566 lines
18 KiB
C++
566 lines
18 KiB
C++
/*
|
|
* Copyright (C) 2016 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
|
|
#include <functional>
|
|
#include <iomanip>
|
|
#include <mutex>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
|
|
#include <android-base/macros.h>
|
|
#include <android-base/strings.h>
|
|
#include <backtrace.h>
|
|
|
|
#include "Allocator.h"
|
|
#include "Binder.h"
|
|
#include "HeapWalker.h"
|
|
#include "Leak.h"
|
|
#include "LeakFolding.h"
|
|
#include "LeakPipe.h"
|
|
#include "ProcessMappings.h"
|
|
#include "PtracerThread.h"
|
|
#include "ScopedDisableMalloc.h"
|
|
#include "Semaphore.h"
|
|
#include "ThreadCapture.h"
|
|
|
|
#include "bionic.h"
|
|
#include "log.h"
|
|
#include "memunreachable/memunreachable.h"
|
|
|
|
using namespace std::chrono_literals;
|
|
|
|
namespace android {
|
|
|
|
const size_t Leak::contents_length;
|
|
|
|
class MemUnreachable {
|
|
public:
|
|
MemUnreachable(pid_t pid, Allocator<void> allocator)
|
|
: pid_(pid), allocator_(allocator), heap_walker_(allocator_) {}
|
|
bool CollectAllocations(const allocator::vector<ThreadInfo>& threads,
|
|
const allocator::vector<Mapping>& mappings,
|
|
const allocator::vector<uintptr_t>& refs);
|
|
bool GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit, size_t* num_leaks,
|
|
size_t* leak_bytes);
|
|
size_t Allocations() { return heap_walker_.Allocations(); }
|
|
size_t AllocationBytes() { return heap_walker_.AllocationBytes(); }
|
|
|
|
private:
|
|
bool ClassifyMappings(const allocator::vector<Mapping>& mappings,
|
|
allocator::vector<Mapping>& heap_mappings,
|
|
allocator::vector<Mapping>& anon_mappings,
|
|
allocator::vector<Mapping>& globals_mappings,
|
|
allocator::vector<Mapping>& stack_mappings);
|
|
DISALLOW_COPY_AND_ASSIGN(MemUnreachable);
|
|
pid_t pid_;
|
|
Allocator<void> allocator_;
|
|
HeapWalker heap_walker_;
|
|
};
|
|
|
|
static void HeapIterate(const Mapping& heap_mapping,
|
|
const std::function<void(uintptr_t, size_t)>& func) {
|
|
malloc_iterate(heap_mapping.begin, heap_mapping.end - heap_mapping.begin,
|
|
[](uintptr_t base, size_t size, void* arg) {
|
|
auto f = reinterpret_cast<const std::function<void(uintptr_t, size_t)>*>(arg);
|
|
(*f)(base, size);
|
|
},
|
|
const_cast<void*>(reinterpret_cast<const void*>(&func)));
|
|
}
|
|
|
|
bool MemUnreachable::CollectAllocations(const allocator::vector<ThreadInfo>& threads,
|
|
const allocator::vector<Mapping>& mappings,
|
|
const allocator::vector<uintptr_t>& refs) {
|
|
MEM_ALOGI("searching process %d for allocations", pid_);
|
|
|
|
for (auto it = mappings.begin(); it != mappings.end(); it++) {
|
|
heap_walker_.Mapping(it->begin, it->end);
|
|
}
|
|
|
|
allocator::vector<Mapping> heap_mappings{mappings};
|
|
allocator::vector<Mapping> anon_mappings{mappings};
|
|
allocator::vector<Mapping> globals_mappings{mappings};
|
|
allocator::vector<Mapping> stack_mappings{mappings};
|
|
if (!ClassifyMappings(mappings, heap_mappings, anon_mappings, globals_mappings, stack_mappings)) {
|
|
return false;
|
|
}
|
|
|
|
for (auto it = heap_mappings.begin(); it != heap_mappings.end(); it++) {
|
|
MEM_ALOGV("Heap mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
|
|
HeapIterate(*it,
|
|
[&](uintptr_t base, size_t size) { heap_walker_.Allocation(base, base + size); });
|
|
}
|
|
|
|
for (auto it = anon_mappings.begin(); it != anon_mappings.end(); it++) {
|
|
MEM_ALOGV("Anon mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
|
|
heap_walker_.Allocation(it->begin, it->end);
|
|
}
|
|
|
|
for (auto it = globals_mappings.begin(); it != globals_mappings.end(); it++) {
|
|
MEM_ALOGV("Globals mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
|
|
heap_walker_.Root(it->begin, it->end);
|
|
}
|
|
|
|
for (auto thread_it = threads.begin(); thread_it != threads.end(); thread_it++) {
|
|
for (auto it = stack_mappings.begin(); it != stack_mappings.end(); it++) {
|
|
if (thread_it->stack.first >= it->begin && thread_it->stack.first <= it->end) {
|
|
MEM_ALOGV("Stack %" PRIxPTR "-%" PRIxPTR " %s", thread_it->stack.first, it->end, it->name);
|
|
heap_walker_.Root(thread_it->stack.first, it->end);
|
|
}
|
|
}
|
|
heap_walker_.Root(thread_it->regs);
|
|
}
|
|
|
|
heap_walker_.Root(refs);
|
|
|
|
MEM_ALOGI("searching done");
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MemUnreachable::GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit,
|
|
size_t* num_leaks, size_t* leak_bytes) {
|
|
MEM_ALOGI("sweeping process %d for unreachable memory", pid_);
|
|
leaks.clear();
|
|
|
|
if (!heap_walker_.DetectLeaks()) {
|
|
return false;
|
|
}
|
|
|
|
allocator::vector<Range> leaked1{allocator_};
|
|
heap_walker_.Leaked(leaked1, 0, num_leaks, leak_bytes);
|
|
|
|
MEM_ALOGI("sweeping done");
|
|
|
|
MEM_ALOGI("folding related leaks");
|
|
|
|
LeakFolding folding(allocator_, heap_walker_);
|
|
if (!folding.FoldLeaks()) {
|
|
return false;
|
|
}
|
|
|
|
allocator::vector<LeakFolding::Leak> leaked{allocator_};
|
|
|
|
if (!folding.Leaked(leaked, num_leaks, leak_bytes)) {
|
|
return false;
|
|
}
|
|
|
|
allocator::unordered_map<Leak::Backtrace, Leak*> backtrace_map{allocator_};
|
|
|
|
// Prevent reallocations of backing memory so we can store pointers into it
|
|
// in backtrace_map.
|
|
leaks.reserve(leaked.size());
|
|
|
|
for (auto& it : leaked) {
|
|
leaks.emplace_back();
|
|
Leak* leak = &leaks.back();
|
|
|
|
ssize_t num_backtrace_frames = malloc_backtrace(
|
|
reinterpret_cast<void*>(it.range.begin), leak->backtrace.frames, leak->backtrace.max_frames);
|
|
if (num_backtrace_frames > 0) {
|
|
leak->backtrace.num_frames = num_backtrace_frames;
|
|
|
|
auto inserted = backtrace_map.emplace(leak->backtrace, leak);
|
|
if (!inserted.second) {
|
|
// Leak with same backtrace already exists, drop this one and
|
|
// increment similar counts on the existing one.
|
|
leaks.pop_back();
|
|
Leak* similar_leak = inserted.first->second;
|
|
similar_leak->similar_count++;
|
|
similar_leak->similar_size += it.range.size();
|
|
similar_leak->similar_referenced_count += it.referenced_count;
|
|
similar_leak->similar_referenced_size += it.referenced_size;
|
|
similar_leak->total_size += it.range.size();
|
|
similar_leak->total_size += it.referenced_size;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
leak->begin = it.range.begin;
|
|
leak->size = it.range.size();
|
|
leak->referenced_count = it.referenced_count;
|
|
leak->referenced_size = it.referenced_size;
|
|
leak->total_size = leak->size + leak->referenced_size;
|
|
memcpy(leak->contents, reinterpret_cast<void*>(it.range.begin),
|
|
std::min(leak->size, Leak::contents_length));
|
|
}
|
|
|
|
MEM_ALOGI("folding done");
|
|
|
|
std::sort(leaks.begin(), leaks.end(),
|
|
[](const Leak& a, const Leak& b) { return a.total_size > b.total_size; });
|
|
|
|
if (leaks.size() > limit) {
|
|
leaks.resize(limit);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool has_prefix(const allocator::string& s, const char* prefix) {
|
|
int ret = s.compare(0, strlen(prefix), prefix);
|
|
return ret == 0;
|
|
}
|
|
|
|
static bool is_sanitizer_mapping(const allocator::string& s) {
|
|
return s == "[anon:low shadow]" || s == "[anon:high shadow]" || has_prefix(s, "[anon:hwasan");
|
|
}
|
|
|
|
bool MemUnreachable::ClassifyMappings(const allocator::vector<Mapping>& mappings,
|
|
allocator::vector<Mapping>& heap_mappings,
|
|
allocator::vector<Mapping>& anon_mappings,
|
|
allocator::vector<Mapping>& globals_mappings,
|
|
allocator::vector<Mapping>& stack_mappings) {
|
|
heap_mappings.clear();
|
|
anon_mappings.clear();
|
|
globals_mappings.clear();
|
|
stack_mappings.clear();
|
|
|
|
allocator::string current_lib{allocator_};
|
|
|
|
for (auto it = mappings.begin(); it != mappings.end(); it++) {
|
|
if (it->execute) {
|
|
current_lib = it->name;
|
|
continue;
|
|
}
|
|
|
|
if (!it->read) {
|
|
continue;
|
|
}
|
|
|
|
const allocator::string mapping_name{it->name, allocator_};
|
|
if (mapping_name == "[anon:.bss]") {
|
|
// named .bss section
|
|
globals_mappings.emplace_back(*it);
|
|
} else if (mapping_name == current_lib) {
|
|
// .rodata or .data section
|
|
globals_mappings.emplace_back(*it);
|
|
} else if (mapping_name == "[anon:libc_malloc]" ||
|
|
android::base::StartsWith(mapping_name, "[anon:scudo:") ||
|
|
android::base::StartsWith(mapping_name, "[anon:GWP-ASan")) {
|
|
// named malloc mapping
|
|
heap_mappings.emplace_back(*it);
|
|
} else if (has_prefix(mapping_name, "[anon:dalvik-")) {
|
|
// named dalvik heap mapping
|
|
globals_mappings.emplace_back(*it);
|
|
} else if (has_prefix(mapping_name, "[stack")) {
|
|
// named stack mapping
|
|
stack_mappings.emplace_back(*it);
|
|
} else if (mapping_name.size() == 0) {
|
|
globals_mappings.emplace_back(*it);
|
|
} else if (has_prefix(mapping_name, "[anon:") &&
|
|
mapping_name != "[anon:leak_detector_malloc]" &&
|
|
!is_sanitizer_mapping(mapping_name)) {
|
|
// TODO(ccross): it would be nice to treat named anonymous mappings as
|
|
// possible leaks, but naming something in a .bss or .data section makes
|
|
// it impossible to distinguish them from mmaped and then named mappings.
|
|
globals_mappings.emplace_back(*it);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline const char* plural(T val) {
|
|
return (val == 1) ? "" : "s";
|
|
}
|
|
|
|
bool GetUnreachableMemory(UnreachableMemoryInfo& info, size_t limit) {
|
|
if (info.version > 0) {
|
|
MEM_ALOGE("unsupported UnreachableMemoryInfo.version %zu in GetUnreachableMemory",
|
|
info.version);
|
|
return false;
|
|
}
|
|
|
|
int parent_pid = getpid();
|
|
int parent_tid = gettid();
|
|
|
|
Heap heap;
|
|
|
|
Semaphore continue_parent_sem;
|
|
LeakPipe pipe;
|
|
|
|
PtracerThread thread{[&]() -> int {
|
|
/////////////////////////////////////////////
|
|
// Collection thread
|
|
/////////////////////////////////////////////
|
|
MEM_ALOGI("collecting thread info for process %d...", parent_pid);
|
|
|
|
ThreadCapture thread_capture(parent_pid, heap);
|
|
allocator::vector<ThreadInfo> thread_info(heap);
|
|
allocator::vector<Mapping> mappings(heap);
|
|
allocator::vector<uintptr_t> refs(heap);
|
|
|
|
// ptrace all the threads
|
|
if (!thread_capture.CaptureThreads()) {
|
|
continue_parent_sem.Post();
|
|
return 1;
|
|
}
|
|
|
|
// collect register contents and stacks
|
|
if (!thread_capture.CapturedThreadInfo(thread_info)) {
|
|
continue_parent_sem.Post();
|
|
return 1;
|
|
}
|
|
|
|
// snapshot /proc/pid/maps
|
|
if (!ProcessMappings(parent_pid, mappings)) {
|
|
continue_parent_sem.Post();
|
|
return 1;
|
|
}
|
|
|
|
if (!BinderReferences(refs)) {
|
|
continue_parent_sem.Post();
|
|
return 1;
|
|
}
|
|
|
|
// malloc must be enabled to call fork, at_fork handlers take the same
|
|
// locks as ScopedDisableMalloc. All threads are paused in ptrace, so
|
|
// memory state is still consistent. Unfreeze the original thread so it
|
|
// can drop the malloc locks, it will block until the collection thread
|
|
// exits.
|
|
thread_capture.ReleaseThread(parent_tid);
|
|
continue_parent_sem.Post();
|
|
|
|
// fork a process to do the heap walking
|
|
int ret = fork();
|
|
if (ret < 0) {
|
|
return 1;
|
|
} else if (ret == 0) {
|
|
/////////////////////////////////////////////
|
|
// Heap walker process
|
|
/////////////////////////////////////////////
|
|
// Examine memory state in the child using the data collected above and
|
|
// the CoW snapshot of the process memory contents.
|
|
|
|
if (!pipe.OpenSender()) {
|
|
_exit(1);
|
|
}
|
|
|
|
MemUnreachable unreachable{parent_pid, heap};
|
|
|
|
if (!unreachable.CollectAllocations(thread_info, mappings, refs)) {
|
|
_exit(2);
|
|
}
|
|
size_t num_allocations = unreachable.Allocations();
|
|
size_t allocation_bytes = unreachable.AllocationBytes();
|
|
|
|
allocator::vector<Leak> leaks{heap};
|
|
|
|
size_t num_leaks = 0;
|
|
size_t leak_bytes = 0;
|
|
bool ok = unreachable.GetUnreachableMemory(leaks, limit, &num_leaks, &leak_bytes);
|
|
|
|
ok = ok && pipe.Sender().Send(num_allocations);
|
|
ok = ok && pipe.Sender().Send(allocation_bytes);
|
|
ok = ok && pipe.Sender().Send(num_leaks);
|
|
ok = ok && pipe.Sender().Send(leak_bytes);
|
|
ok = ok && pipe.Sender().SendVector(leaks);
|
|
|
|
if (!ok) {
|
|
_exit(3);
|
|
}
|
|
|
|
_exit(0);
|
|
} else {
|
|
// Nothing left to do in the collection thread, return immediately,
|
|
// releasing all the captured threads.
|
|
MEM_ALOGI("collection thread done");
|
|
return 0;
|
|
}
|
|
}};
|
|
|
|
/////////////////////////////////////////////
|
|
// Original thread
|
|
/////////////////////////////////////////////
|
|
|
|
{
|
|
// Disable malloc to get a consistent view of memory
|
|
ScopedDisableMalloc disable_malloc;
|
|
|
|
// Start the collection thread
|
|
thread.Start();
|
|
|
|
// Wait for the collection thread to signal that it is ready to fork the
|
|
// heap walker process.
|
|
continue_parent_sem.Wait(30s);
|
|
|
|
// Re-enable malloc so the collection thread can fork.
|
|
}
|
|
|
|
// Wait for the collection thread to exit
|
|
int ret = thread.Join();
|
|
if (ret != 0) {
|
|
return false;
|
|
}
|
|
|
|
// Get a pipe from the heap walker process. Transferring a new pipe fd
|
|
// ensures no other forked processes can have it open, so when the heap
|
|
// walker process dies the remote side of the pipe will close.
|
|
if (!pipe.OpenReceiver()) {
|
|
return false;
|
|
}
|
|
|
|
bool ok = true;
|
|
ok = ok && pipe.Receiver().Receive(&info.num_allocations);
|
|
ok = ok && pipe.Receiver().Receive(&info.allocation_bytes);
|
|
ok = ok && pipe.Receiver().Receive(&info.num_leaks);
|
|
ok = ok && pipe.Receiver().Receive(&info.leak_bytes);
|
|
ok = ok && pipe.Receiver().ReceiveVector(info.leaks);
|
|
if (!ok) {
|
|
return false;
|
|
}
|
|
|
|
MEM_ALOGI("unreachable memory detection done");
|
|
MEM_ALOGE("%zu bytes in %zu allocation%s unreachable out of %zu bytes in %zu allocation%s",
|
|
info.leak_bytes, info.num_leaks, plural(info.num_leaks), info.allocation_bytes,
|
|
info.num_allocations, plural(info.num_allocations));
|
|
return true;
|
|
}
|
|
|
|
std::string Leak::ToString(bool log_contents) const {
|
|
std::ostringstream oss;
|
|
|
|
oss << " " << std::dec << size;
|
|
oss << " bytes unreachable at ";
|
|
oss << std::hex << begin;
|
|
oss << std::endl;
|
|
if (referenced_count > 0) {
|
|
oss << std::dec;
|
|
oss << " referencing " << referenced_size << " unreachable bytes";
|
|
oss << " in " << referenced_count << " allocation" << plural(referenced_count);
|
|
oss << std::endl;
|
|
}
|
|
if (similar_count > 0) {
|
|
oss << std::dec;
|
|
oss << " and " << similar_size << " similar unreachable bytes";
|
|
oss << " in " << similar_count << " allocation" << plural(similar_count);
|
|
oss << std::endl;
|
|
if (similar_referenced_count > 0) {
|
|
oss << " referencing " << similar_referenced_size << " unreachable bytes";
|
|
oss << " in " << similar_referenced_count << " allocation" << plural(similar_referenced_count);
|
|
oss << std::endl;
|
|
}
|
|
}
|
|
|
|
if (log_contents) {
|
|
const int bytes_per_line = 16;
|
|
const size_t bytes = std::min(size, contents_length);
|
|
|
|
if (bytes == size) {
|
|
oss << " contents:" << std::endl;
|
|
} else {
|
|
oss << " first " << bytes << " bytes of contents:" << std::endl;
|
|
}
|
|
|
|
for (size_t i = 0; i < bytes; i += bytes_per_line) {
|
|
oss << " " << std::hex << begin + i << ": ";
|
|
size_t j;
|
|
oss << std::setfill('0');
|
|
for (j = i; j < bytes && j < i + bytes_per_line; j++) {
|
|
oss << std::setw(2) << static_cast<int>(contents[j]) << " ";
|
|
}
|
|
oss << std::setfill(' ');
|
|
for (; j < i + bytes_per_line; j++) {
|
|
oss << " ";
|
|
}
|
|
for (j = i; j < bytes && j < i + bytes_per_line; j++) {
|
|
char c = contents[j];
|
|
if (c < ' ' || c >= 0x7f) {
|
|
c = '.';
|
|
}
|
|
oss << c;
|
|
}
|
|
oss << std::endl;
|
|
}
|
|
}
|
|
if (backtrace.num_frames > 0) {
|
|
oss << backtrace_string(backtrace.frames, backtrace.num_frames);
|
|
}
|
|
|
|
return oss.str();
|
|
}
|
|
|
|
std::string UnreachableMemoryInfo::ToString(bool log_contents) const {
|
|
std::ostringstream oss;
|
|
oss << " " << leak_bytes << " bytes in ";
|
|
oss << num_leaks << " unreachable allocation" << plural(num_leaks);
|
|
oss << std::endl;
|
|
oss << " ABI: '" ABI_STRING "'" << std::endl;
|
|
oss << std::endl;
|
|
|
|
for (auto it = leaks.begin(); it != leaks.end(); it++) {
|
|
oss << it->ToString(log_contents);
|
|
oss << std::endl;
|
|
}
|
|
|
|
return oss.str();
|
|
}
|
|
|
|
UnreachableMemoryInfo::~UnreachableMemoryInfo() {
|
|
// Clear the memory that holds the leaks, otherwise the next attempt to
|
|
// detect leaks may find the old data (for example in the jemalloc tcache)
|
|
// and consider all the leaks to be referenced.
|
|
memset(leaks.data(), 0, leaks.capacity() * sizeof(Leak));
|
|
|
|
std::vector<Leak> tmp;
|
|
leaks.swap(tmp);
|
|
|
|
// Disable and re-enable malloc to flush the jemalloc tcache to make sure
|
|
// there are no copies of the leaked pointer addresses there.
|
|
malloc_disable();
|
|
malloc_enable();
|
|
}
|
|
|
|
std::string GetUnreachableMemoryString(bool log_contents, size_t limit) {
|
|
UnreachableMemoryInfo info;
|
|
if (!GetUnreachableMemory(info, limit)) {
|
|
return "Failed to get unreachable memory\n"
|
|
"If you are trying to get unreachable memory from a system app\n"
|
|
"(like com.android.systemui), disable selinux first using\n"
|
|
"setenforce 0\n";
|
|
}
|
|
|
|
return info.ToString(log_contents);
|
|
}
|
|
|
|
} // namespace android
|
|
|
|
bool LogUnreachableMemory(bool log_contents, size_t limit) {
|
|
android::UnreachableMemoryInfo info;
|
|
if (!android::GetUnreachableMemory(info, limit)) {
|
|
return false;
|
|
}
|
|
|
|
for (auto it = info.leaks.begin(); it != info.leaks.end(); it++) {
|
|
MEM_ALOGE("%s", it->ToString(log_contents).c_str());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool NoLeaks() {
|
|
android::UnreachableMemoryInfo info;
|
|
if (!android::GetUnreachableMemory(info, 0)) {
|
|
return false;
|
|
}
|
|
|
|
return info.num_leaks == 0;
|
|
}
|