256 lines
6.6 KiB
C
256 lines
6.6 KiB
C
/******************************************************************************
|
|
* *
|
|
* Copyright (C) 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at:
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
*****************************************************************************
|
|
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
|
|
*/
|
|
#include <float.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include "ixheaacd_cnst.h"
|
|
#include "ixheaacd_type_def.h"
|
|
#include "ixheaacd_bitbuffer.h"
|
|
#include "ixheaacd_acelp_com.h"
|
|
|
|
#include "ixheaacd_bitbuffer.h"
|
|
#include "ixheaacd_interface.h"
|
|
|
|
#include "ixheaacd_tns_usac.h"
|
|
#include "ixheaacd_cnst.h"
|
|
|
|
#include "ixheaacd_acelp_info.h"
|
|
|
|
#include "ixheaacd_td_mdct.h"
|
|
|
|
#include "ixheaacd_sbrdecsettings.h"
|
|
#include "ixheaacd_info.h"
|
|
#include "ixheaacd_sbr_common.h"
|
|
#include "ixheaacd_drc_data_struct.h"
|
|
#include "ixheaacd_drc_dec.h"
|
|
#include "ixheaacd_sbrdecoder.h"
|
|
#include "ixheaacd_mps_polyphase.h"
|
|
#include "ixheaacd_sbr_const.h"
|
|
|
|
#include "ixheaacd_constants.h"
|
|
#include "ixheaacd_basic_ops32.h"
|
|
#include "ixheaacd_basic_ops40.h"
|
|
#include "ixheaacd_main.h"
|
|
#include "ixheaacd_arith_dec.h"
|
|
|
|
#define FREQ_MAX 6400.0f
|
|
|
|
#define ABS(A) ((A) < 0 ? (-A) : (A))
|
|
|
|
static VOID ixheaacd_compute_coeff_poly_f(FLOAT32 lsp[], FLOAT32 *f1,
|
|
FLOAT32 *f2) {
|
|
FLOAT32 b1, b2;
|
|
FLOAT32 *ptr_lsp;
|
|
WORD32 i, j;
|
|
|
|
ptr_lsp = lsp;
|
|
f1[0] = f2[0] = 1.0f;
|
|
|
|
for (i = 1; i <= ORDER_BY_2; i++) {
|
|
b1 = -2.0f * (*ptr_lsp++);
|
|
b2 = -2.0f * (*ptr_lsp++);
|
|
f1[i] = (b1 * f1[i - 1]) + (2.0f * f1[i - 2]);
|
|
f2[i] = (b2 * f2[i - 1]) + (2.0f * f2[i - 2]);
|
|
for (j = i - 1; j > 0; j--) {
|
|
f1[j] += (b1 * f1[j - 1]) + f1[j - 2];
|
|
f2[j] += (b2 * f2[j - 1]) + f2[j - 2];
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
VOID ixheaacd_lsp_to_lp_conversion(FLOAT32 *lsp, FLOAT32 *lp_flt_coff_a) {
|
|
WORD32 i;
|
|
FLOAT32 *ppoly_f1, *ppoly_f2;
|
|
FLOAT32 *plp_flt_coff_a_bott, *plp_flt_coff_a_top;
|
|
FLOAT32 poly1[ORDER_BY_2 + 2], poly2[ORDER_BY_2 + 2];
|
|
|
|
poly1[0] = 0.0f;
|
|
poly2[0] = 0.0f;
|
|
|
|
ixheaacd_compute_coeff_poly_f(lsp, &poly1[1], &poly2[1]);
|
|
|
|
ppoly_f1 = poly1 + ORDER_BY_2 + 1;
|
|
ppoly_f2 = poly2 + ORDER_BY_2 + 1;
|
|
|
|
for (i = 0; i < ORDER_BY_2; i++) {
|
|
ppoly_f1[0] += ppoly_f1[-1];
|
|
ppoly_f2[0] -= ppoly_f2[-1];
|
|
ppoly_f1--;
|
|
ppoly_f2--;
|
|
}
|
|
|
|
plp_flt_coff_a_bott = lp_flt_coff_a;
|
|
*plp_flt_coff_a_bott++ = 1.0f;
|
|
plp_flt_coff_a_top = lp_flt_coff_a + ORDER;
|
|
ppoly_f1 = poly1 + 2;
|
|
ppoly_f2 = poly2 + 2;
|
|
for (i = 0; i < ORDER_BY_2; i++) {
|
|
*plp_flt_coff_a_bott++ = 0.5f * (*ppoly_f1 + *ppoly_f2);
|
|
*plp_flt_coff_a_top-- = 0.5f * (*ppoly_f1++ - *ppoly_f2++);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
WORD32 ixheaacd_lpc_to_td(float *coeff, WORD32 order, float *gains, WORD32 lg) {
|
|
FLOAT32 data_r[LEN_SUPERFRAME * 2];
|
|
FLOAT32 data_i[LEN_SUPERFRAME * 2];
|
|
FLOAT64 avg_fac;
|
|
WORD32 idata_r[LEN_SUPERFRAME * 2];
|
|
WORD32 idata_i[LEN_SUPERFRAME * 2];
|
|
WORD8 qshift;
|
|
WORD32 preshift = 0;
|
|
WORD32 itemp;
|
|
FLOAT32 ftemp = 0;
|
|
FLOAT32 tmp, qfac;
|
|
WORD32 i, size_n;
|
|
WORD32 err = 0;
|
|
|
|
size_n = 2 * lg;
|
|
avg_fac = PI / (FLOAT32)(size_n);
|
|
|
|
for (i = 0; i < order + 1; i++) {
|
|
tmp = (FLOAT32)(((FLOAT32)i) * avg_fac);
|
|
data_r[i] = (FLOAT32)(coeff[i] * cos(tmp));
|
|
data_i[i] = (FLOAT32)(-coeff[i] * sin(tmp));
|
|
}
|
|
for (; i < size_n; i++) {
|
|
data_r[i] = 0.f;
|
|
data_i[i] = 0.f;
|
|
}
|
|
|
|
for (i = 0; i < size_n; i++) {
|
|
if (ABS(data_r[i]) > ftemp) ftemp = ABS(data_r[i]);
|
|
if (ABS(data_i[i]) > ftemp) ftemp = ABS(data_i[i]);
|
|
}
|
|
|
|
itemp = (WORD32)ftemp;
|
|
qshift = ixheaacd_norm32(itemp);
|
|
|
|
for (i = 0; i < size_n; i++) {
|
|
idata_r[i] = (WORD32)(data_r[i] * ((WORD64)1 << qshift));
|
|
idata_i[i] = (WORD32)(data_i[i] * ((WORD64)1 << qshift));
|
|
}
|
|
|
|
err = ixheaacd_complex_fft(idata_r, idata_i, size_n, -1, &preshift);
|
|
if (err) return err;
|
|
|
|
qfac = 1.0f / ((FLOAT32)((WORD64)1 << (qshift - preshift)));
|
|
|
|
for (i = 0; i < size_n; i++) {
|
|
data_r[i] = (FLOAT32)((FLOAT32)idata_r[i] * qfac);
|
|
data_i[i] = (FLOAT32)((FLOAT32)idata_i[i] * qfac);
|
|
}
|
|
|
|
for (i = 0; i < size_n / 2; i++) {
|
|
gains[i] =
|
|
(FLOAT32)(1.0f / sqrt(data_r[i] * data_r[i] + data_i[i] * data_i[i]));
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
VOID ixheaacd_noise_shaping(FLOAT32 r[], WORD32 lg, WORD32 M, FLOAT32 g1[],
|
|
FLOAT32 g2[]) {
|
|
WORD32 i, k;
|
|
FLOAT32 rr_prev, a = 0, b = 0;
|
|
FLOAT32 rr[1024];
|
|
|
|
k = lg / M;
|
|
|
|
rr_prev = 0;
|
|
|
|
memcpy(&rr, r, lg * sizeof(FLOAT32));
|
|
|
|
for (i = 0; i < lg; i++) {
|
|
if ((i % k) == 0) {
|
|
a = 2.0f * g1[i / k] * g2[i / k] / (g1[i / k] + g2[i / k]);
|
|
b = (g2[i / k] - g1[i / k]) / (g1[i / k] + g2[i / k]);
|
|
}
|
|
|
|
rr[i] = a * rr[i] + b * rr_prev;
|
|
rr_prev = rr[i];
|
|
}
|
|
|
|
for (i = 0; i < lg / 2; i++) {
|
|
r[i] = rr[2 * i];
|
|
r[lg / 2 + i] = rr[lg - 2 * i - 1];
|
|
}
|
|
return;
|
|
}
|
|
|
|
VOID ixheaacd_lpc_coef_gen(FLOAT32 lsf_old[], FLOAT32 lsf_new[], FLOAT32 a[],
|
|
WORD32 nb_subfr, WORD32 m) {
|
|
FLOAT32 lsf[ORDER], *ptr_a;
|
|
FLOAT32 inc, fnew, fold;
|
|
WORD32 i;
|
|
|
|
ptr_a = a;
|
|
|
|
inc = 1.0f / (FLOAT32)nb_subfr;
|
|
fnew = 0.5f - (0.5f * inc);
|
|
fold = 1.0f - fnew;
|
|
|
|
for (i = 0; i < m; i++) {
|
|
lsf[i] = (lsf_old[i] * fold) + (lsf_new[i] * fnew);
|
|
}
|
|
ixheaacd_lsp_to_lp_conversion(lsf, ptr_a);
|
|
ptr_a += (m + 1);
|
|
ixheaacd_lsp_to_lp_conversion(lsf_old, ptr_a);
|
|
ptr_a += (m + 1);
|
|
ixheaacd_lsp_to_lp_conversion(lsf_new, ptr_a);
|
|
ptr_a += (m + 1);
|
|
|
|
return;
|
|
}
|
|
|
|
VOID ixheaacd_interpolation_lsp_params(FLOAT32 lsp_old[], FLOAT32 lsp_new[],
|
|
FLOAT32 lp_flt_coff_a[],
|
|
WORD32 nb_subfr) {
|
|
FLOAT32 lsp[ORDER];
|
|
FLOAT32 factor;
|
|
WORD32 i, k;
|
|
FLOAT32 x_plus_y, x_minus_y;
|
|
|
|
factor = 1.0f / (FLOAT32)nb_subfr;
|
|
|
|
x_plus_y = 0.5f * factor;
|
|
|
|
for (k = 0; k < nb_subfr; k++) {
|
|
x_minus_y = 1.0f - x_plus_y;
|
|
for (i = 0; i < ORDER; i++) {
|
|
lsp[i] = (lsp_old[i] * x_minus_y) + (lsp_new[i] * x_plus_y);
|
|
}
|
|
x_plus_y += factor;
|
|
|
|
ixheaacd_lsp_to_lp_conversion(lsp, lp_flt_coff_a);
|
|
|
|
lp_flt_coff_a += (ORDER + 1);
|
|
}
|
|
|
|
ixheaacd_lsp_to_lp_conversion(lsp_new, lp_flt_coff_a);
|
|
|
|
return;
|
|
}
|