aosp12/system/libhwbinder/Parcel.cpp

2032 lines
60 KiB
C++

/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "hw-Parcel"
//#define LOG_NDEBUG 0
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <pthread.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <unistd.h>
#include <hwbinder/Binder.h>
#include <hwbinder/BpHwBinder.h>
#include <hwbinder/IPCThreadState.h>
#include <hwbinder/Parcel.h>
#include <hwbinder/ProcessState.h>
#include <cutils/ashmem.h>
#include <utils/Log.h>
#include <utils/misc.h>
#include <utils/String8.h>
#include <utils/String16.h>
#include "binder_kernel.h"
#include <hwbinder/Static.h>
#include "TextOutput.h"
#include "Utils.h"
#include <atomic>
#define LOG_REFS(...)
//#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
#define LOG_ALLOC(...)
//#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
#define LOG_BUFFER(...)
// #define LOG_BUFFER(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
// ---------------------------------------------------------------------------
// This macro should never be used at runtime, as a too large value
// of s could cause an integer overflow. Instead, you should always
// use the wrapper function pad_size()
#define PAD_SIZE_UNSAFE(s) (((s)+3)&~3)
static size_t pad_size(size_t s) {
if (s > (std::numeric_limits<size_t>::max() - 3)) {
LOG_ALWAYS_FATAL("pad size too big %zu", s);
}
return PAD_SIZE_UNSAFE(s);
}
// Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
#define STRICT_MODE_PENALTY_GATHER (0x40 << 16)
namespace android {
namespace hardware {
static std::atomic<size_t> gParcelGlobalAllocCount;
static std::atomic<size_t> gParcelGlobalAllocSize;
static size_t gMaxFds = 0;
void acquire_binder_object(const sp<ProcessState>& proc,
const flat_binder_object& obj, const void* who)
{
switch (obj.hdr.type) {
case BINDER_TYPE_BINDER:
if (obj.binder) {
LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);
reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
}
return;
case BINDER_TYPE_WEAK_BINDER:
if (obj.binder)
reinterpret_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);
return;
case BINDER_TYPE_HANDLE: {
const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
if (b != nullptr) {
LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
b->incStrong(who);
}
return;
}
case BINDER_TYPE_WEAK_HANDLE: {
const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
if (b != nullptr) b.get_refs()->incWeak(who);
return;
}
}
ALOGD("Invalid object type 0x%08x", obj.hdr.type);
}
void acquire_object(const sp<ProcessState>& proc, const binder_object_header& obj,
const void *who) {
switch (obj.type) {
case BINDER_TYPE_BINDER:
case BINDER_TYPE_WEAK_BINDER:
case BINDER_TYPE_HANDLE:
case BINDER_TYPE_WEAK_HANDLE: {
const flat_binder_object& fbo = reinterpret_cast<const flat_binder_object&>(obj);
acquire_binder_object(proc, fbo, who);
break;
}
}
}
void release_object(const sp<ProcessState>& proc,
const flat_binder_object& obj, const void* who)
{
switch (obj.hdr.type) {
case BINDER_TYPE_BINDER:
if (obj.binder) {
LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);
reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
}
return;
case BINDER_TYPE_WEAK_BINDER:
if (obj.binder)
reinterpret_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);
return;
case BINDER_TYPE_HANDLE: {
const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
if (b != nullptr) {
LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
b->decStrong(who);
}
return;
}
case BINDER_TYPE_WEAK_HANDLE: {
const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
if (b != nullptr) b.get_refs()->decWeak(who);
return;
}
case BINDER_TYPE_FD: {
if (obj.cookie != 0) { // owned
close(obj.handle);
}
return;
}
case BINDER_TYPE_PTR: {
// The relevant buffer is part of the transaction buffer and will be freed that way
return;
}
case BINDER_TYPE_FDA: {
// The enclosed file descriptors are closed in the kernel
return;
}
}
ALOGE("Invalid object type 0x%08x", obj.hdr.type);
}
inline static status_t finish_flatten_binder(
const sp<IBinder>& /*binder*/, const flat_binder_object& flat, Parcel* out)
{
return out->writeObject(flat);
}
status_t flatten_binder(const sp<ProcessState>& /*proc*/,
const sp<IBinder>& binder, Parcel* out)
{
flat_binder_object obj = {};
if (binder != nullptr) {
BHwBinder *local = binder->localBinder();
if (!local) {
BpHwBinder *proxy = binder->remoteBinder();
if (proxy == nullptr) {
ALOGE("null proxy");
}
const int32_t handle = proxy ? proxy->handle() : 0;
obj.hdr.type = BINDER_TYPE_HANDLE;
obj.flags = FLAT_BINDER_FLAG_ACCEPTS_FDS;
obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
obj.handle = handle;
obj.cookie = 0;
} else {
// Get policy and convert it
int policy = local->getMinSchedulingPolicy();
int priority = local->getMinSchedulingPriority();
obj.flags = priority & FLAT_BINDER_FLAG_PRIORITY_MASK;
obj.flags |= FLAT_BINDER_FLAG_ACCEPTS_FDS | FLAT_BINDER_FLAG_INHERIT_RT;
obj.flags |= (policy & 3) << FLAT_BINDER_FLAG_SCHED_POLICY_SHIFT;
if (local->isRequestingSid()) {
obj.flags |= FLAT_BINDER_FLAG_TXN_SECURITY_CTX;
}
obj.hdr.type = BINDER_TYPE_BINDER;
obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
obj.cookie = reinterpret_cast<uintptr_t>(local);
}
} else {
obj.hdr.type = BINDER_TYPE_BINDER;
obj.binder = 0;
obj.cookie = 0;
}
return finish_flatten_binder(binder, obj, out);
}
inline static status_t finish_unflatten_binder(
BpHwBinder* /*proxy*/, const flat_binder_object& /*flat*/,
const Parcel& /*in*/)
{
return NO_ERROR;
}
status_t unflatten_binder(const sp<ProcessState>& proc,
const Parcel& in, sp<IBinder>* out)
{
const flat_binder_object* flat = in.readObject<flat_binder_object>();
if (flat) {
switch (flat->hdr.type) {
case BINDER_TYPE_BINDER:
*out = reinterpret_cast<IBinder*>(flat->cookie);
return finish_unflatten_binder(nullptr, *flat, in);
case BINDER_TYPE_HANDLE:
*out = proc->getStrongProxyForHandle(flat->handle);
return finish_unflatten_binder(
static_cast<BpHwBinder*>(out->get()), *flat, in);
}
}
return BAD_TYPE;
}
// ---------------------------------------------------------------------------
Parcel::Parcel()
{
LOG_ALLOC("Parcel %p: constructing", this);
initState();
}
Parcel::~Parcel()
{
freeDataNoInit();
LOG_ALLOC("Parcel %p: destroyed", this);
}
size_t Parcel::getGlobalAllocSize() {
return gParcelGlobalAllocSize.load();
}
size_t Parcel::getGlobalAllocCount() {
return gParcelGlobalAllocCount.load();
}
const uint8_t* Parcel::data() const
{
return mData;
}
size_t Parcel::dataSize() const
{
return (mDataSize > mDataPos ? mDataSize : mDataPos);
}
size_t Parcel::dataAvail() const
{
size_t result = dataSize() - dataPosition();
if (result > INT32_MAX) {
LOG_ALWAYS_FATAL("result too big: %zu", result);
}
return result;
}
size_t Parcel::dataPosition() const
{
return mDataPos;
}
size_t Parcel::dataCapacity() const
{
return mDataCapacity;
}
status_t Parcel::setDataSize(size_t size)
{
if (size > INT32_MAX) {
// don't accept size_t values which may have come from an
// inadvertent conversion from a negative int.
return BAD_VALUE;
}
status_t err;
err = continueWrite(size);
if (err == NO_ERROR) {
mDataSize = size;
ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
}
return err;
}
void Parcel::setDataPosition(size_t pos) const
{
if (pos > INT32_MAX) {
// don't accept size_t values which may have come from an
// inadvertent conversion from a negative int.
LOG_ALWAYS_FATAL("pos too big: %zu", pos);
}
mDataPos = pos;
mNextObjectHint = 0;
}
status_t Parcel::setDataCapacity(size_t size)
{
if (size > INT32_MAX) {
// don't accept size_t values which may have come from an
// inadvertent conversion from a negative int.
return BAD_VALUE;
}
if (size > mDataCapacity) return continueWrite(size);
return NO_ERROR;
}
status_t Parcel::setData(const uint8_t* buffer, size_t len)
{
if (len > INT32_MAX) {
// don't accept size_t values which may have come from an
// inadvertent conversion from a negative int.
return BAD_VALUE;
}
status_t err = restartWrite(len);
if (err == NO_ERROR) {
memcpy(const_cast<uint8_t*>(data()), buffer, len);
mDataSize = len;
mFdsKnown = false;
}
return err;
}
void Parcel::markSensitive() const
{
mDeallocZero = true;
}
// Write RPC headers. (previously just the interface token)
status_t Parcel::writeInterfaceToken(const char* interface)
{
// currently the interface identification token is just its name as a string
return writeCString(interface);
}
bool Parcel::enforceInterface(const char* interface) const
{
const char* str = readCString();
if (str != nullptr && strcmp(str, interface) == 0) {
return true;
} else {
ALOGW("**** enforceInterface() expected '%s' but read '%s'",
interface, (str ? str : "<empty string>"));
return false;
}
}
const binder_size_t* Parcel::objects() const
{
return mObjects;
}
size_t Parcel::objectsCount() const
{
return mObjectsSize;
}
status_t Parcel::errorCheck() const
{
return mError;
}
void Parcel::setError(status_t err)
{
mError = err;
}
status_t Parcel::finishWrite(size_t len)
{
if (len > INT32_MAX) {
// don't accept size_t values which may have come from an
// inadvertent conversion from a negative int.
return BAD_VALUE;
}
//printf("Finish write of %d\n", len);
mDataPos += len;
ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
if (mDataPos > mDataSize) {
mDataSize = mDataPos;
ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
}
//printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
return NO_ERROR;
}
status_t Parcel::writeUnpadded(const void* data, size_t len)
{
if (len > INT32_MAX) {
// don't accept size_t values which may have come from an
// inadvertent conversion from a negative int.
return BAD_VALUE;
}
size_t end = mDataPos + len;
if (end < mDataPos) {
// integer overflow
return BAD_VALUE;
}
if (end <= mDataCapacity) {
restart_write:
memcpy(mData+mDataPos, data, len);
return finishWrite(len);
}
status_t err = growData(len);
if (err == NO_ERROR) goto restart_write;
return err;
}
status_t Parcel::write(const void* data, size_t len)
{
if (len > INT32_MAX) {
// don't accept size_t values which may have come from an
// inadvertent conversion from a negative int.
return BAD_VALUE;
}
void* const d = writeInplace(len);
if (d) {
memcpy(d, data, len);
return NO_ERROR;
}
return mError;
}
void* Parcel::writeInplace(size_t len)
{
if (len > INT32_MAX) {
// don't accept size_t values which may have come from an
// inadvertent conversion from a negative int.
return nullptr;
}
const size_t padded = pad_size(len);
// validate for integer overflow
if (mDataPos+padded < mDataPos) {
return nullptr;
}
if ((mDataPos+padded) <= mDataCapacity) {
restart_write:
//printf("Writing %ld bytes, padded to %ld\n", len, padded);
uint8_t* const data = mData+mDataPos;
// Need to pad at end?
if (padded != len) {
#if BYTE_ORDER == BIG_ENDIAN
static const uint32_t mask[4] = {
0x00000000, 0xffffff00, 0xffff0000, 0xff000000
};
#endif
#if BYTE_ORDER == LITTLE_ENDIAN
static const uint32_t mask[4] = {
0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
};
#endif
//printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
// *reinterpret_cast<void**>(data+padded-4));
*reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
}
finishWrite(padded);
return data;
}
status_t err = growData(padded);
if (err == NO_ERROR) goto restart_write;
return nullptr;
}
status_t Parcel::writeInt8(int8_t val)
{
return write(&val, sizeof(val));
}
status_t Parcel::writeUint8(uint8_t val)
{
return write(&val, sizeof(val));
}
status_t Parcel::writeInt16(int16_t val)
{
return write(&val, sizeof(val));
}
status_t Parcel::writeUint16(uint16_t val)
{
return write(&val, sizeof(val));
}
status_t Parcel::writeInt32(int32_t val)
{
return writeAligned(val);
}
status_t Parcel::writeUint32(uint32_t val)
{
return writeAligned(val);
}
status_t Parcel::writeBool(bool val)
{
return writeInt8(int8_t(val));
}
status_t Parcel::writeInt64(int64_t val)
{
return writeAligned(val);
}
status_t Parcel::writeUint64(uint64_t val)
{
return writeAligned(val);
}
status_t Parcel::writePointer(uintptr_t val)
{
return writeAligned<binder_uintptr_t>(val);
}
status_t Parcel::writeFloat(float val)
{
return writeAligned(val);
}
#if defined(__mips__) && defined(__mips_hard_float)
status_t Parcel::writeDouble(double val)
{
union {
double d;
unsigned long long ll;
} u;
u.d = val;
return writeAligned(u.ll);
}
#else
status_t Parcel::writeDouble(double val)
{
return writeAligned(val);
}
#endif
status_t Parcel::writeCString(const char* str)
{
return write(str, strlen(str)+1);
}
status_t Parcel::writeString16(const std::unique_ptr<String16>& str)
{
if (!str) {
return writeInt32(-1);
}
return writeString16(*str);
}
status_t Parcel::writeString16(const String16& str)
{
return writeString16(str.string(), str.size());
}
status_t Parcel::writeString16(const char16_t* str, size_t len)
{
if (str == nullptr) return writeInt32(-1);
status_t err = writeInt32(len);
if (err == NO_ERROR) {
len *= sizeof(char16_t);
uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
if (data) {
memcpy(data, str, len);
*reinterpret_cast<char16_t*>(data+len) = 0;
return NO_ERROR;
}
err = mError;
}
return err;
}
status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
{
return flatten_binder(ProcessState::self(), val, this);
}
template <typename T>
status_t Parcel::writeObject(const T& val)
{
const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
const bool enoughObjects = mObjectsSize < mObjectsCapacity;
if (enoughData && enoughObjects) {
restart_write:
*reinterpret_cast<T*>(mData+mDataPos) = val;
const binder_object_header* hdr = reinterpret_cast<binder_object_header*>(mData+mDataPos);
switch (hdr->type) {
case BINDER_TYPE_BINDER:
case BINDER_TYPE_WEAK_BINDER:
case BINDER_TYPE_HANDLE:
case BINDER_TYPE_WEAK_HANDLE: {
const flat_binder_object *fbo = reinterpret_cast<const flat_binder_object*>(hdr);
if (fbo->binder != 0) {
mObjects[mObjectsSize++] = mDataPos;
acquire_binder_object(ProcessState::self(), *fbo, this);
}
break;
}
case BINDER_TYPE_FD: {
// remember if it's a file descriptor
if (!mAllowFds) {
// fail before modifying our object index
return FDS_NOT_ALLOWED;
}
mHasFds = mFdsKnown = true;
mObjects[mObjectsSize++] = mDataPos;
break;
}
case BINDER_TYPE_FDA:
mObjects[mObjectsSize++] = mDataPos;
break;
case BINDER_TYPE_PTR: {
const binder_buffer_object *buffer_obj = reinterpret_cast<
const binder_buffer_object*>(hdr);
if ((void *)buffer_obj->buffer != nullptr) {
mObjects[mObjectsSize++] = mDataPos;
}
break;
}
default: {
ALOGE("writeObject: unknown type %d", hdr->type);
break;
}
}
return finishWrite(sizeof(val));
}
if (!enoughData) {
const status_t err = growData(sizeof(val));
if (err != NO_ERROR) return err;
}
if (!enoughObjects) {
if (mObjectsSize > SIZE_MAX - 2) return NO_MEMORY; // overflow
if (mObjectsSize + 2 > SIZE_MAX / 3) return NO_MEMORY; // overflow
size_t newSize = ((mObjectsSize+2)*3)/2;
if (newSize > SIZE_MAX / sizeof(binder_size_t)) return NO_MEMORY; // overflow
binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
if (objects == nullptr) return NO_MEMORY;
mObjects = objects;
mObjectsCapacity = newSize;
}
goto restart_write;
}
template status_t Parcel::writeObject<flat_binder_object>(const flat_binder_object& val);
template status_t Parcel::writeObject<binder_fd_object>(const binder_fd_object& val);
template status_t Parcel::writeObject<binder_buffer_object>(const binder_buffer_object& val);
template status_t Parcel::writeObject<binder_fd_array_object>(const binder_fd_array_object& val);
bool Parcel::validateBufferChild(size_t child_buffer_handle,
size_t child_offset) const {
if (child_buffer_handle >= mObjectsSize)
return false;
binder_buffer_object *child = reinterpret_cast<binder_buffer_object*>
(mData + mObjects[child_buffer_handle]);
if (child->hdr.type != BINDER_TYPE_PTR || child_offset > child->length) {
// Parent object not a buffer, or not large enough
LOG_BUFFER("writeEmbeddedReference found weird child. "
"child_offset = %zu, child->length = %zu",
child_offset, (size_t)child->length);
return false;
}
return true;
}
bool Parcel::validateBufferParent(size_t parent_buffer_handle,
size_t parent_offset) const {
if (parent_buffer_handle >= mObjectsSize)
return false;
binder_buffer_object *parent = reinterpret_cast<binder_buffer_object*>
(mData + mObjects[parent_buffer_handle]);
if (parent->hdr.type != BINDER_TYPE_PTR ||
sizeof(binder_uintptr_t) > parent->length ||
parent_offset > parent->length - sizeof(binder_uintptr_t)) {
// Parent object not a buffer, or not large enough
return false;
}
return true;
}
status_t Parcel::writeEmbeddedBuffer(
const void *buffer, size_t length, size_t *handle,
size_t parent_buffer_handle, size_t parent_offset) {
LOG_BUFFER("writeEmbeddedBuffer(%p, %zu, parent = (%zu, %zu)) -> %zu",
buffer, length, parent_buffer_handle,
parent_offset, mObjectsSize);
if(!validateBufferParent(parent_buffer_handle, parent_offset))
return BAD_VALUE;
binder_buffer_object obj = {
.hdr = { .type = BINDER_TYPE_PTR },
.flags = BINDER_BUFFER_FLAG_HAS_PARENT,
.buffer = reinterpret_cast<binder_uintptr_t>(buffer),
.length = length,
.parent = parent_buffer_handle,
.parent_offset = parent_offset,
};
if (handle != nullptr) {
// We use an index into mObjects as a handle
*handle = mObjectsSize;
}
return writeObject(obj);
}
status_t Parcel::writeBuffer(const void *buffer, size_t length, size_t *handle)
{
LOG_BUFFER("writeBuffer(%p, %zu) -> %zu",
buffer, length, mObjectsSize);
binder_buffer_object obj {
.hdr = { .type = BINDER_TYPE_PTR },
.flags = 0,
.buffer = reinterpret_cast<binder_uintptr_t>(buffer),
.length = length,
};
if (handle != nullptr) {
// We use an index into mObjects as a handle
*handle = mObjectsSize;
}
return writeObject(obj);
}
void Parcel::clearCache() const {
LOG_BUFFER("clearing cache.");
mBufCachePos = 0;
mBufCache.clear();
}
void Parcel::updateCache() const {
if(mBufCachePos == mObjectsSize)
return;
LOG_BUFFER("updating cache from %zu to %zu", mBufCachePos, mObjectsSize);
for(size_t i = mBufCachePos; i < mObjectsSize; i++) {
binder_size_t dataPos = mObjects[i];
binder_buffer_object *obj =
reinterpret_cast<binder_buffer_object*>(mData+dataPos);
if(obj->hdr.type != BINDER_TYPE_PTR)
continue;
BufferInfo ifo;
ifo.index = i;
ifo.buffer = obj->buffer;
ifo.bufend = obj->buffer + obj->length;
mBufCache.push_back(ifo);
}
mBufCachePos = mObjectsSize;
}
/* O(n) (n=#buffers) to find a buffer that contains the given addr */
status_t Parcel::findBuffer(const void *ptr, size_t length, bool *found,
size_t *handle, size_t *offset) const {
if(found == nullptr)
return UNKNOWN_ERROR;
updateCache();
binder_uintptr_t ptrVal = reinterpret_cast<binder_uintptr_t>(ptr);
// true if the pointer is in some buffer, but the length is too big
// so that ptr + length doesn't fit into the buffer.
bool suspectRejectBadPointer = false;
LOG_BUFFER("findBuffer examining %zu objects.", mObjectsSize);
for(auto entry = mBufCache.rbegin(); entry != mBufCache.rend(); ++entry ) {
if(entry->buffer <= ptrVal && ptrVal < entry->bufend) {
// might have found it.
if(ptrVal + length <= entry->bufend) {
*found = true;
if(handle != nullptr) *handle = entry->index;
if(offset != nullptr) *offset = ptrVal - entry->buffer;
LOG_BUFFER(" findBuffer has a match at %zu!", entry->index);
return OK;
} else {
suspectRejectBadPointer = true;
}
}
}
LOG_BUFFER("findBuffer did not find for ptr = %p.", ptr);
*found = false;
return suspectRejectBadPointer ? BAD_VALUE : OK;
}
/* findBuffer with the assumption that ptr = .buffer (so it points to top
* of the buffer, aka offset 0).
* */
status_t Parcel::quickFindBuffer(const void *ptr, size_t *handle) const {
updateCache();
binder_uintptr_t ptrVal = reinterpret_cast<binder_uintptr_t>(ptr);
LOG_BUFFER("quickFindBuffer examining %zu objects.", mObjectsSize);
for(auto entry = mBufCache.rbegin(); entry != mBufCache.rend(); ++entry ) {
if(entry->buffer == ptrVal) {
if(handle != nullptr) *handle = entry->index;
return OK;
}
}
LOG_BUFFER("quickFindBuffer did not find for ptr = %p.", ptr);
return NO_INIT;
}
status_t Parcel::writeNativeHandleNoDup(const native_handle_t *handle,
bool embedded,
size_t parent_buffer_handle,
size_t parent_offset)
{
size_t buffer_handle;
status_t status = OK;
if (handle == nullptr) {
status = writeUint64(0);
return status;
}
size_t native_handle_size = sizeof(native_handle_t)
+ handle->numFds * sizeof(int) + handle->numInts * sizeof(int);
writeUint64(native_handle_size);
if (embedded) {
status = writeEmbeddedBuffer((void*) handle,
native_handle_size, &buffer_handle,
parent_buffer_handle, parent_offset);
} else {
status = writeBuffer((void*) handle, native_handle_size, &buffer_handle);
}
if (status != OK) {
return status;
}
struct binder_fd_array_object fd_array {
.hdr = { .type = BINDER_TYPE_FDA },
.num_fds = static_cast<binder_size_t>(handle->numFds),
.parent = buffer_handle,
.parent_offset = offsetof(native_handle_t, data),
};
return writeObject(fd_array);
}
status_t Parcel::writeNativeHandleNoDup(const native_handle_t *handle)
{
return writeNativeHandleNoDup(handle, false /* embedded */);
}
status_t Parcel::writeEmbeddedNativeHandle(const native_handle_t *handle,
size_t parent_buffer_handle,
size_t parent_offset)
{
return writeNativeHandleNoDup(handle, true /* embedded */,
parent_buffer_handle, parent_offset);
}
status_t Parcel::read(void* outData, size_t len) const
{
if (len > INT32_MAX) {
// don't accept size_t values which may have come from an
// inadvertent conversion from a negative int.
return BAD_VALUE;
}
if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
&& len <= pad_size(len)) {
memcpy(outData, mData+mDataPos, len);
mDataPos += pad_size(len);
ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
return NO_ERROR;
}
return NOT_ENOUGH_DATA;
}
const void* Parcel::readInplace(size_t len) const
{
if (len > INT32_MAX) {
// don't accept size_t values which may have come from an
// inadvertent conversion from a negative int.
return nullptr;
}
if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
&& len <= pad_size(len)) {
const void* data = mData+mDataPos;
mDataPos += pad_size(len);
ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
return data;
}
return nullptr;
}
template<class T>
status_t Parcel::readAligned(T *pArg) const {
static_assert(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
if ((mDataPos+sizeof(T)) <= mDataSize) {
const void* data = mData+mDataPos;
mDataPos += sizeof(T);
*pArg = *reinterpret_cast<const T*>(data);
return NO_ERROR;
} else {
return NOT_ENOUGH_DATA;
}
}
template<class T>
T Parcel::readAligned() const {
T result;
if (readAligned(&result) != NO_ERROR) {
result = 0;
}
return result;
}
template<class T>
status_t Parcel::writeAligned(T val) {
static_assert(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
if ((mDataPos+sizeof(val)) <= mDataCapacity) {
restart_write:
*reinterpret_cast<T*>(mData+mDataPos) = val;
return finishWrite(sizeof(val));
}
status_t err = growData(sizeof(val));
if (err == NO_ERROR) goto restart_write;
return err;
}
status_t Parcel::readInt8(int8_t *pArg) const
{
return read(pArg, sizeof(*pArg));
}
status_t Parcel::readUint8(uint8_t *pArg) const
{
return read(pArg, sizeof(*pArg));
}
status_t Parcel::readInt16(int16_t *pArg) const
{
return read(pArg, sizeof(*pArg));
}
status_t Parcel::readUint16(uint16_t *pArg) const
{
return read(pArg, sizeof(*pArg));
}
status_t Parcel::readInt32(int32_t *pArg) const
{
return readAligned(pArg);
}
int32_t Parcel::readInt32() const
{
return readAligned<int32_t>();
}
status_t Parcel::readUint32(uint32_t *pArg) const
{
return readAligned(pArg);
}
uint32_t Parcel::readUint32() const
{
return readAligned<uint32_t>();
}
status_t Parcel::readInt64(int64_t *pArg) const
{
return readAligned(pArg);
}
int64_t Parcel::readInt64() const
{
return readAligned<int64_t>();
}
status_t Parcel::readUint64(uint64_t *pArg) const
{
return readAligned(pArg);
}
uint64_t Parcel::readUint64() const
{
return readAligned<uint64_t>();
}
status_t Parcel::readPointer(uintptr_t *pArg) const
{
status_t ret;
binder_uintptr_t ptr;
ret = readAligned(&ptr);
if (!ret)
*pArg = ptr;
return ret;
}
uintptr_t Parcel::readPointer() const
{
return readAligned<binder_uintptr_t>();
}
status_t Parcel::readFloat(float *pArg) const
{
return readAligned(pArg);
}
float Parcel::readFloat() const
{
return readAligned<float>();
}
#if defined(__mips__) && defined(__mips_hard_float)
status_t Parcel::readDouble(double *pArg) const
{
union {
double d;
unsigned long long ll;
} u;
u.d = 0;
status_t status;
status = readAligned(&u.ll);
*pArg = u.d;
return status;
}
double Parcel::readDouble() const
{
union {
double d;
unsigned long long ll;
} u;
u.ll = readAligned<unsigned long long>();
return u.d;
}
#else
status_t Parcel::readDouble(double *pArg) const
{
return readAligned(pArg);
}
double Parcel::readDouble() const
{
return readAligned<double>();
}
#endif
status_t Parcel::readBool(bool *pArg) const
{
int8_t tmp;
status_t ret = readInt8(&tmp);
*pArg = (tmp != 0);
return ret;
}
bool Parcel::readBool() const
{
int8_t tmp;
status_t err = readInt8(&tmp);
if (err != OK) {
return 0;
}
return tmp != 0;
}
const char* Parcel::readCString() const
{
if (mDataPos < mDataSize) {
const size_t avail = mDataSize-mDataPos;
const char* str = reinterpret_cast<const char*>(mData+mDataPos);
// is the string's trailing NUL within the parcel's valid bounds?
const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
if (eos) {
const size_t len = eos - str;
mDataPos += pad_size(len+1);
ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos);
return str;
}
}
return nullptr;
}
String16 Parcel::readString16() const
{
size_t len;
const char16_t* str = readString16Inplace(&len);
if (str) return String16(str, len);
ALOGE("Reading a NULL string not supported here.");
return String16();
}
status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const
{
const int32_t start = dataPosition();
int32_t size;
status_t status = readInt32(&size);
pArg->reset();
if (status != OK || size < 0) {
return status;
}
setDataPosition(start);
pArg->reset(new (std::nothrow) String16());
status = readString16(pArg->get());
if (status != OK) {
pArg->reset();
}
return status;
}
status_t Parcel::readString16(String16* pArg) const
{
size_t len;
const char16_t* str = readString16Inplace(&len);
if (str) {
pArg->setTo(str, len);
return 0;
} else {
*pArg = String16();
return UNEXPECTED_NULL;
}
}
const char16_t* Parcel::readString16Inplace(size_t* outLen) const
{
int32_t size = readInt32();
// watch for potential int overflow from size+1
if (size >= 0 && size < INT32_MAX) {
*outLen = size;
const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
if (str != nullptr) {
return str;
}
}
*outLen = 0;
return nullptr;
}
status_t Parcel::readStrongBinder(sp<IBinder>* val) const
{
status_t status = readNullableStrongBinder(val);
if (status == OK && !val->get()) {
status = UNEXPECTED_NULL;
}
return status;
}
status_t Parcel::readNullableStrongBinder(sp<IBinder>* val) const
{
return unflatten_binder(ProcessState::self(), *this, val);
}
sp<IBinder> Parcel::readStrongBinder() const
{
sp<IBinder> val;
// Note that a lot of code in Android reads binders by hand with this
// method, and that code has historically been ok with getting nullptr
// back (while ignoring error codes).
readNullableStrongBinder(&val);
return val;
}
template<typename T>
const T* Parcel::readObject(size_t *objects_offset) const
{
const size_t DPOS = mDataPos;
if (objects_offset != nullptr) {
*objects_offset = 0;
}
if ((DPOS+sizeof(T)) <= mDataSize) {
const T* obj = reinterpret_cast<const T*>(mData+DPOS);
mDataPos = DPOS + sizeof(T);
const binder_object_header *hdr = reinterpret_cast<const binder_object_header*>(obj);
switch (hdr->type) {
case BINDER_TYPE_BINDER:
case BINDER_TYPE_WEAK_BINDER:
case BINDER_TYPE_HANDLE:
case BINDER_TYPE_WEAK_HANDLE: {
const flat_binder_object *flat_obj =
reinterpret_cast<const flat_binder_object*>(hdr);
if (flat_obj->cookie == 0 && flat_obj->binder == 0) {
// When transferring a NULL binder object, we don't write it into
// the object list, so we don't want to check for it when
// reading.
ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
return obj;
}
break;
}
case BINDER_TYPE_FD:
case BINDER_TYPE_FDA:
// fd (-arrays) must always appear in the meta-data list (eg touched by the kernel)
break;
case BINDER_TYPE_PTR: {
const binder_buffer_object *buffer_obj =
reinterpret_cast<const binder_buffer_object*>(hdr);
if ((void *)buffer_obj->buffer == nullptr) {
// null pointers can be returned directly - they're not written in the
// object list. All non-null buffers must appear in the objects list.
return obj;
}
break;
}
}
// Ensure that this object is valid...
binder_size_t* const OBJS = mObjects;
const size_t N = mObjectsSize;
size_t opos = mNextObjectHint;
if (N > 0) {
ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
this, DPOS, opos);
// Start at the current hint position, looking for an object at
// the current data position.
if (opos < N) {
while (opos < (N-1) && OBJS[opos] < DPOS) {
opos++;
}
} else {
opos = N-1;
}
if (OBJS[opos] == DPOS) {
// Found it!
ALOGV("Parcel %p found obj %zu at index %zu with forward search",
this, DPOS, opos);
mNextObjectHint = opos+1;
ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
if (objects_offset != nullptr) {
*objects_offset = opos;
}
return obj;
}
// Look backwards for it...
while (opos > 0 && OBJS[opos] > DPOS) {
opos--;
}
if (OBJS[opos] == DPOS) {
// Found it!
ALOGV("Parcel %p found obj %zu at index %zu with backward search",
this, DPOS, opos);
mNextObjectHint = opos+1;
ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
if (objects_offset != nullptr) {
*objects_offset = opos;
}
return obj;
}
}
ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list",
this, DPOS);
}
return nullptr;
}
template const flat_binder_object* Parcel::readObject<flat_binder_object>(size_t *objects_offset) const;
template const binder_fd_object* Parcel::readObject<binder_fd_object>(size_t *objects_offset) const;
template const binder_buffer_object* Parcel::readObject<binder_buffer_object>(size_t *objects_offset) const;
template const binder_fd_array_object* Parcel::readObject<binder_fd_array_object>(size_t *objects_offset) const;
bool Parcel::verifyBufferObject(const binder_buffer_object *buffer_obj,
size_t size, uint32_t flags, size_t parent,
size_t parentOffset) const {
if (buffer_obj->length != size) {
ALOGE("Buffer length %" PRIu64 " does not match expected size %zu.",
static_cast<uint64_t>(buffer_obj->length), size);
return false;
}
if (buffer_obj->flags != flags) {
ALOGE("Buffer flags 0x%02X do not match expected flags 0x%02X.", buffer_obj->flags, flags);
return false;
}
if (flags & BINDER_BUFFER_FLAG_HAS_PARENT) {
if (buffer_obj->parent != parent) {
ALOGE("Buffer parent %" PRIu64 " does not match expected parent %zu.",
static_cast<uint64_t>(buffer_obj->parent), parent);
return false;
}
if (buffer_obj->parent_offset != parentOffset) {
ALOGE("Buffer parent offset %" PRIu64 " does not match expected offset %zu.",
static_cast<uint64_t>(buffer_obj->parent_offset), parentOffset);
return false;
}
binder_buffer_object *parentBuffer =
reinterpret_cast<binder_buffer_object*>(mData + mObjects[parent]);
void* bufferInParent = *reinterpret_cast<void**>(
reinterpret_cast<uint8_t*>(parentBuffer->buffer) + parentOffset);
void* childBuffer = reinterpret_cast<void*>(buffer_obj->buffer);
if (bufferInParent != childBuffer) {
ALOGE("Buffer in parent %p differs from embedded buffer %p",
bufferInParent, childBuffer);
android_errorWriteLog(0x534e4554, "179289794");
return false;
}
}
return true;
}
status_t Parcel::readBuffer(size_t buffer_size, size_t *buffer_handle,
uint32_t flags, size_t parent, size_t parentOffset,
const void **buffer_out) const {
const binder_buffer_object* buffer_obj = readObject<binder_buffer_object>(buffer_handle);
if (buffer_obj == nullptr || buffer_obj->hdr.type != BINDER_TYPE_PTR) {
return BAD_VALUE;
}
if (!verifyBufferObject(buffer_obj, buffer_size, flags, parent, parentOffset)) {
return BAD_VALUE;
}
// in read side, always use .buffer and .length.
*buffer_out = reinterpret_cast<void*>(buffer_obj->buffer);
return OK;
}
status_t Parcel::readNullableBuffer(size_t buffer_size, size_t *buffer_handle,
const void **buffer_out) const
{
return readBuffer(buffer_size, buffer_handle,
0 /* flags */, 0 /* parent */, 0 /* parentOffset */,
buffer_out);
}
status_t Parcel::readBuffer(size_t buffer_size, size_t *buffer_handle,
const void **buffer_out) const
{
status_t status = readNullableBuffer(buffer_size, buffer_handle, buffer_out);
if (status == OK && *buffer_out == nullptr) {
return UNEXPECTED_NULL;
}
return status;
}
status_t Parcel::readEmbeddedBuffer(size_t buffer_size,
size_t *buffer_handle,
size_t parent_buffer_handle,
size_t parent_offset,
const void **buffer_out) const
{
status_t status = readNullableEmbeddedBuffer(buffer_size, buffer_handle,
parent_buffer_handle,
parent_offset, buffer_out);
if (status == OK && *buffer_out == nullptr) {
return UNEXPECTED_NULL;
}
return status;
}
status_t Parcel::readNullableEmbeddedBuffer(size_t buffer_size,
size_t *buffer_handle,
size_t parent_buffer_handle,
size_t parent_offset,
const void **buffer_out) const
{
return readBuffer(buffer_size, buffer_handle, BINDER_BUFFER_FLAG_HAS_PARENT,
parent_buffer_handle, parent_offset, buffer_out);
}
status_t Parcel::readEmbeddedNativeHandle(size_t parent_buffer_handle,
size_t parent_offset,
const native_handle_t **handle) const
{
status_t status = readNullableEmbeddedNativeHandle(parent_buffer_handle, parent_offset, handle);
if (status == OK && *handle == nullptr) {
return UNEXPECTED_NULL;
}
return status;
}
status_t Parcel::readNullableNativeHandleNoDup(const native_handle_t **handle,
bool embedded,
size_t parent_buffer_handle,
size_t parent_offset) const
{
uint64_t nativeHandleSize;
status_t status = readUint64(&nativeHandleSize);
if (status != OK) {
return BAD_VALUE;
}
if (nativeHandleSize == 0) {
// If !embedded, then parent_* vars are 0 and don't actually correspond
// to anything. In that case, we're actually reading this data into
// writable memory, and the handle returned from here will actually be
// used (rather than be ignored).
if (embedded) {
binder_buffer_object *parentBuffer =
reinterpret_cast<binder_buffer_object*>(mData + mObjects[parent_buffer_handle]);
void* bufferInParent = *reinterpret_cast<void**>(
reinterpret_cast<uint8_t*>(parentBuffer->buffer) + parent_offset);
if (bufferInParent != nullptr) {
ALOGE("Buffer in (handle) parent %p is not nullptr.", bufferInParent);
android_errorWriteLog(0x534e4554, "179289794");
return BAD_VALUE;
}
}
*handle = nullptr;
return status;
}
if (nativeHandleSize < sizeof(native_handle_t)) {
ALOGE("Received a native_handle_t size that was too small.");
return BAD_VALUE;
}
size_t fdaParent;
if (embedded) {
status = readNullableEmbeddedBuffer(nativeHandleSize, &fdaParent,
parent_buffer_handle, parent_offset,
reinterpret_cast<const void**>(handle));
} else {
status = readNullableBuffer(nativeHandleSize, &fdaParent,
reinterpret_cast<const void**>(handle));
}
if (status != OK) {
return status;
}
if (*handle == nullptr) {
// null handle already read above
ALOGE("Expecting non-null handle buffer");
return BAD_VALUE;
}
int numFds = (*handle)->numFds;
int numInts = (*handle)->numInts;
if (numFds < 0 || numFds > NATIVE_HANDLE_MAX_FDS) {
ALOGE("Received native_handle with invalid number of fds.");
return BAD_VALUE;
}
if (numInts < 0 || numInts > NATIVE_HANDLE_MAX_INTS) {
ALOGE("Received native_handle with invalid number of ints.");
return BAD_VALUE;
}
if (nativeHandleSize != (sizeof(native_handle_t) + ((numFds + numInts) * sizeof(int)))) {
ALOGE("Size of native_handle doesn't match.");
return BAD_VALUE;
}
const binder_fd_array_object* fd_array_obj = readObject<binder_fd_array_object>();
if (fd_array_obj == nullptr || fd_array_obj->hdr.type != BINDER_TYPE_FDA) {
ALOGE("Can't find file-descriptor array object.");
return BAD_VALUE;
}
if (static_cast<int>(fd_array_obj->num_fds) != numFds) {
ALOGE("Number of native handles does not match.");
return BAD_VALUE;
}
if (fd_array_obj->parent != fdaParent) {
ALOGE("Parent handle of file-descriptor array not correct.");
return BAD_VALUE;
}
if (fd_array_obj->parent_offset != offsetof(native_handle_t, data)) {
ALOGE("FD array object not properly offset in parent.");
return BAD_VALUE;
}
return OK;
}
status_t Parcel::readNullableEmbeddedNativeHandle(size_t parent_buffer_handle,
size_t parent_offset,
const native_handle_t **handle) const
{
return readNullableNativeHandleNoDup(handle, true /* embedded */, parent_buffer_handle,
parent_offset);
}
status_t Parcel::readNativeHandleNoDup(const native_handle_t **handle) const
{
status_t status = readNullableNativeHandleNoDup(handle);
if (status == OK && *handle == nullptr) {
return UNEXPECTED_NULL;
}
return status;
}
status_t Parcel::readNullableNativeHandleNoDup(const native_handle_t **handle) const
{
return readNullableNativeHandleNoDup(handle, false /* embedded */);
}
void Parcel::closeFileDescriptors()
{
size_t i = mObjectsSize;
if (i > 0) {
//ALOGI("Closing file descriptors for %zu objects...", i);
}
while (i > 0) {
i--;
const flat_binder_object* flat
= reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
if (flat->hdr.type == BINDER_TYPE_FD) {
//ALOGI("Closing fd: %ld", flat->handle);
close(flat->handle);
}
}
}
uintptr_t Parcel::ipcData() const
{
return reinterpret_cast<uintptr_t>(mData);
}
size_t Parcel::ipcDataSize() const
{
return mDataSize > mDataPos ? mDataSize : mDataPos;
}
uintptr_t Parcel::ipcObjects() const
{
return reinterpret_cast<uintptr_t>(mObjects);
}
size_t Parcel::ipcObjectsCount() const
{
return mObjectsSize;
}
#define BUFFER_ALIGNMENT_BYTES 8
size_t Parcel::ipcBufferSize() const
{
size_t totalBuffersSize = 0;
// Add size for BINDER_TYPE_PTR
size_t i = mObjectsSize;
while (i > 0) {
i--;
const binder_buffer_object* buffer
= reinterpret_cast<binder_buffer_object*>(mData+mObjects[i]);
if (buffer->hdr.type == BINDER_TYPE_PTR) {
/* The binder kernel driver requires each buffer to be 8-byte
* aligned */
size_t alignedSize = (buffer->length + (BUFFER_ALIGNMENT_BYTES - 1))
& ~(BUFFER_ALIGNMENT_BYTES - 1);
if (alignedSize > SIZE_MAX - totalBuffersSize) {
ALOGE("ipcBuffersSize(): invalid buffer sizes.");
return 0;
}
totalBuffersSize += alignedSize;
}
}
return totalBuffersSize;
}
void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)
{
binder_size_t minOffset = 0;
freeDataNoInit();
mError = NO_ERROR;
mData = const_cast<uint8_t*>(data);
mDataSize = mDataCapacity = dataSize;
//ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid());
mDataPos = 0;
ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos);
mObjects = const_cast<binder_size_t*>(objects);
mObjectsSize = mObjectsCapacity = objectsCount;
mNextObjectHint = 0;
clearCache();
mOwner = relFunc;
mOwnerCookie = relCookie;
for (size_t i = 0; i < mObjectsSize; i++) {
binder_size_t offset = mObjects[i];
if (offset < minOffset) {
ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
__func__, (uint64_t)offset, (uint64_t)minOffset);
mObjectsSize = 0;
break;
}
minOffset = offset + sizeof(flat_binder_object);
}
scanForFds();
}
void Parcel::print(TextOutput& to, uint32_t /*flags*/) const
{
to << "Parcel(";
if (errorCheck() != NO_ERROR) {
const status_t err = errorCheck();
to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
} else if (dataSize() > 0) {
const uint8_t* DATA = data();
to << indent << HexDump(DATA, dataSize()) << dedent;
const binder_size_t* OBJS = objects();
const size_t N = objectsCount();
for (size_t i=0; i<N; i++) {
const flat_binder_object* flat
= reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);
if (flat->hdr.type == BINDER_TYPE_PTR) {
const binder_buffer_object* buffer
= reinterpret_cast<const binder_buffer_object*>(DATA+OBJS[i]);
HexDump bufferDump((const uint8_t*)buffer->buffer, (size_t)buffer->length);
bufferDump.setSingleLineCutoff(0);
to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << " (buffer size " << buffer->length << "):";
to << indent << bufferDump << dedent;
} else {
to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
<< TypeCode(flat->hdr.type & 0x7f7f7f00)
<< " = " << flat->binder;
}
}
} else {
to << "NULL";
}
to << ")";
}
void Parcel::releaseObjects()
{
const sp<ProcessState> proc(ProcessState::self());
size_t i = mObjectsSize;
uint8_t* const data = mData;
binder_size_t* const objects = mObjects;
while (i > 0) {
i--;
const flat_binder_object* flat
= reinterpret_cast<flat_binder_object*>(data+objects[i]);
release_object(proc, *flat, this);
}
}
void Parcel::acquireObjects()
{
const sp<ProcessState> proc(ProcessState::self());
size_t i = mObjectsSize;
uint8_t* const data = mData;
binder_size_t* const objects = mObjects;
while (i > 0) {
i--;
const binder_object_header* flat
= reinterpret_cast<binder_object_header*>(data+objects[i]);
acquire_object(proc, *flat, this);
}
}
void Parcel::freeData()
{
freeDataNoInit();
initState();
}
void Parcel::freeDataNoInit()
{
if (mOwner) {
LOG_ALLOC("Parcel %p: freeing other owner data", this);
//ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
} else {
LOG_ALLOC("Parcel %p: freeing allocated data", this);
releaseObjects();
if (mData) {
LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
gParcelGlobalAllocSize -= mDataCapacity;
gParcelGlobalAllocCount--;
if (mDeallocZero) {
zeroMemory(mData, mDataSize);
}
free(mData);
}
if (mObjects) free(mObjects);
}
}
status_t Parcel::growData(size_t len)
{
if (len > INT32_MAX) {
// don't accept size_t values which may have come from an
// inadvertent conversion from a negative int.
return BAD_VALUE;
}
if (len > SIZE_MAX - mDataSize) return NO_MEMORY; // overflow
if (mDataSize + len > SIZE_MAX / 3) return NO_MEMORY; // overflow
size_t newSize = ((mDataSize+len)*3)/2;
return continueWrite(newSize);
}
static uint8_t* reallocZeroFree(uint8_t* data, size_t oldCapacity, size_t newCapacity, bool zero) {
if (!zero) {
return (uint8_t*)realloc(data, newCapacity);
}
uint8_t* newData = (uint8_t*)malloc(newCapacity);
if (!newData) {
return nullptr;
}
memcpy(newData, data, std::min(oldCapacity, newCapacity));
zeroMemory(data, oldCapacity);
free(data);
return newData;
}
status_t Parcel::restartWrite(size_t desired)
{
if (desired > INT32_MAX) {
// don't accept size_t values which may have come from an
// inadvertent conversion from a negative int.
return BAD_VALUE;
}
if (mOwner) {
freeData();
return continueWrite(desired);
}
uint8_t* data = reallocZeroFree(mData, mDataCapacity, desired, mDeallocZero);
if (!data && desired > mDataCapacity) {
mError = NO_MEMORY;
return NO_MEMORY;
}
releaseObjects();
if (data || desired == 0) {
LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired);
if (mDataCapacity > desired) {
gParcelGlobalAllocSize -= (mDataCapacity - desired);
} else {
gParcelGlobalAllocSize += (desired - mDataCapacity);
}
if (!mData) {
gParcelGlobalAllocCount++;
}
mData = data;
mDataCapacity = desired;
}
mDataSize = mDataPos = 0;
ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize);
ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos);
free(mObjects);
mObjects = nullptr;
mObjectsSize = mObjectsCapacity = 0;
mNextObjectHint = 0;
mHasFds = false;
clearCache();
mFdsKnown = true;
mAllowFds = true;
return NO_ERROR;
}
status_t Parcel::continueWrite(size_t desired)
{
if (desired > INT32_MAX) {
// don't accept size_t values which may have come from an
// inadvertent conversion from a negative int.
return BAD_VALUE;
}
// If shrinking, first adjust for any objects that appear
// after the new data size.
size_t objectsSize = mObjectsSize;
if (desired < mDataSize) {
if (desired == 0) {
objectsSize = 0;
} else {
while (objectsSize > 0) {
if (mObjects[objectsSize-1] < desired)
break;
objectsSize--;
}
}
}
if (mOwner) {
// If the size is going to zero, just release the owner's data.
if (desired == 0) {
freeData();
return NO_ERROR;
}
// If there is a different owner, we need to take
// posession.
uint8_t* data = (uint8_t*)malloc(desired);
if (!data) {
mError = NO_MEMORY;
return NO_MEMORY;
}
binder_size_t* objects = nullptr;
if (objectsSize) {
objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
if (!objects) {
free(data);
mError = NO_MEMORY;
return NO_MEMORY;
}
// Little hack to only acquire references on objects
// we will be keeping.
size_t oldObjectsSize = mObjectsSize;
mObjectsSize = objectsSize;
acquireObjects();
mObjectsSize = oldObjectsSize;
}
if (mData) {
memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
}
if (objects && mObjects) {
memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t));
}
//ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
mOwner = nullptr;
LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
gParcelGlobalAllocSize += desired;
gParcelGlobalAllocCount++;
mData = data;
mObjects = objects;
mDataSize = (mDataSize < desired) ? mDataSize : desired;
ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
mDataCapacity = desired;
mObjectsSize = mObjectsCapacity = objectsSize;
mNextObjectHint = 0;
clearCache();
} else if (mData) {
if (objectsSize < mObjectsSize) {
// Need to release refs on any objects we are dropping.
const sp<ProcessState> proc(ProcessState::self());
for (size_t i=objectsSize; i<mObjectsSize; i++) {
const flat_binder_object* flat
= reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
if (flat->hdr.type == BINDER_TYPE_FD) {
// will need to rescan because we may have lopped off the only FDs
mFdsKnown = false;
}
release_object(proc, *flat, this);
}
if (objectsSize == 0) {
free(mObjects);
mObjects = nullptr;
} else {
binder_size_t* objects =
(binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t));
if (objects) {
mObjects = objects;
}
}
mObjectsSize = objectsSize;
mNextObjectHint = 0;
clearCache();
}
// We own the data, so we can just do a realloc().
if (desired > mDataCapacity) {
uint8_t* data = reallocZeroFree(mData, mDataCapacity, desired, mDeallocZero);
if (data) {
LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
desired);
gParcelGlobalAllocSize += desired;
gParcelGlobalAllocSize -= mDataCapacity;
mData = data;
mDataCapacity = desired;
} else {
mError = NO_MEMORY;
return NO_MEMORY;
}
} else {
if (mDataSize > desired) {
mDataSize = desired;
ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
}
if (mDataPos > desired) {
mDataPos = desired;
ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
}
}
} else {
// This is the first data. Easy!
uint8_t* data = (uint8_t*)malloc(desired);
if (!data) {
mError = NO_MEMORY;
return NO_MEMORY;
}
if(!(mDataCapacity == 0 && mObjects == nullptr
&& mObjectsCapacity == 0)) {
ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired);
}
LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
gParcelGlobalAllocSize += desired;
gParcelGlobalAllocCount++;
mData = data;
mDataSize = mDataPos = 0;
ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
mDataCapacity = desired;
}
return NO_ERROR;
}
void Parcel::initState()
{
LOG_ALLOC("Parcel %p: initState", this);
mError = NO_ERROR;
mData = nullptr;
mDataSize = 0;
mDataCapacity = 0;
mDataPos = 0;
ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
mObjects = nullptr;
mObjectsSize = 0;
mObjectsCapacity = 0;
mNextObjectHint = 0;
mHasFds = false;
mFdsKnown = true;
mAllowFds = true;
mDeallocZero = false;
mOwner = nullptr;
clearCache();
// racing multiple init leads only to multiple identical write
if (gMaxFds == 0) {
struct rlimit result;
if (!getrlimit(RLIMIT_NOFILE, &result)) {
gMaxFds = (size_t)result.rlim_cur;
//ALOGI("parcel fd limit set to %zu", gMaxFds);
} else {
ALOGW("Unable to getrlimit: %s", strerror(errno));
gMaxFds = 1024;
}
}
}
void Parcel::scanForFds() const
{
bool hasFds = false;
for (size_t i=0; i<mObjectsSize; i++) {
const flat_binder_object* flat
= reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);
if (flat->hdr.type == BINDER_TYPE_FD) {
hasFds = true;
break;
}
}
mHasFds = hasFds;
mFdsKnown = true;
}
} // namespace hardware
} // namespace android