415 lines
17 KiB
C
415 lines
17 KiB
C
/******************************************************************************
|
|
*
|
|
* Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at:
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
******************************************************************************/
|
|
/**
|
|
*******************************************************************************
|
|
* @file
|
|
* ihevc_itrans_recon_8x8.c
|
|
*
|
|
* @brief
|
|
* Contains function definitions for inverse transform and reconstruction 8x8
|
|
*
|
|
*
|
|
* @author
|
|
* 100470
|
|
*
|
|
* @par List of Functions:
|
|
* - ihevc_itrans_recon_8x8()
|
|
*
|
|
* @remarks
|
|
* None
|
|
*
|
|
*******************************************************************************
|
|
*/
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include "ihevc_typedefs.h"
|
|
#include "ihevc_macros.h"
|
|
#include "ihevc_platform_macros.h"
|
|
#include "ihevc_defs.h"
|
|
#include "ihevc_trans_tables.h"
|
|
#include "ihevc_itrans_recon.h"
|
|
#include "ihevc_func_selector.h"
|
|
#include "ihevc_trans_macros.h"
|
|
|
|
/**
|
|
*******************************************************************************
|
|
*
|
|
* @brief
|
|
* This function performs Inverse transform and reconstruction for 8x8
|
|
* input block
|
|
*
|
|
* @par Description:
|
|
* Performs inverse transform and adds the prediction data and clips output
|
|
* to 8 bit
|
|
*
|
|
* @param[in] pi2_src
|
|
* Input 8x8 coefficients
|
|
*
|
|
* @param[in] pi2_tmp
|
|
* Temporary 8x8 buffer for storing inverse
|
|
*
|
|
* transform
|
|
* 1st stage output
|
|
*
|
|
* @param[in] pu1_pred
|
|
* Prediction 8x8 block
|
|
*
|
|
* @param[out] pu1_dst
|
|
* Output 8x8 block
|
|
*
|
|
* @param[in] src_strd
|
|
* Input stride
|
|
*
|
|
* @param[in] pred_strd
|
|
* Prediction stride
|
|
*
|
|
* @param[in] dst_strd
|
|
* Output Stride
|
|
*
|
|
* @param[in] shift
|
|
* Output shift
|
|
*
|
|
* @param[in] zero_cols
|
|
* Zero columns in pi2_src
|
|
*
|
|
* @returns Void
|
|
*
|
|
* @remarks
|
|
* None
|
|
*
|
|
*******************************************************************************
|
|
*/
|
|
|
|
void ihevc_itrans_recon_8x8(WORD16 *pi2_src,
|
|
WORD16 *pi2_tmp,
|
|
UWORD8 *pu1_pred,
|
|
UWORD8 *pu1_dst,
|
|
WORD32 src_strd,
|
|
WORD32 pred_strd,
|
|
WORD32 dst_strd,
|
|
WORD32 zero_cols,
|
|
WORD32 zero_rows)
|
|
{
|
|
WORD32 j, k;
|
|
WORD32 e[4], o[4];
|
|
WORD32 ee[2], eo[2];
|
|
WORD32 add;
|
|
WORD32 shift;
|
|
WORD16 *pi2_tmp_orig;
|
|
WORD32 trans_size;
|
|
WORD32 zero_rows_2nd_stage = zero_cols;
|
|
WORD32 row_limit_2nd_stage;
|
|
|
|
trans_size = TRANS_SIZE_8;
|
|
|
|
pi2_tmp_orig = pi2_tmp;
|
|
|
|
if((zero_cols & 0xF0) == 0xF0)
|
|
row_limit_2nd_stage = 4;
|
|
else
|
|
row_limit_2nd_stage = TRANS_SIZE_8;
|
|
|
|
|
|
if((zero_rows & 0xF0) == 0xF0) /* First 4 rows of input are non-zero */
|
|
{
|
|
/************************************************************************************************/
|
|
/**********************************START - IT_RECON_8x8******************************************/
|
|
/************************************************************************************************/
|
|
|
|
/* Inverse Transform 1st stage */
|
|
shift = IT_SHIFT_STAGE_1;
|
|
add = 1 << (shift - 1);
|
|
|
|
for(j = 0; j < row_limit_2nd_stage; j++)
|
|
{
|
|
/* Checking for Zero Cols */
|
|
if((zero_cols & 1) == 1)
|
|
{
|
|
memset(pi2_tmp, 0, trans_size * sizeof(WORD16));
|
|
}
|
|
else
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd]
|
|
+ g_ai2_ihevc_trans_8[3][k]
|
|
* pi2_src[3 * src_strd];
|
|
}
|
|
eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd];
|
|
eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd];
|
|
ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0];
|
|
ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
e[0] = ee[0] + eo[0];
|
|
e[3] = ee[0] - eo[0];
|
|
e[1] = ee[1] + eo[1];
|
|
e[2] = ee[1] - eo[1];
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
pi2_tmp[k] =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pi2_tmp[k + 4] =
|
|
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
|
|
}
|
|
}
|
|
pi2_src++;
|
|
pi2_tmp += trans_size;
|
|
zero_cols = zero_cols >> 1;
|
|
}
|
|
|
|
pi2_tmp = pi2_tmp_orig;
|
|
|
|
/* Inverse Transform 2nd stage */
|
|
shift = IT_SHIFT_STAGE_2;
|
|
add = 1 << (shift - 1);
|
|
if((zero_rows_2nd_stage & 0xF0) == 0xF0) /* First 4 rows of output of 1st stage are non-zero */
|
|
{
|
|
for(j = 0; j < trans_size; j++)
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
|
|
+ g_ai2_ihevc_trans_8[3][k] * pi2_tmp[3 * trans_size];
|
|
}
|
|
eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size];
|
|
eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size];
|
|
ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0];
|
|
ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
e[0] = ee[0] + eo[0];
|
|
e[3] = ee[0] - eo[0];
|
|
e[1] = ee[1] + eo[1];
|
|
e[2] = ee[1] - eo[1];
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
WORD32 itrans_out;
|
|
itrans_out =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k]));
|
|
itrans_out =
|
|
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
|
|
pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4]));
|
|
}
|
|
pi2_tmp++;
|
|
pu1_pred += pred_strd;
|
|
pu1_dst += dst_strd;
|
|
}
|
|
}
|
|
else /* All rows of output of 1st stage are non-zero */
|
|
{
|
|
for(j = 0; j < trans_size; j++)
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
|
|
+ g_ai2_ihevc_trans_8[3][k]
|
|
* pi2_tmp[3 * trans_size]
|
|
+ g_ai2_ihevc_trans_8[5][k]
|
|
* pi2_tmp[5 * trans_size]
|
|
+ g_ai2_ihevc_trans_8[7][k]
|
|
* pi2_tmp[7 * trans_size];
|
|
}
|
|
|
|
eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size]
|
|
+ g_ai2_ihevc_trans_8[6][0] * pi2_tmp[6 * trans_size];
|
|
eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size]
|
|
+ g_ai2_ihevc_trans_8[6][1] * pi2_tmp[6 * trans_size];
|
|
ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0]
|
|
+ g_ai2_ihevc_trans_8[4][0] * pi2_tmp[4 * trans_size];
|
|
ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0]
|
|
+ g_ai2_ihevc_trans_8[4][1] * pi2_tmp[4 * trans_size];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
e[0] = ee[0] + eo[0];
|
|
e[3] = ee[0] - eo[0];
|
|
e[1] = ee[1] + eo[1];
|
|
e[2] = ee[1] - eo[1];
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
WORD32 itrans_out;
|
|
itrans_out =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k]));
|
|
itrans_out =
|
|
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
|
|
pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4]));
|
|
}
|
|
pi2_tmp++;
|
|
pu1_pred += pred_strd;
|
|
pu1_dst += dst_strd;
|
|
}
|
|
}
|
|
/************************************************************************************************/
|
|
/************************************END - IT_RECON_8x8******************************************/
|
|
/************************************************************************************************/
|
|
}
|
|
else /* All rows of input are non-zero */
|
|
{
|
|
/************************************************************************************************/
|
|
/**********************************START - IT_RECON_8x8******************************************/
|
|
/************************************************************************************************/
|
|
|
|
/* Inverse Transform 1st stage */
|
|
shift = IT_SHIFT_STAGE_1;
|
|
add = 1 << (shift - 1);
|
|
|
|
for(j = 0; j < row_limit_2nd_stage; j++)
|
|
{
|
|
/* Checking for Zero Cols */
|
|
if((zero_cols & 1) == 1)
|
|
{
|
|
memset(pi2_tmp, 0, trans_size * sizeof(WORD16));
|
|
}
|
|
else
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd]
|
|
+ g_ai2_ihevc_trans_8[3][k]
|
|
* pi2_src[3 * src_strd]
|
|
+ g_ai2_ihevc_trans_8[5][k]
|
|
* pi2_src[5 * src_strd]
|
|
+ g_ai2_ihevc_trans_8[7][k]
|
|
* pi2_src[7 * src_strd];
|
|
}
|
|
|
|
eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd]
|
|
+ g_ai2_ihevc_trans_8[6][0] * pi2_src[6 * src_strd];
|
|
eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd]
|
|
+ g_ai2_ihevc_trans_8[6][1] * pi2_src[6 * src_strd];
|
|
ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0]
|
|
+ g_ai2_ihevc_trans_8[4][0] * pi2_src[4 * src_strd];
|
|
ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0]
|
|
+ g_ai2_ihevc_trans_8[4][1] * pi2_src[4 * src_strd];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
e[0] = ee[0] + eo[0];
|
|
e[3] = ee[0] - eo[0];
|
|
e[1] = ee[1] + eo[1];
|
|
e[2] = ee[1] - eo[1];
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
pi2_tmp[k] =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pi2_tmp[k + 4] =
|
|
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
|
|
}
|
|
}
|
|
pi2_src++;
|
|
pi2_tmp += trans_size;
|
|
zero_cols = zero_cols >> 1;
|
|
}
|
|
|
|
pi2_tmp = pi2_tmp_orig;
|
|
|
|
/* Inverse Transform 2nd stage */
|
|
shift = IT_SHIFT_STAGE_2;
|
|
add = 1 << (shift - 1);
|
|
if((zero_rows_2nd_stage & 0xF0) == 0xF0) /* First 4 rows of output of 1st stage are non-zero */
|
|
{
|
|
for(j = 0; j < trans_size; j++)
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
|
|
+ g_ai2_ihevc_trans_8[3][k] * pi2_tmp[3 * trans_size];
|
|
}
|
|
eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size];
|
|
eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size];
|
|
ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0];
|
|
ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
e[0] = ee[0] + eo[0];
|
|
e[3] = ee[0] - eo[0];
|
|
e[1] = ee[1] + eo[1];
|
|
e[2] = ee[1] - eo[1];
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
WORD32 itrans_out;
|
|
itrans_out =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k]));
|
|
itrans_out =
|
|
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
|
|
pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4]));
|
|
}
|
|
pi2_tmp++;
|
|
pu1_pred += pred_strd;
|
|
pu1_dst += dst_strd;
|
|
}
|
|
}
|
|
else /* All rows of output of 1st stage are non-zero */
|
|
{
|
|
for(j = 0; j < trans_size; j++)
|
|
{
|
|
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
|
|
+ g_ai2_ihevc_trans_8[3][k]
|
|
* pi2_tmp[3 * trans_size]
|
|
+ g_ai2_ihevc_trans_8[5][k]
|
|
* pi2_tmp[5 * trans_size]
|
|
+ g_ai2_ihevc_trans_8[7][k]
|
|
* pi2_tmp[7 * trans_size];
|
|
}
|
|
|
|
eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size]
|
|
+ g_ai2_ihevc_trans_8[6][0] * pi2_tmp[6 * trans_size];
|
|
eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size]
|
|
+ g_ai2_ihevc_trans_8[6][1] * pi2_tmp[6 * trans_size];
|
|
ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0]
|
|
+ g_ai2_ihevc_trans_8[4][0] * pi2_tmp[4 * trans_size];
|
|
ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0]
|
|
+ g_ai2_ihevc_trans_8[4][1] * pi2_tmp[4 * trans_size];
|
|
|
|
/* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
|
|
e[0] = ee[0] + eo[0];
|
|
e[3] = ee[0] - eo[0];
|
|
e[1] = ee[1] + eo[1];
|
|
e[2] = ee[1] - eo[1];
|
|
for(k = 0; k < 4; k++)
|
|
{
|
|
WORD32 itrans_out;
|
|
itrans_out =
|
|
CLIP_S16(((e[k] + o[k] + add) >> shift));
|
|
pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k]));
|
|
itrans_out =
|
|
CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
|
|
pu1_dst[k + 4] = CLIP_U8((itrans_out + pu1_pred[k + 4]));
|
|
}
|
|
pi2_tmp++;
|
|
pu1_pred += pred_strd;
|
|
pu1_dst += dst_strd;
|
|
}
|
|
}
|
|
/************************************************************************************************/
|
|
/************************************END - IT_RECON_8x8******************************************/
|
|
/************************************************************************************************/
|
|
}
|
|
}
|
|
|