aosp12/external/vixl/examples/aarch32/mandelbrot.cc

223 lines
7.1 KiB
C++

// Copyright 2017, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "examples.h"
using namespace vixl;
using namespace vixl::aarch32;
#define __ masm->
void GenerateMandelBrot(MacroAssembler* masm) {
const QRegister kCReal = q0;
const QRegister kCImag = q1;
const QRegister kCRealStep = q13;
const QRegister kCImagStep = q14;
const QRegister kModSqLimit = q15;
// Save register values.
__ Push(RegisterList(r4, r5, r6));
__ Vmov(F32, kCRealStep, 0.125);
__ Vmov(F32, kCImagStep, 0.0625);
const Register kZero = r2;
__ Mov(kZero, 0);
const DRegister kStars = d6;
const DRegister kSpaces = d7;
// Output characters - packed 4 characters into 32 bits.
__ Vmov(I8, kStars, '*');
__ Vmov(I8, kSpaces, ' ');
const DRegisterLane kNegTwo = DRegisterLane(d7, 1);
__ Vmov(s15, -2.0);
// Imaginary part of c.
__ Vdup(Untyped32, kCImag, kNegTwo);
// Max modulus squared.
__ Vmov(F32, kModSqLimit, 4.0);
// Height of output in characters.
__ Mov(r4, 64);
// String length will be 129, so need 132 bytes of space.
const uint32_t kStringLength = 132;
// Make space for our string.
__ Sub(sp, sp, kStringLength);
// Set up a starting pointer for the string.
const Register kStringPtr = r6;
__ Mov(kStringPtr, sp);
// Loop over imaginary values of c from -2 to 2, taking
// 64 equally spaced values in the range.
{
Label c_imag_loop;
__ Bind(&c_imag_loop);
// Real part of c.
// Store 4 equally spaced values in q0 (kCReal) to use SIMD.
__ Vmov(s0, -2.0);
__ Vmov(s1, -1.96875);
__ Vmov(s2, -1.9375);
__ Vmov(s3, -1.90625);
// Width of output in terms of sets of 4 characters - twice that
// of height to compensate for ratio of character height to width.
__ Mov(r5, 32);
const Register kWriteCursor = r3;
// Set a cursor ready to write the next line.
__ Mov(kWriteCursor, kStringPtr);
// Loop over real values of c from -2 to 2, processing
// 4 different values simultaneously using SIMD.
{
const QRegister kFlags = q2;
const DRegister kLowerFlags = d4;
Label c_real_loop;
__ Bind(&c_real_loop);
// Get number of iterations.
__ Add(r1, r0, 1);
// Perform the iterations of z(n+1) = zn^2 + c using SIMD.
// If the result is that c is in the set, the element of
// kFlags will be 0, else ~0.
{
const QRegister kZReal = q8;
const QRegister kZImag = q9;
// Real part of z.
__ Vmov(F32, kZReal, 0.0);
// Imaginary part of z.
__ Vmov(F32, kZImag, 0.0);
__ Vmov(F32, kFlags, 0.0);
Label iterative_formula_start, iterative_formula_end;
__ Bind(&iterative_formula_start);
__ Subs(r1, r1, 1);
__ B(le, &iterative_formula_end);
// z(n+1) = zn^2 + c.
// re(z(n+1)) = re(c) + re(zn)^2 - im(zn)^2.
// im(z(n+1)) = im(c) + 2 * re(zn) * im(zn)
__ Vmul(F32, q10, kZReal, kZImag); // re(zn) * im(zn)
__ Vmul(F32, kZReal, kZReal, kZReal); // re(zn)^2
__ Vadd(F32, kZReal, kCReal, kZReal); // re(c) + re(zn)^2
__ Vmls(F32, kZReal, kZImag, kZImag); // re(c) + re(zn)^2 - im(zn)^2
__ Vmov(F32, kZImag, kCImag); // im(c)
__ Vmls(F32, kZImag, q10, kNegTwo); // im(c) + 2 * re(zn) * im(zn)
__ Vmul(F32, q10, kZReal, kZReal); // re(z(n+1))^2
__ Vmla(F32, q10, kZImag, kZImag); // re(z(n+1))^2 + im(z(n+1))^2
__ Vcgt(F32, q10, q10, kModSqLimit); // |z(n+1)|^2 > 4 ? ~0 : 0
__ Vorr(F32, kFlags, kFlags, q10); // (~0/0) | above result
__ B(&iterative_formula_start);
__ Bind(&iterative_formula_end);
}
// Narrow twice so that each mask is 8 bits, packed into
// a single 32 bit register s4.
// kLowerFlags is the lower half of kFlags, so the second narrow will
// be working on the results of the first to halve the size of each
// representation again.
__ Vmovn(I32, kLowerFlags, kFlags);
__ Vmovn(I16, kLowerFlags, kFlags);
// '*' if in set, ' ' if not.
__ Vbsl(Untyped32, kLowerFlags, kSpaces, kStars);
// Add this to the string.
__ Vst1(Untyped32,
NeonRegisterList(kLowerFlags, 0),
AlignedMemOperand(kWriteCursor, k32BitAlign, PostIndex));
// Increase real part of c.
__ Vadd(F32, kCReal, kCReal, kCRealStep);
__ Subs(r5, r5, 1);
__ B(ne, &c_real_loop);
}
// Put terminating character.
__ Strb(kZero, MemOperand(kWriteCursor));
// Print the string.
__ Printf("%s\n", kStringPtr);
// Increase imaginary part of c.
__ Vadd(F32, kCImag, kCImag, kCImagStep);
__ Subs(r4, r4, 1);
__ B(ne, &c_imag_loop);
}
// Restore stack pointer.
__ Add(sp, sp, kStringLength);
// Restore register values.
__ Pop(RegisterList(r4, r5, r6));
__ Bx(lr);
}
#ifndef TEST_EXAMPLES
int main() {
MacroAssembler masm;
// Generate the code for the example function.
Label mandelbrot;
masm.Bind(&mandelbrot);
GenerateMandelBrot(&masm);
masm.FinalizeCode();
#ifdef VIXL_INCLUDE_SIMULATOR_AARCH32
// There is no simulator defined for VIXL AArch32.
printf("This example cannot be simulated\n");
#else
byte* code = masm.GetBuffer()->GetStartAddress<byte*>();
uint32_t code_size = masm.GetSizeOfCodeGenerated();
ExecutableMemory memory(code, code_size);
// Run the example function.
double (*mandelbrot_func)(uint32_t) =
memory.GetEntryPoint<double (*)(uint32_t)>(mandelbrot,
masm.GetInstructionSetInUse());
uint32_t iterations = 1000;
(*mandelbrot_func)(iterations);
#endif
return 0;
}
#endif // TEST_EXAMPLES