530 lines
14 KiB
C++
530 lines
14 KiB
C++
/*
|
|
* Copyright (C) 2007 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#undef LOG_TAG
|
|
#define LOG_TAG "Transform"
|
|
|
|
#include <math.h>
|
|
|
|
#include <android-base/stringprintf.h>
|
|
#include <cutils/compiler.h>
|
|
#include <ui/Region.h>
|
|
#include <ui/Transform.h>
|
|
#include <utils/String8.h>
|
|
|
|
namespace android::ui {
|
|
|
|
Transform::Transform() {
|
|
reset();
|
|
}
|
|
|
|
Transform::Transform(const Transform& other)
|
|
: mMatrix(other.mMatrix), mType(other.mType) {
|
|
}
|
|
|
|
Transform::Transform(uint32_t orientation, int w, int h) {
|
|
set(orientation, w, h);
|
|
}
|
|
|
|
Transform::~Transform() = default;
|
|
|
|
static const float EPSILON = 0.0f;
|
|
|
|
bool Transform::isZero(float f) {
|
|
return fabs(f) <= EPSILON;
|
|
}
|
|
|
|
bool Transform::absIsOne(float f) {
|
|
return isZero(fabs(f) - 1.0f);
|
|
}
|
|
|
|
bool Transform::operator==(const Transform& other) const {
|
|
return mMatrix[0][0] == other.mMatrix[0][0] && mMatrix[0][1] == other.mMatrix[0][1] &&
|
|
mMatrix[0][2] == other.mMatrix[0][2] && mMatrix[1][0] == other.mMatrix[1][0] &&
|
|
mMatrix[1][1] == other.mMatrix[1][1] && mMatrix[1][2] == other.mMatrix[1][2] &&
|
|
mMatrix[2][0] == other.mMatrix[2][0] && mMatrix[2][1] == other.mMatrix[2][1] &&
|
|
mMatrix[2][2] == other.mMatrix[2][2];
|
|
}
|
|
|
|
Transform Transform::operator*(const Transform& rhs) const {
|
|
if (CC_LIKELY(mType == IDENTITY))
|
|
return rhs;
|
|
|
|
Transform r(*this);
|
|
if (rhs.mType == IDENTITY)
|
|
return r;
|
|
|
|
// TODO: we could use mType to optimize the matrix multiply
|
|
const mat33& A(mMatrix);
|
|
const mat33& B(rhs.mMatrix);
|
|
mat33& D(r.mMatrix);
|
|
for (size_t i = 0; i < 3; i++) {
|
|
const float v0 = A[0][i];
|
|
const float v1 = A[1][i];
|
|
const float v2 = A[2][i];
|
|
D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2];
|
|
D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2];
|
|
D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2];
|
|
}
|
|
r.mType |= rhs.mType;
|
|
|
|
// TODO: we could recompute this value from r and rhs
|
|
r.mType &= 0xFF;
|
|
r.mType |= UNKNOWN_TYPE;
|
|
return r;
|
|
}
|
|
|
|
Transform Transform::operator * (float value) const {
|
|
Transform r(*this);
|
|
const mat33& M(mMatrix);
|
|
mat33& R(r.mMatrix);
|
|
for (size_t i = 0; i < 3; i++) {
|
|
for (size_t j = 0; j < 2; j++) {
|
|
R[i][j] = M[i][j] * value;
|
|
}
|
|
}
|
|
r.type();
|
|
return r;
|
|
}
|
|
|
|
Transform& Transform::operator=(const Transform& other) {
|
|
mMatrix = other.mMatrix;
|
|
mType = other.mType;
|
|
return *this;
|
|
}
|
|
|
|
const vec3& Transform::operator [] (size_t i) const {
|
|
return mMatrix[i];
|
|
}
|
|
|
|
float Transform::tx() const {
|
|
return mMatrix[2][0];
|
|
}
|
|
|
|
float Transform::ty() const {
|
|
return mMatrix[2][1];
|
|
}
|
|
|
|
float Transform::dsdx() const {
|
|
return mMatrix[0][0];
|
|
}
|
|
|
|
float Transform::dtdx() const {
|
|
return mMatrix[1][0];
|
|
}
|
|
|
|
float Transform::dtdy() const {
|
|
return mMatrix[0][1];
|
|
}
|
|
|
|
float Transform::dsdy() const {
|
|
return mMatrix[1][1];
|
|
}
|
|
|
|
float Transform::getScaleX() const {
|
|
return sqrt((dsdx() * dsdx()) + (dtdx() * dtdx()));
|
|
}
|
|
|
|
float Transform::getScaleY() const {
|
|
return sqrt((dtdy() * dtdy()) + (dsdy() * dsdy()));
|
|
}
|
|
|
|
void Transform::reset() {
|
|
mType = IDENTITY;
|
|
for(size_t i = 0; i < 3; i++) {
|
|
vec3& v(mMatrix[i]);
|
|
for (size_t j = 0; j < 3; j++)
|
|
v[j] = ((i == j) ? 1.0f : 0.0f);
|
|
}
|
|
}
|
|
|
|
void Transform::set(float tx, float ty) {
|
|
mMatrix[2][0] = tx;
|
|
mMatrix[2][1] = ty;
|
|
mMatrix[2][2] = 1.0f;
|
|
|
|
if (isZero(tx) && isZero(ty)) {
|
|
mType &= ~TRANSLATE;
|
|
} else {
|
|
mType |= TRANSLATE;
|
|
}
|
|
}
|
|
|
|
void Transform::set(float a, float b, float c, float d) {
|
|
mat33& M(mMatrix);
|
|
M[0][0] = a; M[1][0] = b;
|
|
M[0][1] = c; M[1][1] = d;
|
|
M[0][2] = 0; M[1][2] = 0;
|
|
mType = UNKNOWN_TYPE;
|
|
}
|
|
|
|
status_t Transform::set(uint32_t flags, float w, float h) {
|
|
if (flags & ROT_INVALID) {
|
|
// that's not allowed!
|
|
reset();
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
Transform H, V, R;
|
|
if (flags & ROT_90) {
|
|
// w & h are inverted when rotating by 90 degrees
|
|
std::swap(w, h);
|
|
}
|
|
|
|
if (flags & FLIP_H) {
|
|
H.mType = (FLIP_H << 8) | SCALE;
|
|
H.mType |= isZero(w) ? IDENTITY : TRANSLATE;
|
|
mat33& M(H.mMatrix);
|
|
M[0][0] = -1;
|
|
M[2][0] = w;
|
|
}
|
|
|
|
if (flags & FLIP_V) {
|
|
V.mType = (FLIP_V << 8) | SCALE;
|
|
V.mType |= isZero(h) ? IDENTITY : TRANSLATE;
|
|
mat33& M(V.mMatrix);
|
|
M[1][1] = -1;
|
|
M[2][1] = h;
|
|
}
|
|
|
|
if (flags & ROT_90) {
|
|
const float original_w = h;
|
|
R.mType = (ROT_90 << 8) | ROTATE;
|
|
R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE;
|
|
mat33& M(R.mMatrix);
|
|
M[0][0] = 0; M[1][0] =-1; M[2][0] = original_w;
|
|
M[0][1] = 1; M[1][1] = 0;
|
|
}
|
|
|
|
*this = (R*(H*V));
|
|
return NO_ERROR;
|
|
}
|
|
|
|
void Transform::set(const std::array<float, 9>& matrix) {
|
|
mat33& M(mMatrix);
|
|
M[0][0] = matrix[0]; M[1][0] = matrix[1]; M[2][0] = matrix[2];
|
|
M[0][1] = matrix[3]; M[1][1] = matrix[4]; M[2][1] = matrix[5];
|
|
M[0][2] = matrix[6]; M[1][2] = matrix[7]; M[2][2] = matrix[8];
|
|
mType = UNKNOWN_TYPE;
|
|
type();
|
|
}
|
|
|
|
vec2 Transform::transform(const vec2& v) const {
|
|
vec2 r;
|
|
const mat33& M(mMatrix);
|
|
r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0];
|
|
r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1];
|
|
return r;
|
|
}
|
|
|
|
vec3 Transform::transform(const vec3& v) const {
|
|
vec3 r;
|
|
const mat33& M(mMatrix);
|
|
r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2];
|
|
r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2];
|
|
r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2];
|
|
return r;
|
|
}
|
|
|
|
vec2 Transform::transform(float x, float y) const {
|
|
return transform(vec2(x, y));
|
|
}
|
|
|
|
Rect Transform::makeBounds(int w, int h) const {
|
|
return transform( Rect(w, h) );
|
|
}
|
|
|
|
Rect Transform::transform(const Rect& bounds, bool roundOutwards) const {
|
|
Rect r;
|
|
vec2 lt( bounds.left, bounds.top );
|
|
vec2 rt( bounds.right, bounds.top );
|
|
vec2 lb( bounds.left, bounds.bottom );
|
|
vec2 rb( bounds.right, bounds.bottom );
|
|
|
|
lt = transform(lt);
|
|
rt = transform(rt);
|
|
lb = transform(lb);
|
|
rb = transform(rb);
|
|
|
|
if (roundOutwards) {
|
|
r.left = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]})));
|
|
r.top = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]})));
|
|
r.right = static_cast<int32_t>(ceilf(std::max({lt[0], rt[0], lb[0], rb[0]})));
|
|
r.bottom = static_cast<int32_t>(ceilf(std::max({lt[1], rt[1], lb[1], rb[1]})));
|
|
} else {
|
|
r.left = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}) + 0.5f));
|
|
r.top = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}) + 0.5f));
|
|
r.right = static_cast<int32_t>(floorf(std::max({lt[0], rt[0], lb[0], rb[0]}) + 0.5f));
|
|
r.bottom = static_cast<int32_t>(floorf(std::max({lt[1], rt[1], lb[1], rb[1]}) + 0.5f));
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
FloatRect Transform::transform(const FloatRect& bounds) const {
|
|
vec2 lt(bounds.left, bounds.top);
|
|
vec2 rt(bounds.right, bounds.top);
|
|
vec2 lb(bounds.left, bounds.bottom);
|
|
vec2 rb(bounds.right, bounds.bottom);
|
|
|
|
lt = transform(lt);
|
|
rt = transform(rt);
|
|
lb = transform(lb);
|
|
rb = transform(rb);
|
|
|
|
FloatRect r;
|
|
r.left = std::min({lt[0], rt[0], lb[0], rb[0]});
|
|
r.top = std::min({lt[1], rt[1], lb[1], rb[1]});
|
|
r.right = std::max({lt[0], rt[0], lb[0], rb[0]});
|
|
r.bottom = std::max({lt[1], rt[1], lb[1], rb[1]});
|
|
|
|
return r;
|
|
}
|
|
|
|
Region Transform::transform(const Region& reg) const {
|
|
Region out;
|
|
if (CC_UNLIKELY(type() > TRANSLATE)) {
|
|
if (CC_LIKELY(preserveRects())) {
|
|
Region::const_iterator it = reg.begin();
|
|
Region::const_iterator const end = reg.end();
|
|
while (it != end) {
|
|
out.orSelf(transform(*it++));
|
|
}
|
|
} else {
|
|
out.set(transform(reg.bounds()));
|
|
}
|
|
} else {
|
|
int xpos = static_cast<int>(floorf(tx() + 0.5f));
|
|
int ypos = static_cast<int>(floorf(ty() + 0.5f));
|
|
out = reg.translate(xpos, ypos);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
uint32_t Transform::type() const {
|
|
if (mType & UNKNOWN_TYPE) {
|
|
// recompute what this transform is
|
|
|
|
const mat33& M(mMatrix);
|
|
const float a = M[0][0];
|
|
const float b = M[1][0];
|
|
const float c = M[0][1];
|
|
const float d = M[1][1];
|
|
const float x = M[2][0];
|
|
const float y = M[2][1];
|
|
|
|
bool scale = false;
|
|
uint32_t flags = ROT_0;
|
|
if (isZero(b) && isZero(c)) {
|
|
if (a<0) flags |= FLIP_H;
|
|
if (d<0) flags |= FLIP_V;
|
|
if (!absIsOne(a) || !absIsOne(d)) {
|
|
scale = true;
|
|
}
|
|
} else if (isZero(a) && isZero(d)) {
|
|
flags |= ROT_90;
|
|
if (b>0) flags |= FLIP_V;
|
|
if (c<0) flags |= FLIP_H;
|
|
if (!absIsOne(b) || !absIsOne(c)) {
|
|
scale = true;
|
|
}
|
|
} else {
|
|
// there is a skew component and/or a non 90 degrees rotation
|
|
flags = ROT_INVALID;
|
|
}
|
|
|
|
mType = flags << 8;
|
|
if (flags & ROT_INVALID) {
|
|
mType |= UNKNOWN;
|
|
} else {
|
|
if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180))
|
|
mType |= ROTATE;
|
|
if (flags & FLIP_H)
|
|
mType ^= SCALE;
|
|
if (flags & FLIP_V)
|
|
mType ^= SCALE;
|
|
if (scale)
|
|
mType |= SCALE;
|
|
}
|
|
|
|
if (!isZero(x) || !isZero(y))
|
|
mType |= TRANSLATE;
|
|
}
|
|
return mType;
|
|
}
|
|
|
|
Transform Transform::inverse() const {
|
|
// our 3x3 matrix is always of the form of a 2x2 transformation
|
|
// followed by a translation: T*M, therefore:
|
|
// (T*M)^-1 = M^-1 * T^-1
|
|
Transform result;
|
|
if (mType <= TRANSLATE) {
|
|
// 1 0 0
|
|
// 0 1 0
|
|
// x y 1
|
|
result = *this;
|
|
result.mMatrix[2][0] = -result.mMatrix[2][0];
|
|
result.mMatrix[2][1] = -result.mMatrix[2][1];
|
|
} else {
|
|
// a c 0
|
|
// b d 0
|
|
// x y 1
|
|
const mat33& M(mMatrix);
|
|
const float a = M[0][0];
|
|
const float b = M[1][0];
|
|
const float c = M[0][1];
|
|
const float d = M[1][1];
|
|
const float x = M[2][0];
|
|
const float y = M[2][1];
|
|
|
|
const float idet = 1.0f / (a*d - b*c);
|
|
result.mMatrix[0][0] = d*idet;
|
|
result.mMatrix[0][1] = -c*idet;
|
|
result.mMatrix[1][0] = -b*idet;
|
|
result.mMatrix[1][1] = a*idet;
|
|
result.mType = mType;
|
|
|
|
vec2 T(-x, -y);
|
|
T = result.transform(T);
|
|
result.mMatrix[2][0] = T[0];
|
|
result.mMatrix[2][1] = T[1];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
uint32_t Transform::getType() const {
|
|
return type() & 0xFF;
|
|
}
|
|
|
|
uint32_t Transform::getOrientation() const {
|
|
return (type() >> 8) & 0xFF;
|
|
}
|
|
|
|
bool Transform::preserveRects() const {
|
|
return (getOrientation() & ROT_INVALID) ? false : true;
|
|
}
|
|
|
|
bool Transform::needsBilinearFiltering() const {
|
|
return (!preserveRects() || getType() >= ui::Transform::SCALE);
|
|
}
|
|
|
|
mat4 Transform::asMatrix4() const {
|
|
// Internally Transform uses a 3x3 matrix since the transform is meant for
|
|
// two-dimensional values. An equivalent 4x4 matrix means inserting an extra
|
|
// row and column which adds as an identity transform on the third
|
|
// dimension.
|
|
|
|
mat4 m = mat4{mat4::NO_INIT}; // NO_INIT since we explicitly set every element
|
|
|
|
m[0][0] = mMatrix[0][0];
|
|
m[0][1] = mMatrix[0][1];
|
|
m[0][2] = 0.f;
|
|
m[0][3] = mMatrix[0][2];
|
|
|
|
m[1][0] = mMatrix[1][0];
|
|
m[1][1] = mMatrix[1][1];
|
|
m[1][2] = 0.f;
|
|
m[1][3] = mMatrix[1][2];
|
|
|
|
m[2][0] = 0.f;
|
|
m[2][1] = 0.f;
|
|
m[2][2] = 1.f;
|
|
m[2][3] = 0.f;
|
|
|
|
m[3][0] = mMatrix[2][0];
|
|
m[3][1] = mMatrix[2][1];
|
|
m[3][2] = 0.f;
|
|
m[3][3] = mMatrix[2][2];
|
|
|
|
return m;
|
|
}
|
|
|
|
static std::string rotationToString(const uint32_t rotationFlags) {
|
|
switch (rotationFlags) {
|
|
case Transform::ROT_0:
|
|
return "ROT_0";
|
|
case Transform::FLIP_H:
|
|
return "FLIP_H";
|
|
case Transform::FLIP_V:
|
|
return "FLIP_V";
|
|
case Transform::ROT_90:
|
|
return "ROT_90";
|
|
case Transform::ROT_180:
|
|
return "ROT_180";
|
|
case Transform::ROT_270:
|
|
return "ROT_270";
|
|
case Transform::ROT_INVALID:
|
|
default:
|
|
return "ROT_INVALID";
|
|
}
|
|
}
|
|
|
|
static std::string transformToString(const uint32_t transform) {
|
|
if (transform == Transform::IDENTITY) {
|
|
return "IDENTITY";
|
|
}
|
|
|
|
if (transform == Transform::UNKNOWN) {
|
|
return "UNKNOWN";
|
|
}
|
|
|
|
std::string out;
|
|
if (transform & Transform::SCALE) out.append("SCALE ");
|
|
if (transform & Transform::ROTATE) out.append("ROTATE ");
|
|
if (transform & Transform::TRANSLATE) out.append("TRANSLATE");
|
|
return out;
|
|
}
|
|
|
|
void Transform::dump(std::string& out, const char* name, const char* prefix) const {
|
|
using android::base::StringAppendF;
|
|
|
|
type(); // Ensure the information in mType is up to date
|
|
|
|
const uint32_t type = mType;
|
|
const uint32_t orient = type >> 8;
|
|
|
|
out += prefix;
|
|
out += name;
|
|
out += " ";
|
|
|
|
if (orient & ROT_INVALID) {
|
|
StringAppendF(&out, "0x%08x ", orient);
|
|
}
|
|
out += "(" + rotationToString(orient) + ") ";
|
|
|
|
if (type & UNKNOWN) {
|
|
StringAppendF(&out, "0x%02x ", type);
|
|
}
|
|
out += "(" + transformToString(type) + ")\n";
|
|
|
|
if (type == IDENTITY) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < 3; i++) {
|
|
StringAppendF(&out, "%s %.4f %.4f %.4f\n", prefix, static_cast<double>(mMatrix[0][i]),
|
|
static_cast<double>(mMatrix[1][i]), static_cast<double>(mMatrix[2][i]));
|
|
}
|
|
}
|
|
|
|
void Transform::dump(const char* name, const char* prefix) const {
|
|
std::string out;
|
|
dump(out, name, prefix);
|
|
ALOGD("%s", out.c_str());
|
|
}
|
|
|
|
} // namespace android::ui
|