&args, 0, sizeof(args));
args.handle = handle;
args.flags = DRM_CLOEXEC;
args.fd = -1;
do_ioctl(fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &args);
return args.fd;
}
/**
* prime_handle_to_fd_for_mmap:
* @fd: open i915 drm file descriptor
* @handle: file-private gem buffer object handle
*
* Same as prime_handle_to_fd above but with DRM_RDWR capabilities, which can
* be useful for writing into the mmap'ed dma-buf file-descriptor.
*
* Returns: The created dma-buf fd handle or -1 if the ioctl fails.
*/
int prime_handle_to_fd_for_mmap(int fd, uint32_t handle)
{
struct drm_prime_handle args;
memset(&args, 0, sizeof(args));
args.handle = handle;
args.flags = DRM_CLOEXEC | DRM_RDWR;
args.fd = -1;
if (igt_ioctl(fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &args) != 0)
return -1;
return args.fd;
}
/**
* prime_fd_to_handle:
* @fd: open i915 drm file descriptor
* @dma_buf_fd: dma-buf fd handle
*
* This wraps the PRIME_FD_TO_HANDLE ioctl, which is used to import a dma-buf
* file-descriptor into a gem buffer object.
*
* Returns: The created gem buffer object handle.
*/
uint32_t prime_fd_to_handle(int fd, int dma_buf_fd)
{
struct drm_prime_handle args;
memset(&args, 0, sizeof(args));
args.fd = dma_buf_fd;
args.flags = 0;
args.handle = 0;
do_ioctl(fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &args);
return args.handle;
}
/**
* prime_get_size:
* @dma_buf_fd: dma-buf fd handle
*
* This wraps the lseek() protocol used to query the invariant size of a
* dma-buf. Not all kernels support this, which is check with igt_require() and
* so will result in automagic test skipping.
*
* Returns: The lifetime-invariant size of the dma-buf object.
*/
off_t prime_get_size(int dma_buf_fd)
{
off_t ret;
ret = lseek(dma_buf_fd, 0, SEEK_END);
igt_assert(ret >= 0 || errno == ESPIPE);
igt_require(ret >= 0);
errno = 0;
return ret;
}
/**
* prime_sync_start
* @dma_buf_fd: dma-buf fd handle
* @write: read/write or read-only access
*
* Must be called before starting CPU mmap access to a dma-buf.
*/
void prime_sync_start(int dma_buf_fd, bool write)
{
struct local_dma_buf_sync sync_start;
memset(&sync_start, 0, sizeof(sync_start));
sync_start.flags = LOCAL_DMA_BUF_SYNC_START;
sync_start.flags |= LOCAL_DMA_BUF_SYNC_READ;
if (write)
sync_start.flags |= LOCAL_DMA_BUF_SYNC_WRITE;
do_ioctl(dma_buf_fd, LOCAL_DMA_BUF_IOCTL_SYNC, &sync_start);
}
/**
* prime_sync_end
* @dma_buf_fd: dma-buf fd handle
* @write: read/write or read-only access
*
* Must be called after finishing CPU mmap access to a dma-buf.
*/
void prime_sync_end(int dma_buf_fd, bool write)
{
struct local_dma_buf_sync sync_end;
memset(&sync_end, 0, sizeof(sync_end));
sync_end.flags = LOCAL_DMA_BUF_SYNC_END;
sync_end.flags |= LOCAL_DMA_BUF_SYNC_READ;
if (write)
sync_end.flags |= LOCAL_DMA_BUF_SYNC_WRITE;
do_ioctl(dma_buf_fd, LOCAL_DMA_BUF_IOCTL_SYNC, &sync_end);
}
bool igt_has_fb_modifiers(int fd)
{
static bool has_modifiers, cap_modifiers_tested;
if (!cap_modifiers_tested) {
uint64_t cap_modifiers;
int ret;
ret = drmGetCap(fd, DRM_CAP_ADDFB2_MODIFIERS, &cap_modifiers);
igt_assert(ret == 0 || errno == EINVAL || errno == EOPNOTSUPP);
has_modifiers = ret == 0 && cap_modifiers == 1;
cap_modifiers_tested = true;
}
return has_modifiers;
}
/**
* igt_require_fb_modifiers:
* @fd: Open DRM file descriptor.
*
* Requires presence of DRM_CAP_ADDFB2_MODIFIERS.
*/
void igt_require_fb_modifiers(int fd)
{
igt_require(igt_has_fb_modifiers(fd));
}
int __kms_addfb(int fd, uint32_t handle,
uint32_t width, uint32_t height,
uint32_t pixel_format, uint64_t modifier,
uint32_t strides[4], uint32_t offsets[4],
int num_planes, uint32_t flags, uint32_t *buf_id)
{
struct drm_mode_fb_cmd2 f;
int ret, i;
if (flags & DRM_MODE_FB_MODIFIERS)
igt_require_fb_modifiers(fd);
memset(&f, 0, sizeof(f));
f.width = width;
f.height = height;
f.pixel_format = pixel_format;
f.flags = flags;
for (i = 0; i < num_planes; i++) {
f.handles[i] = handle;
f.modifier[i] = modifier;
f.pitches[i] = strides[i];
f.offsets[i] = offsets[i];
}
ret = igt_ioctl(fd, DRM_IOCTL_MODE_ADDFB2, &f);
*buf_id = f.fb_id;
return ret < 0 ? -errno : ret;
}