aosp12/frameworks/native/libs/ui/Transform.cpp

530 lines
14 KiB
C++

/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "Transform"
#include <math.h>
#include <android-base/stringprintf.h>
#include <cutils/compiler.h>
#include <ui/Region.h>
#include <ui/Transform.h>
#include <utils/String8.h>
namespace android::ui {
Transform::Transform() {
reset();
}
Transform::Transform(const Transform& other)
: mMatrix(other.mMatrix), mType(other.mType) {
}
Transform::Transform(uint32_t orientation, int w, int h) {
set(orientation, w, h);
}
Transform::~Transform() = default;
static const float EPSILON = 0.0f;
bool Transform::isZero(float f) {
return fabs(f) <= EPSILON;
}
bool Transform::absIsOne(float f) {
return isZero(fabs(f) - 1.0f);
}
bool Transform::operator==(const Transform& other) const {
return mMatrix[0][0] == other.mMatrix[0][0] && mMatrix[0][1] == other.mMatrix[0][1] &&
mMatrix[0][2] == other.mMatrix[0][2] && mMatrix[1][0] == other.mMatrix[1][0] &&
mMatrix[1][1] == other.mMatrix[1][1] && mMatrix[1][2] == other.mMatrix[1][2] &&
mMatrix[2][0] == other.mMatrix[2][0] && mMatrix[2][1] == other.mMatrix[2][1] &&
mMatrix[2][2] == other.mMatrix[2][2];
}
Transform Transform::operator*(const Transform& rhs) const {
if (CC_LIKELY(mType == IDENTITY))
return rhs;
Transform r(*this);
if (rhs.mType == IDENTITY)
return r;
// TODO: we could use mType to optimize the matrix multiply
const mat33& A(mMatrix);
const mat33& B(rhs.mMatrix);
mat33& D(r.mMatrix);
for (size_t i = 0; i < 3; i++) {
const float v0 = A[0][i];
const float v1 = A[1][i];
const float v2 = A[2][i];
D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2];
D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2];
D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2];
}
r.mType |= rhs.mType;
// TODO: we could recompute this value from r and rhs
r.mType &= 0xFF;
r.mType |= UNKNOWN_TYPE;
return r;
}
Transform Transform::operator * (float value) const {
Transform r(*this);
const mat33& M(mMatrix);
mat33& R(r.mMatrix);
for (size_t i = 0; i < 3; i++) {
for (size_t j = 0; j < 2; j++) {
R[i][j] = M[i][j] * value;
}
}
r.type();
return r;
}
Transform& Transform::operator=(const Transform& other) {
mMatrix = other.mMatrix;
mType = other.mType;
return *this;
}
const vec3& Transform::operator [] (size_t i) const {
return mMatrix[i];
}
float Transform::tx() const {
return mMatrix[2][0];
}
float Transform::ty() const {
return mMatrix[2][1];
}
float Transform::dsdx() const {
return mMatrix[0][0];
}
float Transform::dtdx() const {
return mMatrix[1][0];
}
float Transform::dtdy() const {
return mMatrix[0][1];
}
float Transform::dsdy() const {
return mMatrix[1][1];
}
float Transform::getScaleX() const {
return sqrt((dsdx() * dsdx()) + (dtdx() * dtdx()));
}
float Transform::getScaleY() const {
return sqrt((dtdy() * dtdy()) + (dsdy() * dsdy()));
}
void Transform::reset() {
mType = IDENTITY;
for(size_t i = 0; i < 3; i++) {
vec3& v(mMatrix[i]);
for (size_t j = 0; j < 3; j++)
v[j] = ((i == j) ? 1.0f : 0.0f);
}
}
void Transform::set(float tx, float ty) {
mMatrix[2][0] = tx;
mMatrix[2][1] = ty;
mMatrix[2][2] = 1.0f;
if (isZero(tx) && isZero(ty)) {
mType &= ~TRANSLATE;
} else {
mType |= TRANSLATE;
}
}
void Transform::set(float a, float b, float c, float d) {
mat33& M(mMatrix);
M[0][0] = a; M[1][0] = b;
M[0][1] = c; M[1][1] = d;
M[0][2] = 0; M[1][2] = 0;
mType = UNKNOWN_TYPE;
}
status_t Transform::set(uint32_t flags, float w, float h) {
if (flags & ROT_INVALID) {
// that's not allowed!
reset();
return BAD_VALUE;
}
Transform H, V, R;
if (flags & ROT_90) {
// w & h are inverted when rotating by 90 degrees
std::swap(w, h);
}
if (flags & FLIP_H) {
H.mType = (FLIP_H << 8) | SCALE;
H.mType |= isZero(w) ? IDENTITY : TRANSLATE;
mat33& M(H.mMatrix);
M[0][0] = -1;
M[2][0] = w;
}
if (flags & FLIP_V) {
V.mType = (FLIP_V << 8) | SCALE;
V.mType |= isZero(h) ? IDENTITY : TRANSLATE;
mat33& M(V.mMatrix);
M[1][1] = -1;
M[2][1] = h;
}
if (flags & ROT_90) {
const float original_w = h;
R.mType = (ROT_90 << 8) | ROTATE;
R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE;
mat33& M(R.mMatrix);
M[0][0] = 0; M[1][0] =-1; M[2][0] = original_w;
M[0][1] = 1; M[1][1] = 0;
}
*this = (R*(H*V));
return NO_ERROR;
}
void Transform::set(const std::array<float, 9>& matrix) {
mat33& M(mMatrix);
M[0][0] = matrix[0]; M[1][0] = matrix[1]; M[2][0] = matrix[2];
M[0][1] = matrix[3]; M[1][1] = matrix[4]; M[2][1] = matrix[5];
M[0][2] = matrix[6]; M[1][2] = matrix[7]; M[2][2] = matrix[8];
mType = UNKNOWN_TYPE;
type();
}
vec2 Transform::transform(const vec2& v) const {
vec2 r;
const mat33& M(mMatrix);
r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0];
r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1];
return r;
}
vec3 Transform::transform(const vec3& v) const {
vec3 r;
const mat33& M(mMatrix);
r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2];
r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2];
r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2];
return r;
}
vec2 Transform::transform(float x, float y) const {
return transform(vec2(x, y));
}
Rect Transform::makeBounds(int w, int h) const {
return transform( Rect(w, h) );
}
Rect Transform::transform(const Rect& bounds, bool roundOutwards) const {
Rect r;
vec2 lt( bounds.left, bounds.top );
vec2 rt( bounds.right, bounds.top );
vec2 lb( bounds.left, bounds.bottom );
vec2 rb( bounds.right, bounds.bottom );
lt = transform(lt);
rt = transform(rt);
lb = transform(lb);
rb = transform(rb);
if (roundOutwards) {
r.left = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]})));
r.top = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]})));
r.right = static_cast<int32_t>(ceilf(std::max({lt[0], rt[0], lb[0], rb[0]})));
r.bottom = static_cast<int32_t>(ceilf(std::max({lt[1], rt[1], lb[1], rb[1]})));
} else {
r.left = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}) + 0.5f));
r.top = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}) + 0.5f));
r.right = static_cast<int32_t>(floorf(std::max({lt[0], rt[0], lb[0], rb[0]}) + 0.5f));
r.bottom = static_cast<int32_t>(floorf(std::max({lt[1], rt[1], lb[1], rb[1]}) + 0.5f));
}
return r;
}
FloatRect Transform::transform(const FloatRect& bounds) const {
vec2 lt(bounds.left, bounds.top);
vec2 rt(bounds.right, bounds.top);
vec2 lb(bounds.left, bounds.bottom);
vec2 rb(bounds.right, bounds.bottom);
lt = transform(lt);
rt = transform(rt);
lb = transform(lb);
rb = transform(rb);
FloatRect r;
r.left = std::min({lt[0], rt[0], lb[0], rb[0]});
r.top = std::min({lt[1], rt[1], lb[1], rb[1]});
r.right = std::max({lt[0], rt[0], lb[0], rb[0]});
r.bottom = std::max({lt[1], rt[1], lb[1], rb[1]});
return r;
}
Region Transform::transform(const Region& reg) const {
Region out;
if (CC_UNLIKELY(type() > TRANSLATE)) {
if (CC_LIKELY(preserveRects())) {
Region::const_iterator it = reg.begin();
Region::const_iterator const end = reg.end();
while (it != end) {
out.orSelf(transform(*it++));
}
} else {
out.set(transform(reg.bounds()));
}
} else {
int xpos = static_cast<int>(floorf(tx() + 0.5f));
int ypos = static_cast<int>(floorf(ty() + 0.5f));
out = reg.translate(xpos, ypos);
}
return out;
}
uint32_t Transform::type() const {
if (mType & UNKNOWN_TYPE) {
// recompute what this transform is
const mat33& M(mMatrix);
const float a = M[0][0];
const float b = M[1][0];
const float c = M[0][1];
const float d = M[1][1];
const float x = M[2][0];
const float y = M[2][1];
bool scale = false;
uint32_t flags = ROT_0;
if (isZero(b) && isZero(c)) {
if (a<0) flags |= FLIP_H;
if (d<0) flags |= FLIP_V;
if (!absIsOne(a) || !absIsOne(d)) {
scale = true;
}
} else if (isZero(a) && isZero(d)) {
flags |= ROT_90;
if (b>0) flags |= FLIP_V;
if (c<0) flags |= FLIP_H;
if (!absIsOne(b) || !absIsOne(c)) {
scale = true;
}
} else {
// there is a skew component and/or a non 90 degrees rotation
flags = ROT_INVALID;
}
mType = flags << 8;
if (flags & ROT_INVALID) {
mType |= UNKNOWN;
} else {
if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180))
mType |= ROTATE;
if (flags & FLIP_H)
mType ^= SCALE;
if (flags & FLIP_V)
mType ^= SCALE;
if (scale)
mType |= SCALE;
}
if (!isZero(x) || !isZero(y))
mType |= TRANSLATE;
}
return mType;
}
Transform Transform::inverse() const {
// our 3x3 matrix is always of the form of a 2x2 transformation
// followed by a translation: T*M, therefore:
// (T*M)^-1 = M^-1 * T^-1
Transform result;
if (mType <= TRANSLATE) {
// 1 0 0
// 0 1 0
// x y 1
result = *this;
result.mMatrix[2][0] = -result.mMatrix[2][0];
result.mMatrix[2][1] = -result.mMatrix[2][1];
} else {
// a c 0
// b d 0
// x y 1
const mat33& M(mMatrix);
const float a = M[0][0];
const float b = M[1][0];
const float c = M[0][1];
const float d = M[1][1];
const float x = M[2][0];
const float y = M[2][1];
const float idet = 1.0f / (a*d - b*c);
result.mMatrix[0][0] = d*idet;
result.mMatrix[0][1] = -c*idet;
result.mMatrix[1][0] = -b*idet;
result.mMatrix[1][1] = a*idet;
result.mType = mType;
vec2 T(-x, -y);
T = result.transform(T);
result.mMatrix[2][0] = T[0];
result.mMatrix[2][1] = T[1];
}
return result;
}
uint32_t Transform::getType() const {
return type() & 0xFF;
}
uint32_t Transform::getOrientation() const {
return (type() >> 8) & 0xFF;
}
bool Transform::preserveRects() const {
return (getOrientation() & ROT_INVALID) ? false : true;
}
bool Transform::needsBilinearFiltering() const {
return (!preserveRects() || getType() >= ui::Transform::SCALE);
}
mat4 Transform::asMatrix4() const {
// Internally Transform uses a 3x3 matrix since the transform is meant for
// two-dimensional values. An equivalent 4x4 matrix means inserting an extra
// row and column which adds as an identity transform on the third
// dimension.
mat4 m = mat4{mat4::NO_INIT}; // NO_INIT since we explicitly set every element
m[0][0] = mMatrix[0][0];
m[0][1] = mMatrix[0][1];
m[0][2] = 0.f;
m[0][3] = mMatrix[0][2];
m[1][0] = mMatrix[1][0];
m[1][1] = mMatrix[1][1];
m[1][2] = 0.f;
m[1][3] = mMatrix[1][2];
m[2][0] = 0.f;
m[2][1] = 0.f;
m[2][2] = 1.f;
m[2][3] = 0.f;
m[3][0] = mMatrix[2][0];
m[3][1] = mMatrix[2][1];
m[3][2] = 0.f;
m[3][3] = mMatrix[2][2];
return m;
}
static std::string rotationToString(const uint32_t rotationFlags) {
switch (rotationFlags) {
case Transform::ROT_0:
return "ROT_0";
case Transform::FLIP_H:
return "FLIP_H";
case Transform::FLIP_V:
return "FLIP_V";
case Transform::ROT_90:
return "ROT_90";
case Transform::ROT_180:
return "ROT_180";
case Transform::ROT_270:
return "ROT_270";
case Transform::ROT_INVALID:
default:
return "ROT_INVALID";
}
}
static std::string transformToString(const uint32_t transform) {
if (transform == Transform::IDENTITY) {
return "IDENTITY";
}
if (transform == Transform::UNKNOWN) {
return "UNKNOWN";
}
std::string out;
if (transform & Transform::SCALE) out.append("SCALE ");
if (transform & Transform::ROTATE) out.append("ROTATE ");
if (transform & Transform::TRANSLATE) out.append("TRANSLATE");
return out;
}
void Transform::dump(std::string& out, const char* name, const char* prefix) const {
using android::base::StringAppendF;
type(); // Ensure the information in mType is up to date
const uint32_t type = mType;
const uint32_t orient = type >> 8;
out += prefix;
out += name;
out += " ";
if (orient & ROT_INVALID) {
StringAppendF(&out, "0x%08x ", orient);
}
out += "(" + rotationToString(orient) + ") ";
if (type & UNKNOWN) {
StringAppendF(&out, "0x%02x ", type);
}
out += "(" + transformToString(type) + ")\n";
if (type == IDENTITY) {
return;
}
for (size_t i = 0; i < 3; i++) {
StringAppendF(&out, "%s %.4f %.4f %.4f\n", prefix, static_cast<double>(mMatrix[0][i]),
static_cast<double>(mMatrix[1][i]), static_cast<double>(mMatrix[2][i]));
}
}
void Transform::dump(const char* name, const char* prefix) const {
std::string out;
dump(out, name, prefix);
ALOGD("%s", out.c_str());
}
} // namespace android::ui