115 lines
3.7 KiB
Python
115 lines
3.7 KiB
Python
# Copyright 2017 The Chromium OS Authors. All rights reserved.
|
|
# Use of this source code is governed by a BSD-style license that can be
|
|
# found in the LICENSE file.
|
|
"""Helper functions to parse result collected from device"""
|
|
|
|
from __future__ import print_function
|
|
from fix_skia_results import _TransformBenchmarks
|
|
|
|
import json
|
|
|
|
def normalize(bench, dict_list):
|
|
bench_base = {
|
|
'Panorama': 1,
|
|
'Dex2oat': 1,
|
|
'Hwui': 10000,
|
|
'Skia': 1,
|
|
'Synthmark': 1,
|
|
'Binder': 0.001
|
|
}
|
|
result_dict = dict_list[0]
|
|
for key in result_dict:
|
|
result_dict[key] = result_dict[key] / bench_base[bench]
|
|
return [result_dict]
|
|
|
|
|
|
# Functions to parse benchmark result for data collection.
|
|
def parse_Panorama(bench, fin):
|
|
result_dict = {}
|
|
for line in fin:
|
|
words = line.split()
|
|
if 'elapsed' in words:
|
|
#TODO: Need to restructure the embedded word counts.
|
|
result_dict['total_time_s'] = float(words[3])
|
|
result_dict['retval'] = 0
|
|
return normalize(bench, [result_dict])
|
|
raise ValueError('You passed the right type of thing, '
|
|
'but it didn\'t have the expected contents.')
|
|
|
|
|
|
def parse_Synthmark(bench, fin):
|
|
result_dict = {}
|
|
accum = 0
|
|
cnt = 0
|
|
for line in fin:
|
|
words = line.split()
|
|
if 'normalized' in words:
|
|
#TODO: Need to restructure the embedded word counts.
|
|
accum += float(words[-1])
|
|
cnt += 1
|
|
if accum != 0:
|
|
result_dict['total_voices'] = accum / cnt
|
|
result_dict['retval'] = 0
|
|
return normalize(bench, [result_dict])
|
|
raise ValueError('You passed the right type of thing, '
|
|
'but it didn\'t have the expected contents.')
|
|
|
|
|
|
def parse_Binder(bench, fin):
|
|
result_dict = {}
|
|
accum = 0
|
|
cnt = 0
|
|
for line in fin:
|
|
words = line.split()
|
|
for word in words:
|
|
if 'average' in word:
|
|
#TODO: Need to restructure the embedded word counts.
|
|
accum += float(word[8:-2])
|
|
cnt += 1
|
|
if accum != 0:
|
|
result_dict['avg_time_ms'] = accum / cnt
|
|
result_dict['retval'] = 0
|
|
return normalize(bench, [result_dict])
|
|
raise ValueError('You passed the right type of thing, '
|
|
'but it didn\'t have the expected contents.')
|
|
|
|
|
|
def parse_Dex2oat(bench, fin):
|
|
result_dict = {}
|
|
cnt = 0
|
|
for line in fin:
|
|
words = line.split()
|
|
if 'elapsed' in words:
|
|
cnt += 1
|
|
#TODO: Need to restructure the embedded word counts.
|
|
if cnt == 1:
|
|
# First 'elapsed' time is for microbench 'Chrome'
|
|
result_dict['chrome_s'] = float(words[3])
|
|
elif cnt == 2:
|
|
# Second 'elapsed' time is for microbench 'Camera'
|
|
result_dict['camera_s'] = float(words[3])
|
|
|
|
result_dict['retval'] = 0
|
|
# Two results found, return
|
|
return normalize(bench, [result_dict])
|
|
raise ValueError('You passed the right type of thing, '
|
|
'but it didn\'t have the expected contents.')
|
|
|
|
|
|
def parse_Hwui(bench, fin):
|
|
result_dict = {}
|
|
for line in fin:
|
|
words = line.split()
|
|
if 'elapsed' in words:
|
|
#TODO: Need to restructure the embedded word counts.
|
|
result_dict['total_time_s'] = float(words[3])
|
|
result_dict['retval'] = 0
|
|
return normalize(bench, [result_dict])
|
|
raise ValueError('You passed the right type of thing, '
|
|
'but it didn\'t have the expected contents.')
|
|
|
|
|
|
def parse_Skia(bench, fin):
|
|
obj = json.load(fin)
|
|
return normalize(bench, _TransformBenchmarks(obj))
|