aosp12/external/libhevc/encoder/ihevce_cabac_rdo.c

869 lines
31 KiB
C

/******************************************************************************
*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*****************************************************************************
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
/**
******************************************************************************
* @file ihevce_cabac_rdo.c
*
* @brief
* This file contains function definitions for rdopt cabac entropy modules
*
* @author
* ittiam
*
* @List of Functions
* ihevce_entropy_rdo_frame_init()
* ihevce_entropy_rdo_ctb_init()
* ihevce_entropy_rdo_encode_cu()
* ihevce_cabac_rdo_encode_sao()
* ihevce_update_best_sao_cabac_state()
* ihevce_entropy_update_best_cu_states()
* ihevce_entropy_rdo_encode_tu()
* ihevce_entropy_rdo_encode_tu_rdoq()
* ihevce_entropy_rdo_copy_states()
*
******************************************************************************
*/
/*****************************************************************************/
/* File Includes */
/*****************************************************************************/
/* System include files */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <stdarg.h>
#include <math.h>
/* User include files */
#include "ihevc_typedefs.h"
#include "itt_video_api.h"
#include "ihevce_api.h"
#include "rc_cntrl_param.h"
#include "rc_frame_info_collector.h"
#include "rc_look_ahead_params.h"
#include "ihevc_defs.h"
#include "ihevc_structs.h"
#include "ihevc_platform_macros.h"
#include "ihevc_deblk.h"
#include "ihevc_itrans_recon.h"
#include "ihevc_chroma_itrans_recon.h"
#include "ihevc_chroma_intra_pred.h"
#include "ihevc_intra_pred.h"
#include "ihevc_inter_pred.h"
#include "ihevc_mem_fns.h"
#include "ihevc_padding.h"
#include "ihevc_weighted_pred.h"
#include "ihevc_sao.h"
#include "ihevc_resi_trans.h"
#include "ihevc_quant_iquant_ssd.h"
#include "ihevc_cabac_tables.h"
#include "ihevce_defs.h"
#include "ihevce_lap_enc_structs.h"
#include "ihevce_multi_thrd_structs.h"
#include "ihevce_me_common_defs.h"
#include "ihevce_had_satd.h"
#include "ihevce_error_codes.h"
#include "ihevce_bitstream.h"
#include "ihevce_cabac.h"
#include "ihevce_rdoq_macros.h"
#include "ihevce_function_selector.h"
#include "ihevce_enc_structs.h"
#include "ihevce_entropy_structs.h"
#include "ihevce_cmn_utils_instr_set_router.h"
#include "ihevce_enc_loop_structs.h"
#include "ihevce_cabac_rdo.h"
#include "ihevce_trace.h"
/*****************************************************************************/
/* Function Definitions */
/*****************************************************************************/
/**
******************************************************************************
*
* @brief Cabac rdopt frame level initialization.
*
* @par Description
* Registers the sps,vps,pps,slice header pointers in rdopt enntropy contexts
* and intializes cabac engine (init states) for each init cu and scratch cu
* contexts
*
* @param[inout] ps_rdopt_entropy_ctxt
* pointer to rdopt entropy context (handle)
*
* @param[in] ps_slice_hdr
* pointer to current slice header
*
* @param[in] ps_sps
* pointer to active SPS params
*
* @param[in] ps_pps
* pointer to active PPS params
*
* @param[in] ps_vps
* pointer to active VPS params
*
* @param[in] pu1_cu_skip_top_row
* pointer to top row cu skip flags (registered at frame level)
*
* @return none
*
******************************************************************************
*/
void ihevce_entropy_rdo_frame_init(
rdopt_entropy_ctxt_t *ps_rdopt_entropy_ctxt,
slice_header_t *ps_slice_hdr,
pps_t *ps_pps,
sps_t *ps_sps,
vps_t *ps_vps,
UWORD8 *pu1_cu_skip_top_row,
rc_quant_t *ps_rc_quant_ctxt)
{
WORD32 slice_qp = ps_slice_hdr->i1_slice_qp_delta + ps_pps->i1_pic_init_qp;
/* Initialize the CTB size from sps parameters */
WORD32 log2_ctb_size =
ps_sps->i1_log2_min_coding_block_size + ps_sps->i1_log2_diff_max_min_coding_block_size;
WORD32 cabac_init_idc;
(void)ps_rc_quant_ctxt;
/* sanity checks */
ASSERT((log2_ctb_size >= 3) && (log2_ctb_size <= 6));
ASSERT((slice_qp >= ps_rc_quant_ctxt->i2_min_qp) && (slice_qp <= ps_rc_quant_ctxt->i2_max_qp));
/* register the sps,vps,pps, slice header pts in all cu entropy ctxts */
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].ps_vps = ps_vps;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].ps_sps = ps_sps;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].ps_pps = ps_pps;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].ps_slice_hdr = ps_slice_hdr;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].ps_vps = ps_vps;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].ps_sps = ps_sps;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].ps_pps = ps_pps;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].ps_slice_hdr = ps_slice_hdr;
/* initialze the skip cu top row ptrs for all rdo entropy contexts */
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].pu1_skip_cu_top = pu1_cu_skip_top_row;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].pu1_skip_cu_top = pu1_cu_skip_top_row;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].i1_log2_ctb_size = log2_ctb_size;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].i1_log2_ctb_size = log2_ctb_size;
/* initialze the skip cu left flagd for all rdo entropy contexts */
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].u4_skip_cu_left = 0;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].u4_skip_cu_left = 0;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].i1_ctb_num_pcm_blks = 0;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].i1_ctb_num_pcm_blks = 0;
/* residue encoding should be enaled if ZERO_CBF eval is disabled */
#if((!RDOPT_ZERO_CBF_ENABLE) && (RDOPT_ENABLE))
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].i4_enable_res_encode = 1;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].i4_enable_res_encode = 1;
#else
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].i4_enable_res_encode = 0;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].i4_enable_res_encode = 0;
#endif
/*************************************************************************/
/* Note pu1_cbf_cb, pu1_cbf_cr initialization are done with array idx 1 */
/* This is because these flags are accessed as pu1_cbf_cb[tfr_depth - 1] */
/* without cheking for tfr_depth= 0 */
/*************************************************************************/
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].apu1_cbf_cb[0] =
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].au1_cbf_cb[0][1];
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].apu1_cbf_cb[0] =
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].au1_cbf_cb[0][1];
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].apu1_cbf_cr[0] =
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].au1_cbf_cr[0][1];
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].apu1_cbf_cr[0] =
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].au1_cbf_cr[0][1];
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].apu1_cbf_cb[1] =
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].au1_cbf_cb[1][1];
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].apu1_cbf_cb[1] =
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].au1_cbf_cb[1][1];
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].apu1_cbf_cr[1] =
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].au1_cbf_cr[1][1];
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].apu1_cbf_cr[1] =
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].au1_cbf_cr[1][1];
memset(
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].au1_cbf_cb,
0,
(MAX_TFR_DEPTH + 1) * 2 * sizeof(UWORD8));
memset(
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].au1_cbf_cb,
0,
(MAX_TFR_DEPTH + 1) * 2 * sizeof(UWORD8));
memset(
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].au1_cbf_cr,
0,
(MAX_TFR_DEPTH + 1) * 2 * sizeof(UWORD8));
memset(
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].au1_cbf_cr,
0,
(MAX_TFR_DEPTH + 1) * 2 * sizeof(UWORD8));
/* initialize the cabac init idc based on slice type */
if(ps_slice_hdr->i1_slice_type == ISLICE)
{
cabac_init_idc = 0;
}
else if(ps_slice_hdr->i1_slice_type == PSLICE)
{
cabac_init_idc = ps_slice_hdr->i1_cabac_init_flag ? 2 : 1;
}
else
{
cabac_init_idc = ps_slice_hdr->i1_cabac_init_flag ? 1 : 2;
}
/* all the entropy contexts in rdo initialized in bit compute mode */
ihevce_cabac_init(
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].s_cabac_ctxt,
NULL, /* bitstream buffer not required in bits compute mode */
CLIP3(slice_qp, 0, IHEVC_MAX_QP),
cabac_init_idc,
CABAC_MODE_COMPUTE_BITS);
ihevce_cabac_init(
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].s_cabac_ctxt,
NULL, /* bitstream buffer not required in bits compute mode */
CLIP3(slice_qp, 0, IHEVC_MAX_QP),
cabac_init_idc,
CABAC_MODE_COMPUTE_BITS);
/* initialize the entropy states in rdopt struct */
COPY_CABAC_STATES(
&ps_rdopt_entropy_ctxt->au1_init_cabac_ctxt_states[0],
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].s_cabac_ctxt.au1_ctxt_models[0],
sizeof(ps_rdopt_entropy_ctxt->au1_init_cabac_ctxt_states));
}
/**
******************************************************************************
*
* @brief Cabac rdopt ctb level initialization.
*
* @par Description
* initialzes the ctb x and y co-ordinates for all the rdopt entropy contexts
*
* @param[inout] ps_rdopt_entropy_ctxt
* pointer to rdopt entropy context (handle)
*
* @param[in] ctb_x
* current ctb x offset w.r.t frame start (ctb units)
*
* @param[in] ctb_y
* current ctb y offset w.r.t frame start (ctb units)
*
* @return none
*
******************************************************************************
*/
void ihevce_entropy_rdo_ctb_init(
rdopt_entropy_ctxt_t *ps_rdopt_entropy_ctxt, WORD32 ctb_x, WORD32 ctb_y)
{
/* initialze the ctb x and y co-ordinates for all the rdopt entropy contexts */
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].i4_ctb_x = ctb_x;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].i4_ctb_x = ctb_x;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].i4_ctb_y = ctb_y;
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].i4_ctb_y = ctb_y;
}
/**
******************************************************************************
*
* @brief Cabac rdopt cu encode function to compute luma bits for a given cu
* only luma bits are used for rd optimization currently
*
* @par Description
* use a scratch CU entropy context (indicated by rdopt_buf_idx) whose cabac
* states are reset (to CU init state) and calls the cabac entropy coding
* unit function to compute the total bits for current CU
*
* A local CU structutre is prepared (in stack) as the structures that entropy
* encode expects and the rdopt gets are different
*
* @param[inout] ps_rdopt_entropy_ctxt
* pointer to rdopt entropy context (handle)
*
* @param[in] ps_cu_prms
* pointer to current CU params whose bits are computed
*
* @param[in] cu_pos_x
* current CU x position w.r.t ctb (in 8x8 units)
*
* @param[in] cu_pos_y
* current CU y position w.r.t ctb (in 8x8 units)
*
* @param[in] cu_size
* current cu size (in pel units)
*
* @param[in] top_avail
* top avaialability flag for current CU (required for encoding skip flag)
*
* @param[in] left_avail
* left avaialability flag for current CU (required for encoding skip flag)
*
* @param[in] pv_ecd_coeff
* Compressed coeff residue buffer (for luma)
*
* @param[in] rdopt_buf_idx
* corresponds to the id of the scratch CU entropy context that needs to be
* used for bit estimation
*
* @param[out] pi4_cu_rdopt_tex_bits
* returns cbf bits if zer0 cbf eval flag is enabled otherwiese returns total
* tex(including cbf bits)
*
* @return total bits required to encode the current CU
*
******************************************************************************
*/
WORD32 ihevce_entropy_rdo_encode_cu(
rdopt_entropy_ctxt_t *ps_rdopt_entropy_ctxt,
enc_loop_cu_final_prms_t *ps_cu_prms,
WORD32 cu_pos_x,
WORD32 cu_pos_y,
WORD32 cu_size,
WORD32 top_avail,
WORD32 left_avail,
void *pv_ecd_coeff,
WORD32 *pi4_cu_rdopt_tex_bits)
{
/* local cu structure for passing to entrop encode cu module */
cu_enc_loop_out_t s_enc_cu;
WORD32 rdopt_buf_idx = ps_rdopt_entropy_ctxt->i4_curr_buf_idx;
entropy_context_t *ps_cur_cu_entropy =
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[rdopt_buf_idx];
WORD32 total_bits = 0;
WORD32 log2_ctb_size = ps_cur_cu_entropy->i1_log2_ctb_size;
WORD32 log2_cu_size;
WORD32 cu_depth;
/* sanity checks */
ASSERT((rdopt_buf_idx == 0) || (rdopt_buf_idx == 1));
ASSERT((cu_size >= 8) && (cu_size <= (1 << log2_ctb_size)));
ASSERT((cu_pos_x >= 0) && (cu_pos_x <= (1 << (log2_ctb_size - 3))));
ASSERT((cu_pos_y >= 0) && (cu_pos_y <= (1 << (log2_ctb_size - 3))));
GETRANGE(log2_cu_size, cu_size);
log2_cu_size -= 1;
cu_depth = log2_ctb_size - log2_cu_size;
{
/**********************************************************/
/* prepare local cu structure before calling cabac encode */
/**********************************************************/
/* default be canged to have orred val*/
s_enc_cu.b1_no_residual_syntax_flag = 0;
/* initialize cu posx, posy and size */
s_enc_cu.b3_cu_pos_x = cu_pos_x;
s_enc_cu.b3_cu_pos_y = cu_pos_y;
s_enc_cu.b4_cu_size = (cu_size >> 3);
/* PCM not supported */
s_enc_cu.b1_pcm_flag = 0;
s_enc_cu.b1_pred_mode_flag = ps_cu_prms->u1_intra_flag;
s_enc_cu.b3_part_mode = ps_cu_prms->u1_part_mode;
s_enc_cu.b1_skip_flag = ps_cu_prms->u1_skip_flag;
s_enc_cu.b1_tq_bypass_flag = 0;
s_enc_cu.pv_coeff = pv_ecd_coeff;
/* store the number of TUs */
s_enc_cu.u2_num_tus_in_cu = ps_cu_prms->u2_num_tus_in_cu;
/* ---- intialize the PUs and TUs start ptrs for cur CU ----- */
s_enc_cu.ps_pu = &ps_cu_prms->as_pu_enc_loop[0];
s_enc_cu.ps_enc_tu = &ps_cu_prms->as_tu_enc_loop[0];
/* Corner case : If Part is 2Nx2N and Merge has all TU with zero cbf */
/* then it has to be coded as skip CU */
if((SIZE_2Nx2N == ps_cu_prms->u1_part_mode) &&
/*(1 == ps_cu_prms->u2_num_tus_in_cu) &&*/
(1 == ps_cu_prms->as_pu_enc_loop[0].b1_merge_flag) && (0 == ps_cu_prms->u1_skip_flag) &&
(0 == ps_cu_prms->u1_is_cu_coded))
{
s_enc_cu.b1_skip_flag = 1;
}
if(s_enc_cu.b1_pred_mode_flag == PRED_MODE_INTER)
{
s_enc_cu.b1_no_residual_syntax_flag = !ps_cu_prms->u1_is_cu_coded;
}
else /* b1_pred_mode_flag == PRED_MODE_INTRA */
{
/* copy prev_mode_flag, mpm_idx and rem_intra_pred_mode for each PU */
memcpy(
&s_enc_cu.as_prev_rem[0],
&ps_cu_prms->as_intra_prev_rem[0],
ps_cu_prms->u2_num_tus_in_cu * sizeof(intra_prev_rem_flags_t));
s_enc_cu.b3_chroma_intra_pred_mode = ps_cu_prms->u1_chroma_intra_pred_mode;
}
}
/* reset the total bits in cabac engine to zero */
ps_cur_cu_entropy->s_cabac_ctxt.u4_bits_estimated_q12 = 0;
ps_cur_cu_entropy->s_cabac_ctxt.u4_texture_bits_estimated_q12 = 0;
ps_cur_cu_entropy->s_cabac_ctxt.u4_cbf_bits_q12 = 0;
ps_cur_cu_entropy->i1_encode_qp_delta = 0;
/* Call the cabac encode function of current cu to compute bits */
ihevce_cabac_encode_coding_unit(ps_cur_cu_entropy, &s_enc_cu, cu_depth, top_avail, left_avail);
/* return total bits after rounding the fractional bits */
total_bits =
(ps_cur_cu_entropy->s_cabac_ctxt.u4_bits_estimated_q12 + (1 << (CABAC_FRAC_BITS_Q - 1))) >>
CABAC_FRAC_BITS_Q;
#if RDOPT_ZERO_CBF_ENABLE
ASSERT(ps_cur_cu_entropy->s_cabac_ctxt.u4_texture_bits_estimated_q12 == 0);
#endif
/* return total texture bits rounding the fractional bits */
*pi4_cu_rdopt_tex_bits =
(ps_cur_cu_entropy->s_cabac_ctxt.u4_cbf_bits_q12 + (1 << (CABAC_FRAC_BITS_Q - 1))) >>
CABAC_FRAC_BITS_Q;
/* ( ps_cur_cu_entropy->s_cabac_ctxt.u4_texture_bits_estimated_q12 +
(1 << (CABAC_FRAC_BITS_Q - 1))
) >> CABAC_FRAC_BITS_Q;*/
return (total_bits);
}
/**
******************************************************************************
*
* @brief Cabac rdo encode sao function to compute bits required for a given
* ctb to be encoded with any sao type or no SAO.
*
* @par Description
* use a scratch CU entropy context (indicated by rdopt_buf_idx) and init cabac
* states are reset (to CU init state) and calls the cabac encode sao
* function to compute the total bits for current CTB
*
* @param[inout] ps_rdopt_entropy_ctxt
* pointer to rdopt entropy context (handle)
*
* @param[in] ps_ctb_enc_loop_out
* pointer to current enc loop CTB output structure
*
* @return total bits required to encode the current CTB
*
******************************************************************************
*/
WORD32 ihevce_cabac_rdo_encode_sao(
rdopt_entropy_ctxt_t *ps_rdopt_entropy_ctxt, ctb_enc_loop_out_t *ps_ctb_enc_loop_out)
{
/* index to curr buf*/
WORD32 rdopt_buf_idx = ps_rdopt_entropy_ctxt->i4_curr_buf_idx;
WORD32 total_bits = 0;
entropy_context_t *ps_cur_ctb_entropy =
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[rdopt_buf_idx];
/* copy the intial entropy states from backuped buf to curr buf */
memcpy(
&ps_cur_ctb_entropy->s_cabac_ctxt.au1_ctxt_models[0],
&ps_rdopt_entropy_ctxt->au1_init_cabac_ctxt_states[0],
sizeof(ps_rdopt_entropy_ctxt->au1_init_cabac_ctxt_states));
/* reset the total bits in cabac engine to zero */
ps_cur_ctb_entropy->s_cabac_ctxt.u4_bits_estimated_q12 = 0;
ps_cur_ctb_entropy->s_cabac_ctxt.u4_texture_bits_estimated_q12 = 0;
ps_cur_ctb_entropy->s_cabac_ctxt.u4_cbf_bits_q12 = 0;
ps_cur_ctb_entropy->i1_encode_qp_delta = 0;
//ps_cur_ctb_entropy->s_cabac_ctxt.u4_range = 0;
ASSERT(ps_cur_ctb_entropy->s_cabac_ctxt.u4_range == 0);
ihevce_cabac_encode_sao(ps_cur_ctb_entropy, ps_ctb_enc_loop_out);
/* return total bits after rounding the fractional bits */
total_bits =
(ps_cur_ctb_entropy->s_cabac_ctxt.u4_bits_estimated_q12 + (1 << (CABAC_FRAC_BITS_Q - 1))) >>
CABAC_FRAC_BITS_Q;
return (total_bits);
}
/**
******************************************************************************
*
* @brief Updates best sao cabac state.
*
* @par Description
* Copies the cabac states of best cand to init states buf for next ctb.
*
* @param[inout] ps_rdopt_entropy_ctxt
* pointer to rdopt entropy context (handle)
*
* @param[in] i4_best_buf_idx
* Index to the buffer having the cabac states of best candidate
*
* @return Success/failure
*
******************************************************************************
*/
WORD32 ihevce_update_best_sao_cabac_state(
rdopt_entropy_ctxt_t *ps_rdopt_entropy_ctxt, WORD32 i4_best_buf_idx)
{
/* local cu structure for passing to entrop encode cu module */
WORD32 rdopt_buf_idx = i4_best_buf_idx;
entropy_context_t *ps_cur_ctb_entropy =
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[rdopt_buf_idx];
/* copy the intial entropy states from best buf to intial states buf */
memcpy(
&ps_rdopt_entropy_ctxt->au1_init_cabac_ctxt_states[0],
&ps_cur_ctb_entropy->s_cabac_ctxt.au1_ctxt_models[0],
sizeof(ps_rdopt_entropy_ctxt->au1_init_cabac_ctxt_states));
/* reset the total bits in cabac engine to zero */
ps_cur_ctb_entropy->s_cabac_ctxt.u4_bits_estimated_q12 = 0;
ps_cur_ctb_entropy->s_cabac_ctxt.u4_texture_bits_estimated_q12 = 0;
ps_cur_ctb_entropy->s_cabac_ctxt.u4_cbf_bits_q12 = 0;
ps_cur_ctb_entropy->i1_encode_qp_delta = 0;
return (1);
}
/**
******************************************************************************
*
* @brief Cabac rdopt cu encode function to compute luma bits for a given cu
* only luma bits are used for rd optimization currently
*
* @par Description
* use a scratch CU entropy context (indicated by rdopt_buf_idx) whose cabac
* states are reset (to CU init state) and calls the cabac entropy coding
* unit function to compute the total bits for current CU
*
* A local CU structutre is prepared (in stack) as the structures that entropy
* encode expects and the rdopt gets are different
*
* @param[inout] ps_rdopt_entropy_ctxt
* pointer to rdopt entropy context (handle)
*
* @param[in] cu_pos_x
* current CU x position w.r.t ctb (in 8x8 units)
*
* @param[in] cu_pos_y
* current CU y position w.r.t ctb (in 8x8 units)
*
* @param[in] cu_size
* current cu size (in pel units)
*
* @param[in] rdopt_best_cu_idx
* id of the best CU entropy ctxt (rdopt winner candidate)
*
* @return total bits required to encode the current CU
*
******************************************************************************
*/
void ihevce_entropy_update_best_cu_states(
rdopt_entropy_ctxt_t *ps_rdopt_entropy_ctxt,
WORD32 cu_pos_x,
WORD32 cu_pos_y,
WORD32 cu_size,
WORD32 cu_skip_flag,
WORD32 rdopt_best_cu_idx)
{
entropy_context_t *ps_best_cu_entropy =
&ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[rdopt_best_cu_idx];
/* CTB x co-ordinate w.r.t frame start */
WORD32 ctb_x0_frm = (ps_best_cu_entropy->i4_ctb_x << ps_best_cu_entropy->i1_log2_ctb_size);
/* CU x co-ordinate w.r.t frame start */
WORD32 cu_x0_frm = cu_pos_x + ctb_x0_frm;
/* bit postion from where top skip flag is extracted; 1bit per 8 pel */
WORD32 x_pos = ((cu_x0_frm >> 3) & 0x7);
/* bit postion from where left skip flag is extracted; 1bit per 8 pel */
WORD32 y_pos = ((cu_pos_y >> 3) & 0x7);
/* top and left skip flags computed based on nbr availability */
UWORD8 *pu1_top_skip_flags = ps_best_cu_entropy->pu1_skip_cu_top + (cu_x0_frm >> 6);
UWORD32 u4_skip_left_flags = ps_best_cu_entropy->u4_skip_cu_left;
ps_best_cu_entropy = &ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[rdopt_best_cu_idx];
/* copy the entropy states from best rdopt cu states to init states */
COPY_CABAC_STATES(
&ps_rdopt_entropy_ctxt->au1_init_cabac_ctxt_states[0],
&ps_best_cu_entropy->s_cabac_ctxt.au1_ctxt_models[0],
sizeof(ps_rdopt_entropy_ctxt->au1_init_cabac_ctxt_states));
/* replicate skip flag in left and top row cu skip flags */
if(cu_skip_flag)
{
SET_BITS(pu1_top_skip_flags[0], x_pos, (cu_size >> 3));
SET_BITS(u4_skip_left_flags, y_pos, (cu_size >> 3));
}
else
{
CLEAR_BITS(pu1_top_skip_flags[0], x_pos, (cu_size >> 3));
CLEAR_BITS(u4_skip_left_flags, y_pos, (cu_size >> 3));
}
/* copy the left skip flags in both the rdopt contexts */
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[0].u4_skip_cu_left =
ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[1].u4_skip_cu_left = u4_skip_left_flags;
}
/**
******************************************************************************
*
* @brief Cabac rdopt tu encode function to compute luma bits for a given tu
* only luma bits are used for rd optimization currently
*
* @par Description
* use a scratch CU entropy context (indicated by rdopt_buf_idx) whose cabac
* states are reset (to CU init state for first tu) and calls the cabac residue
* coding function to compute the total bits for current TU
*
* Note : TU includes only residual coding bits and does not include
* tu split, cbf and qp delta encoding bits for a TU
*
* @param[inout] ps_rdopt_entropy_ctxt
* pointer to rdopt entropy context (handle)
*
* @param[in] pv_ecd_coeff
* Compressed coeff residue buffer (for luma)
*
* @param[in] transform_size
* current tu size in pel units
*
* @param[in] is_luma
* indicates if it is luma or chrom TU (required for residue encode)
*
* @return total bits required to encode the current TU
*
******************************************************************************
*/
WORD32 ihevce_entropy_rdo_encode_tu(
rdopt_entropy_ctxt_t *ps_rdopt_entropy_ctxt,
void *pv_ecd_coeff,
WORD32 transform_size,
WORD32 is_luma,
WORD32 perform_sbh)
{
WORD32 log2_tfr_size;
WORD32 total_bits = 0;
WORD32 curr_buf_idx = ps_rdopt_entropy_ctxt->i4_curr_buf_idx;
entropy_context_t *ps_cur_tu_entropy;
ps_cur_tu_entropy = &ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[curr_buf_idx];
ASSERT((transform_size >= 4) && (transform_size <= 32));
/* transform size to log2transform size */
GETRANGE(log2_tfr_size, transform_size);
log2_tfr_size -= 1;
/* reset the total bits in cabac engine to zero */
ps_cur_tu_entropy->s_cabac_ctxt.u4_bits_estimated_q12 = 0;
ps_cur_tu_entropy->i1_encode_qp_delta = 0;
/* Call the cabac residue encode function to compute TU bits */
ihevce_cabac_residue_encode_rdopt(
ps_cur_tu_entropy, pv_ecd_coeff, log2_tfr_size, is_luma, perform_sbh);
/* return total bits after rounding the fractional bits */
total_bits =
(ps_cur_tu_entropy->s_cabac_ctxt.u4_bits_estimated_q12 + (1 << (CABAC_FRAC_BITS_Q - 1))) >>
CABAC_FRAC_BITS_Q;
return (total_bits);
}
/**
******************************************************************************
*
* @brief Cabac rdopt tu encode function to compute bits for a given tu. Actual
* RDOQ algorithm is performed by the ihevce_cabac_residue_encode_rdoq function
* called by this function.
*
* @par Description
* use a scratch CU entropy context (indicated by rdopt_buf_idx) whose cabac
* states are reset (to CU init state for first tu) and calls the cabac residue
* coding function to compute the total bits for current TU
*
* Note : TU includes only residual coding bits and does not include
* tu split, cbf and qp delta encoding bits for a TU
*
* @param[inout] ps_rdopt_entropy_ctxt
* pointer to rdopt entropy context (handle)
*
* @param[in] pv_ecd_coeff
* Compressed coeff residue buffer
*
* @param[in] transform_size
* current tu size in pel units
*
* @param[in] first_tu_of_cu
* indicates if the tu is the first unit of cu (required for initializing
* cabac ctxts)
*
* @param[in] rdopt_buf_idx
* corresponds to the id of the rdopt CU entropy context that needs to be
* used for bit estimation
*
* @param[in] is_luma
* indicates if it is luma or chrom TU (required for residue encode)
*
* @param[in] intra_nxn_mode
* indicates if it is luma or chrom TU (required for residue encode)
*
* @param[inout] ps_rdoq_ctxt
* pointer to rdoq context structure
*
* @param[inout] pi4_coded_tu_dist
* Pointer to the variable which will contain the transform domain distortion
* of the entire TU, when any of the coeffs in the TU are coded
*
* @param[inout] pi4_not_coded_tu_dist
* Pointer to the variable which will contain the transform domain distortion
* of the enture TU, when all the coeffs in the TU are coded
*
* @return total bits required to encode the current TU
*
******************************************************************************
*/
WORD32 ihevce_entropy_rdo_encode_tu_rdoq(
rdopt_entropy_ctxt_t *ps_rdopt_entropy_ctxt,
void *pv_ecd_coeff,
WORD32 transform_size,
WORD32 is_luma,
rdoq_sbh_ctxt_t *ps_rdoq_ctxt,
LWORD64 *pi8_coded_tu_dist,
LWORD64 *pi8_not_coded_tu_dist,
WORD32 perform_sbh)
{
WORD32 log2_tfr_size;
WORD32 total_bits = 0;
WORD32 curr_buf_idx = ps_rdopt_entropy_ctxt->i4_curr_buf_idx;
entropy_context_t *ps_cur_tu_entropy;
ps_cur_tu_entropy = &ps_rdopt_entropy_ctxt->as_cu_entropy_ctxt[curr_buf_idx];
ASSERT((transform_size >= 4) && (transform_size <= 32));
/* transform size to log2transform size */
GETRANGE(log2_tfr_size, transform_size);
log2_tfr_size -= 1;
/* reset the total bits in cabac engine to zero */
ps_cur_tu_entropy->s_cabac_ctxt.u4_bits_estimated_q12 = 0;
ps_cur_tu_entropy->i1_encode_qp_delta = 0;
/* Call the cabac residue encode function to compute TU bits */
ihevce_cabac_residue_encode_rdoq(
ps_cur_tu_entropy,
pv_ecd_coeff,
log2_tfr_size,
is_luma,
(void *)ps_rdoq_ctxt,
pi8_coded_tu_dist,
pi8_not_coded_tu_dist,
perform_sbh);
/* return total bits after rounding the fractional bits */
total_bits =
(ps_cur_tu_entropy->s_cabac_ctxt.u4_bits_estimated_q12 + (1 << (CABAC_FRAC_BITS_Q - 1))) >>
CABAC_FRAC_BITS_Q;
return (total_bits);
}
/**
******************************************************************************
*
* @brief Cabac rdopt copy functions for copying states (which will be used later)
*
* @par Description
* Does the HEVC style of entropy sync by copying the state to/from rdo context
* from/to row level cabac states at start of row/2nd ctb of row
*
* Caller needs to make sure UPDATE_ENT_SYNC_RDO_STATE is used for first ctb of
* every row (leaving first row of slice) and STORE_ENT_SYNC_RDO_STATE is used for
* storing the cabac states at the end of 2nd ctb of a row.
*
* @param[inout] ps_rdopt_entropy_ctxt
* pointer to rdopt entropy context (handle)
*
* @param[in] pu1_entropy_sync_states
* pointer to entropy sync cabac states
*
* @param[in] copy_mode
* mode of copying cabac states. Shall be either UPDATE_ENT_SYNC_RDO_STATE and
* STORE_ENT_SYNC_RDO_STATE
*
******************************************************************************
*/
void ihevce_entropy_rdo_copy_states(
rdopt_entropy_ctxt_t *ps_rdopt_entropy_ctxt, UWORD8 *pu1_entropy_sync_states, WORD32 copy_mode)
{
/* sanity checks */
ASSERT((copy_mode == STORE_ENT_SYNC_RDO_STATE) || (copy_mode == UPDATE_ENT_SYNC_RDO_STATE));
if(STORE_ENT_SYNC_RDO_STATE == copy_mode)
{
COPY_CABAC_STATES(
pu1_entropy_sync_states,
&ps_rdopt_entropy_ctxt->au1_init_cabac_ctxt_states[0],
IHEVC_CAB_CTXT_END);
}
else if(UPDATE_ENT_SYNC_RDO_STATE == copy_mode)
{
COPY_CABAC_STATES(
&ps_rdopt_entropy_ctxt->au1_init_cabac_ctxt_states[0],
pu1_entropy_sync_states,
IHEVC_CAB_CTXT_END);
}
}