450 lines
15 KiB
C++
450 lines
15 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "test/fake_encoder.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#include "api/task_queue/queued_task.h"
|
|
#include "api/video/video_content_type.h"
|
|
#include "modules/video_coding/codecs/h264/include/h264_globals.h"
|
|
#include "modules/video_coding/include/video_codec_interface.h"
|
|
#include "modules/video_coding/include/video_error_codes.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "system_wrappers/include/sleep.h"
|
|
|
|
namespace webrtc {
|
|
namespace test {
|
|
namespace {
|
|
const int kKeyframeSizeFactor = 5;
|
|
|
|
// Inverse of proportion of frames assigned to each temporal layer for all
|
|
// possible temporal layers numbers.
|
|
const int kTemporalLayerRateFactor[4][4] = {
|
|
{1, 0, 0, 0}, // 1/1
|
|
{2, 2, 0, 0}, // 1/2 + 1/2
|
|
{4, 4, 2, 0}, // 1/4 + 1/4 + 1/2
|
|
{8, 8, 4, 2}, // 1/8 + 1/8 + 1/4 + 1/2
|
|
};
|
|
|
|
void WriteCounter(unsigned char* payload, uint32_t counter) {
|
|
payload[0] = (counter & 0x00FF);
|
|
payload[1] = (counter & 0xFF00) >> 8;
|
|
payload[2] = (counter & 0xFF0000) >> 16;
|
|
payload[3] = (counter & 0xFF000000) >> 24;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
FakeEncoder::FakeEncoder(Clock* clock)
|
|
: clock_(clock),
|
|
callback_(nullptr),
|
|
max_target_bitrate_kbps_(-1),
|
|
pending_keyframe_(true),
|
|
counter_(0),
|
|
debt_bytes_(0) {
|
|
for (bool& used : used_layers_) {
|
|
used = false;
|
|
}
|
|
}
|
|
|
|
void FakeEncoder::SetFecControllerOverride(
|
|
FecControllerOverride* fec_controller_override) {
|
|
// Ignored.
|
|
}
|
|
|
|
void FakeEncoder::SetMaxBitrate(int max_kbps) {
|
|
RTC_DCHECK_GE(max_kbps, -1); // max_kbps == -1 disables it.
|
|
MutexLock lock(&mutex_);
|
|
max_target_bitrate_kbps_ = max_kbps;
|
|
SetRatesLocked(current_rate_settings_);
|
|
}
|
|
|
|
void FakeEncoder::SetQp(int qp) {
|
|
MutexLock lock(&mutex_);
|
|
qp_ = qp;
|
|
}
|
|
|
|
int32_t FakeEncoder::InitEncode(const VideoCodec* config,
|
|
const Settings& settings) {
|
|
MutexLock lock(&mutex_);
|
|
config_ = *config;
|
|
current_rate_settings_.bitrate.SetBitrate(0, 0, config_.startBitrate * 1000);
|
|
current_rate_settings_.framerate_fps = config_.maxFramerate;
|
|
pending_keyframe_ = true;
|
|
last_frame_info_ = FrameInfo();
|
|
return 0;
|
|
}
|
|
|
|
int32_t FakeEncoder::Encode(const VideoFrame& input_image,
|
|
const std::vector<VideoFrameType>* frame_types) {
|
|
unsigned char max_framerate;
|
|
unsigned char num_simulcast_streams;
|
|
SimulcastStream simulcast_streams[kMaxSimulcastStreams];
|
|
EncodedImageCallback* callback;
|
|
RateControlParameters rates;
|
|
VideoCodecMode mode;
|
|
bool keyframe;
|
|
uint32_t counter;
|
|
absl::optional<int> qp;
|
|
{
|
|
MutexLock lock(&mutex_);
|
|
max_framerate = config_.maxFramerate;
|
|
num_simulcast_streams = config_.numberOfSimulcastStreams;
|
|
for (int i = 0; i < num_simulcast_streams; ++i) {
|
|
simulcast_streams[i] = config_.simulcastStream[i];
|
|
}
|
|
callback = callback_;
|
|
rates = current_rate_settings_;
|
|
mode = config_.mode;
|
|
if (rates.framerate_fps <= 0.0) {
|
|
rates.framerate_fps = max_framerate;
|
|
}
|
|
keyframe = pending_keyframe_;
|
|
pending_keyframe_ = false;
|
|
counter = counter_++;
|
|
qp = qp_;
|
|
}
|
|
|
|
FrameInfo frame_info =
|
|
NextFrame(frame_types, keyframe, num_simulcast_streams, rates.bitrate,
|
|
simulcast_streams, static_cast<int>(rates.framerate_fps + 0.5));
|
|
for (uint8_t i = 0; i < frame_info.layers.size(); ++i) {
|
|
constexpr int kMinPayLoadLength = 14;
|
|
if (frame_info.layers[i].size < kMinPayLoadLength) {
|
|
// Drop this temporal layer.
|
|
continue;
|
|
}
|
|
|
|
EncodedImage encoded;
|
|
encoded.SetEncodedData(
|
|
EncodedImageBuffer::Create(frame_info.layers[i].size));
|
|
|
|
// Fill the buffer with arbitrary data. Write someting to make Asan happy.
|
|
memset(encoded.data(), 9, frame_info.layers[i].size);
|
|
// Write a counter to the image to make each frame unique.
|
|
WriteCounter(encoded.data() + frame_info.layers[i].size - 4, counter);
|
|
encoded.SetTimestamp(input_image.timestamp());
|
|
encoded._frameType = frame_info.keyframe ? VideoFrameType::kVideoFrameKey
|
|
: VideoFrameType::kVideoFrameDelta;
|
|
encoded._encodedWidth = simulcast_streams[i].width;
|
|
encoded._encodedHeight = simulcast_streams[i].height;
|
|
if (qp)
|
|
encoded.qp_ = *qp;
|
|
encoded.SetSpatialIndex(i);
|
|
CodecSpecificInfo codec_specific;
|
|
std::unique_ptr<RTPFragmentationHeader> fragmentation =
|
|
EncodeHook(&encoded, &codec_specific);
|
|
|
|
if (callback->OnEncodedImage(encoded, &codec_specific, fragmentation.get())
|
|
.error != EncodedImageCallback::Result::OK) {
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
std::unique_ptr<RTPFragmentationHeader> FakeEncoder::EncodeHook(
|
|
EncodedImage* encoded_image,
|
|
CodecSpecificInfo* codec_specific) {
|
|
codec_specific->codecType = kVideoCodecGeneric;
|
|
return nullptr;
|
|
}
|
|
|
|
FakeEncoder::FrameInfo FakeEncoder::NextFrame(
|
|
const std::vector<VideoFrameType>* frame_types,
|
|
bool keyframe,
|
|
uint8_t num_simulcast_streams,
|
|
const VideoBitrateAllocation& target_bitrate,
|
|
SimulcastStream simulcast_streams[kMaxSimulcastStreams],
|
|
int framerate) {
|
|
FrameInfo frame_info;
|
|
frame_info.keyframe = keyframe;
|
|
|
|
if (frame_types) {
|
|
for (VideoFrameType frame_type : *frame_types) {
|
|
if (frame_type == VideoFrameType::kVideoFrameKey) {
|
|
frame_info.keyframe = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
MutexLock lock(&mutex_);
|
|
for (uint8_t i = 0; i < num_simulcast_streams; ++i) {
|
|
if (target_bitrate.GetBitrate(i, 0) > 0) {
|
|
int temporal_id = last_frame_info_.layers.size() > i
|
|
? ++last_frame_info_.layers[i].temporal_id %
|
|
simulcast_streams[i].numberOfTemporalLayers
|
|
: 0;
|
|
frame_info.layers.emplace_back(0, temporal_id);
|
|
}
|
|
}
|
|
|
|
if (last_frame_info_.layers.size() < frame_info.layers.size()) {
|
|
// A new keyframe is needed since a new layer will be added.
|
|
frame_info.keyframe = true;
|
|
}
|
|
|
|
for (uint8_t i = 0; i < frame_info.layers.size(); ++i) {
|
|
FrameInfo::SpatialLayer& layer_info = frame_info.layers[i];
|
|
if (frame_info.keyframe) {
|
|
layer_info.temporal_id = 0;
|
|
size_t avg_frame_size =
|
|
(target_bitrate.GetBitrate(i, 0) + 7) *
|
|
kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] /
|
|
(8 * framerate);
|
|
|
|
// The first frame is a key frame and should be larger.
|
|
// Store the overshoot bytes and distribute them over the coming frames,
|
|
// so that we on average meet the bitrate target.
|
|
debt_bytes_ += (kKeyframeSizeFactor - 1) * avg_frame_size;
|
|
layer_info.size = kKeyframeSizeFactor * avg_frame_size;
|
|
} else {
|
|
size_t avg_frame_size =
|
|
(target_bitrate.GetBitrate(i, layer_info.temporal_id) + 7) *
|
|
kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] /
|
|
(8 * framerate);
|
|
layer_info.size = avg_frame_size;
|
|
if (debt_bytes_ > 0) {
|
|
// Pay at most half of the frame size for old debts.
|
|
size_t payment_size = std::min(avg_frame_size / 2, debt_bytes_);
|
|
debt_bytes_ -= payment_size;
|
|
layer_info.size -= payment_size;
|
|
}
|
|
}
|
|
}
|
|
last_frame_info_ = frame_info;
|
|
return frame_info;
|
|
}
|
|
|
|
int32_t FakeEncoder::RegisterEncodeCompleteCallback(
|
|
EncodedImageCallback* callback) {
|
|
MutexLock lock(&mutex_);
|
|
callback_ = callback;
|
|
return 0;
|
|
}
|
|
|
|
int32_t FakeEncoder::Release() {
|
|
return 0;
|
|
}
|
|
|
|
void FakeEncoder::SetRates(const RateControlParameters& parameters) {
|
|
MutexLock lock(&mutex_);
|
|
SetRatesLocked(parameters);
|
|
}
|
|
|
|
void FakeEncoder::SetRatesLocked(const RateControlParameters& parameters) {
|
|
current_rate_settings_ = parameters;
|
|
int allocated_bitrate_kbps = parameters.bitrate.get_sum_kbps();
|
|
|
|
// Scale bitrate allocation to not exceed the given max target bitrate.
|
|
if (max_target_bitrate_kbps_ > 0 &&
|
|
allocated_bitrate_kbps > max_target_bitrate_kbps_) {
|
|
for (uint8_t spatial_idx = 0; spatial_idx < kMaxSpatialLayers;
|
|
++spatial_idx) {
|
|
for (uint8_t temporal_idx = 0; temporal_idx < kMaxTemporalStreams;
|
|
++temporal_idx) {
|
|
if (current_rate_settings_.bitrate.HasBitrate(spatial_idx,
|
|
temporal_idx)) {
|
|
uint32_t bitrate = current_rate_settings_.bitrate.GetBitrate(
|
|
spatial_idx, temporal_idx);
|
|
bitrate = static_cast<uint32_t>(
|
|
(bitrate * int64_t{max_target_bitrate_kbps_}) /
|
|
allocated_bitrate_kbps);
|
|
current_rate_settings_.bitrate.SetBitrate(spatial_idx, temporal_idx,
|
|
bitrate);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const char* FakeEncoder::kImplementationName = "fake_encoder";
|
|
VideoEncoder::EncoderInfo FakeEncoder::GetEncoderInfo() const {
|
|
EncoderInfo info;
|
|
info.implementation_name = kImplementationName;
|
|
return info;
|
|
}
|
|
|
|
int FakeEncoder::GetConfiguredInputFramerate() const {
|
|
MutexLock lock(&mutex_);
|
|
return static_cast<int>(current_rate_settings_.framerate_fps + 0.5);
|
|
}
|
|
|
|
FakeH264Encoder::FakeH264Encoder(Clock* clock)
|
|
: FakeEncoder(clock), idr_counter_(0) {}
|
|
|
|
std::unique_ptr<RTPFragmentationHeader> FakeH264Encoder::EncodeHook(
|
|
EncodedImage* encoded_image,
|
|
CodecSpecificInfo* codec_specific) {
|
|
static constexpr std::array<uint8_t, 3> kStartCode = {0, 0, 1};
|
|
const size_t kSpsSize = 8;
|
|
const size_t kPpsSize = 11;
|
|
const int kIdrFrequency = 10;
|
|
int current_idr_counter;
|
|
{
|
|
MutexLock lock(&local_mutex_);
|
|
current_idr_counter = idr_counter_;
|
|
++idr_counter_;
|
|
}
|
|
for (size_t i = 0; i < encoded_image->size(); ++i) {
|
|
encoded_image->data()[i] = static_cast<uint8_t>(i);
|
|
}
|
|
|
|
auto fragmentation = std::make_unique<RTPFragmentationHeader>();
|
|
|
|
if (current_idr_counter % kIdrFrequency == 0 &&
|
|
encoded_image->size() > kSpsSize + kPpsSize + 1 + 3 * kStartCode.size()) {
|
|
const size_t kNumSlices = 3;
|
|
fragmentation->VerifyAndAllocateFragmentationHeader(kNumSlices);
|
|
fragmentation->fragmentationOffset[0] = kStartCode.size();
|
|
fragmentation->fragmentationLength[0] = kSpsSize;
|
|
fragmentation->fragmentationOffset[1] = 2 * kStartCode.size() + kSpsSize;
|
|
fragmentation->fragmentationLength[1] = kPpsSize;
|
|
fragmentation->fragmentationOffset[2] =
|
|
3 * kStartCode.size() + kSpsSize + kPpsSize;
|
|
fragmentation->fragmentationLength[2] =
|
|
encoded_image->size() - (3 * kStartCode.size() + kSpsSize + kPpsSize);
|
|
const size_t kSpsNalHeader = 0x67;
|
|
const size_t kPpsNalHeader = 0x68;
|
|
const size_t kIdrNalHeader = 0x65;
|
|
memcpy(encoded_image->data(), kStartCode.data(), kStartCode.size());
|
|
encoded_image->data()[fragmentation->Offset(0)] = kSpsNalHeader;
|
|
memcpy(encoded_image->data() + fragmentation->Offset(1) - kStartCode.size(),
|
|
kStartCode.data(), kStartCode.size());
|
|
encoded_image->data()[fragmentation->Offset(1)] = kPpsNalHeader;
|
|
memcpy(encoded_image->data() + fragmentation->Offset(2) - kStartCode.size(),
|
|
kStartCode.data(), kStartCode.size());
|
|
encoded_image->data()[fragmentation->Offset(2)] = kIdrNalHeader;
|
|
} else {
|
|
const size_t kNumSlices = 1;
|
|
fragmentation->VerifyAndAllocateFragmentationHeader(kNumSlices);
|
|
fragmentation->fragmentationOffset[0] = kStartCode.size();
|
|
fragmentation->fragmentationLength[0] =
|
|
encoded_image->size() - kStartCode.size();
|
|
memcpy(encoded_image->data(), kStartCode.data(), kStartCode.size());
|
|
const size_t kNalHeader = 0x41;
|
|
encoded_image->data()[fragmentation->fragmentationOffset[0]] = kNalHeader;
|
|
}
|
|
|
|
codec_specific->codecType = kVideoCodecH264;
|
|
codec_specific->codecSpecific.H264.packetization_mode =
|
|
H264PacketizationMode::NonInterleaved;
|
|
|
|
return fragmentation;
|
|
}
|
|
|
|
DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms)
|
|
: test::FakeEncoder(clock), delay_ms_(delay_ms) {
|
|
// The encoder could be created on a different thread than
|
|
// it is being used on.
|
|
sequence_checker_.Detach();
|
|
}
|
|
|
|
void DelayedEncoder::SetDelay(int delay_ms) {
|
|
RTC_DCHECK_RUN_ON(&sequence_checker_);
|
|
delay_ms_ = delay_ms;
|
|
}
|
|
|
|
int32_t DelayedEncoder::Encode(const VideoFrame& input_image,
|
|
const std::vector<VideoFrameType>* frame_types) {
|
|
RTC_DCHECK_RUN_ON(&sequence_checker_);
|
|
|
|
SleepMs(delay_ms_);
|
|
|
|
return FakeEncoder::Encode(input_image, frame_types);
|
|
}
|
|
|
|
MultithreadedFakeH264Encoder::MultithreadedFakeH264Encoder(
|
|
Clock* clock,
|
|
TaskQueueFactory* task_queue_factory)
|
|
: test::FakeH264Encoder(clock),
|
|
task_queue_factory_(task_queue_factory),
|
|
current_queue_(0),
|
|
queue1_(nullptr),
|
|
queue2_(nullptr) {
|
|
// The encoder could be created on a different thread than
|
|
// it is being used on.
|
|
sequence_checker_.Detach();
|
|
}
|
|
|
|
int32_t MultithreadedFakeH264Encoder::InitEncode(const VideoCodec* config,
|
|
const Settings& settings) {
|
|
RTC_DCHECK_RUN_ON(&sequence_checker_);
|
|
|
|
queue1_ = task_queue_factory_->CreateTaskQueue(
|
|
"Queue 1", TaskQueueFactory::Priority::NORMAL);
|
|
queue2_ = task_queue_factory_->CreateTaskQueue(
|
|
"Queue 2", TaskQueueFactory::Priority::NORMAL);
|
|
|
|
return FakeH264Encoder::InitEncode(config, settings);
|
|
}
|
|
|
|
class MultithreadedFakeH264Encoder::EncodeTask : public QueuedTask {
|
|
public:
|
|
EncodeTask(MultithreadedFakeH264Encoder* encoder,
|
|
const VideoFrame& input_image,
|
|
const std::vector<VideoFrameType>* frame_types)
|
|
: encoder_(encoder),
|
|
input_image_(input_image),
|
|
frame_types_(*frame_types) {}
|
|
|
|
private:
|
|
bool Run() override {
|
|
encoder_->EncodeCallback(input_image_, &frame_types_);
|
|
return true;
|
|
}
|
|
|
|
MultithreadedFakeH264Encoder* const encoder_;
|
|
VideoFrame input_image_;
|
|
std::vector<VideoFrameType> frame_types_;
|
|
};
|
|
|
|
int32_t MultithreadedFakeH264Encoder::Encode(
|
|
const VideoFrame& input_image,
|
|
const std::vector<VideoFrameType>* frame_types) {
|
|
RTC_DCHECK_RUN_ON(&sequence_checker_);
|
|
|
|
TaskQueueBase* queue =
|
|
(current_queue_++ % 2 == 0) ? queue1_.get() : queue2_.get();
|
|
|
|
if (!queue) {
|
|
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
|
|
}
|
|
|
|
queue->PostTask(std::make_unique<EncodeTask>(this, input_image, frame_types));
|
|
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
|
|
int32_t MultithreadedFakeH264Encoder::EncodeCallback(
|
|
const VideoFrame& input_image,
|
|
const std::vector<VideoFrameType>* frame_types) {
|
|
return FakeH264Encoder::Encode(input_image, frame_types);
|
|
}
|
|
|
|
int32_t MultithreadedFakeH264Encoder::Release() {
|
|
RTC_DCHECK_RUN_ON(&sequence_checker_);
|
|
|
|
queue1_.reset();
|
|
queue2_.reset();
|
|
|
|
return FakeH264Encoder::Release();
|
|
}
|
|
|
|
} // namespace test
|
|
} // namespace webrtc
|