aosp12/system/keymaster/android_keymaster/android_keymaster.cpp

909 lines
37 KiB
C++

/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <keymaster/android_keymaster.h>
#include <vector>
#include <assert.h>
#include <string.h>
#include <stddef.h>
#include <cppbor.h>
#include <cppbor_parse.h>
#include <keymaster/UniquePtr.h>
#include <keymaster/android_keymaster_utils.h>
#include <keymaster/cppcose/cppcose.h>
#include <keymaster/key.h>
#include <keymaster/key_blob_utils/ae.h>
#include <keymaster/key_factory.h>
#include <keymaster/keymaster_context.h>
#include <keymaster/km_date.h>
#include <keymaster/km_openssl/openssl_err.h>
#include <keymaster/km_openssl/openssl_utils.h>
#include <keymaster/logger.h>
#include <keymaster/operation.h>
#include <keymaster/operation_table.h>
#include <keymaster/remote_provisioning_utils.h>
namespace keymaster {
namespace {
using cppcose::constructCoseEncrypt;
using cppcose::constructCoseMac0;
using cppcose::constructCoseSign1;
using cppcose::CoseKey;
using cppcose::EC2;
using cppcose::ES256;
using cppcose::generateCoseMac0Mac;
using cppcose::kAesGcmNonceLength;
using cppcose::P256;
using cppcose::x25519_HKDF_DeriveKey;
template <keymaster_tag_t T>
keymaster_error_t CheckPatchLevel(const AuthorizationSet& tee_enforced,
const AuthorizationSet& sw_enforced, TypedTag<KM_UINT, T> tag,
uint32_t current_patchlevel) {
uint32_t key_patchlevel;
if (tee_enforced.GetTagValue(tag, &key_patchlevel) ||
sw_enforced.GetTagValue(tag, &key_patchlevel)) {
if (key_patchlevel < current_patchlevel) {
return KM_ERROR_KEY_REQUIRES_UPGRADE;
} else if (key_patchlevel > current_patchlevel) {
return KM_ERROR_INVALID_KEY_BLOB;
}
}
return KM_ERROR_OK;
}
keymaster_error_t CheckVersionInfo(const AuthorizationSet& tee_enforced,
const AuthorizationSet& sw_enforced,
const KeymasterContext& context) {
uint32_t os_version;
uint32_t os_patchlevel;
context.GetSystemVersion(&os_version, &os_patchlevel);
keymaster_error_t err =
CheckPatchLevel(tee_enforced, sw_enforced, TAG_OS_PATCHLEVEL, os_patchlevel);
if (err != KM_ERROR_OK) return err;
// Also check the vendor and boot patchlevels if available.
auto vendor_patchlevel = context.GetVendorPatchlevel();
if (vendor_patchlevel.has_value()) {
err = CheckPatchLevel(tee_enforced, sw_enforced, TAG_VENDOR_PATCHLEVEL,
vendor_patchlevel.value());
if (err != KM_ERROR_OK) return err;
}
auto boot_patchlevel = context.GetBootPatchlevel();
if (boot_patchlevel.has_value()) {
err = CheckPatchLevel(tee_enforced, sw_enforced, TAG_BOOT_PATCHLEVEL,
boot_patchlevel.value());
if (err != KM_ERROR_OK) return err;
}
return KM_ERROR_OK;
}
const keymaster_key_param_t kKeyMintEcdsaP256Params[] = {
Authorization(TAG_PURPOSE, KM_PURPOSE_ATTEST_KEY),
Authorization(TAG_ALGORITHM, KM_ALGORITHM_EC), Authorization(TAG_KEY_SIZE, 256),
Authorization(TAG_DIGEST, KM_DIGEST_SHA_2_256), Authorization(TAG_EC_CURVE, KM_EC_CURVE_P_256),
Authorization(TAG_NO_AUTH_REQUIRED),
// The certificate generated by KM will be discarded, these values don't matter.
Authorization(TAG_CERTIFICATE_NOT_BEFORE, 0), Authorization(TAG_CERTIFICATE_NOT_AFTER, 0)};
cppcose::HmacSha256Function getMacFunction(bool test_mode,
RemoteProvisioningContext* rem_prov_ctx) {
if (test_mode) {
return [](const cppcose::bytevec& input) {
const cppcose::bytevec macKey(32);
return cppcose::generateHmacSha256(macKey, input);
};
}
return [rem_prov_ctx](const cppcose::bytevec& input) -> cppcose::ErrMsgOr<cppcose::HmacSha256> {
auto mac = rem_prov_ctx->GenerateHmacSha256(input);
if (!mac) {
return "Remote provisioning context failed to sign MAC.";
}
return *mac;
};
}
constexpr int kP256AffinePointSize = 32;
} // anonymous namespace
AndroidKeymaster::AndroidKeymaster(KeymasterContext* context, size_t operation_table_size,
uint32_t message_version)
: context_(context), operation_table_(new (std::nothrow) OperationTable(operation_table_size)),
message_version_(message_version) {}
AndroidKeymaster::~AndroidKeymaster() {}
AndroidKeymaster::AndroidKeymaster(AndroidKeymaster&& other)
: context_(move(other.context_)), operation_table_(move(other.operation_table_)) {}
// TODO(swillden): Unify support analysis. Right now, we have per-keytype methods that determine if
// specific modes, padding, etc. are supported for that key type, and AndroidKeymaster also has
// methods that return the same information. They'll get out of sync. Best to put the knowledge in
// the keytypes and provide some mechanism for AndroidKeymaster to query the keytypes for the
// information.
template <typename T>
bool check_supported(const KeymasterContext& context, keymaster_algorithm_t algorithm,
SupportedResponse<T>* response) {
if (context.GetKeyFactory(algorithm) == nullptr) {
response->error = KM_ERROR_UNSUPPORTED_ALGORITHM;
return false;
}
return true;
}
void AndroidKeymaster::GetVersion(const GetVersionRequest&, GetVersionResponse* rsp) {
if (rsp == nullptr) return;
rsp->major_ver = 2;
rsp->minor_ver = 0;
rsp->subminor_ver = 0;
rsp->error = KM_ERROR_OK;
}
GetVersion2Response AndroidKeymaster::GetVersion2(const GetVersion2Request& req) {
GetVersion2Response rsp;
rsp.km_version = context_->GetKmVersion();
rsp.km_date = kKmDate;
rsp.max_message_version = MessageVersion(rsp.km_version, rsp.km_date);
rsp.error = KM_ERROR_OK;
// Determine what message version we should use.
message_version_ = NegotiateMessageVersion(req, rsp);
LOG_D("GetVersion2 results: %d, %d, %d, %d", rsp.km_version, rsp.km_date,
rsp.max_message_version, message_version_);
return rsp;
}
void AndroidKeymaster::SupportedAlgorithms(const SupportedAlgorithmsRequest& /* request */,
SupportedAlgorithmsResponse* response) {
if (response == nullptr) return;
response->error = KM_ERROR_OK;
size_t algorithm_count = 0;
const keymaster_algorithm_t* algorithms = context_->GetSupportedAlgorithms(&algorithm_count);
if (algorithm_count == 0) return;
response->results_length = algorithm_count;
response->results = dup_array(algorithms, algorithm_count);
if (!response->results) response->error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
}
template <typename T>
void GetSupported(const KeymasterContext& context, keymaster_algorithm_t algorithm,
keymaster_purpose_t purpose,
const T* (OperationFactory::*get_supported_method)(size_t* count) const,
SupportedResponse<T>* response) {
if (response == nullptr || !check_supported(context, algorithm, response)) return;
const OperationFactory* factory = context.GetOperationFactory(algorithm, purpose);
if (!factory) {
response->error = KM_ERROR_UNSUPPORTED_PURPOSE;
return;
}
size_t count;
const T* supported = (factory->*get_supported_method)(&count);
response->SetResults(supported, count);
}
void AndroidKeymaster::SupportedBlockModes(const SupportedBlockModesRequest& request,
SupportedBlockModesResponse* response) {
GetSupported(*context_, request.algorithm, request.purpose,
&OperationFactory::SupportedBlockModes, response);
}
void AndroidKeymaster::SupportedPaddingModes(const SupportedPaddingModesRequest& request,
SupportedPaddingModesResponse* response) {
GetSupported(*context_, request.algorithm, request.purpose,
&OperationFactory::SupportedPaddingModes, response);
}
void AndroidKeymaster::SupportedDigests(const SupportedDigestsRequest& request,
SupportedDigestsResponse* response) {
GetSupported(*context_, request.algorithm, request.purpose, &OperationFactory::SupportedDigests,
response);
}
void AndroidKeymaster::SupportedImportFormats(const SupportedImportFormatsRequest& request,
SupportedImportFormatsResponse* response) {
if (response == nullptr || !check_supported(*context_, request.algorithm, response)) return;
size_t count;
const keymaster_key_format_t* formats =
context_->GetKeyFactory(request.algorithm)->SupportedImportFormats(&count);
response->SetResults(formats, count);
}
void AndroidKeymaster::SupportedExportFormats(const SupportedExportFormatsRequest& request,
SupportedExportFormatsResponse* response) {
if (response == nullptr || !check_supported(*context_, request.algorithm, response)) return;
size_t count;
const keymaster_key_format_t* formats =
context_->GetKeyFactory(request.algorithm)->SupportedExportFormats(&count);
response->SetResults(formats, count);
}
GetHmacSharingParametersResponse AndroidKeymaster::GetHmacSharingParameters() {
GetHmacSharingParametersResponse response(message_version());
KeymasterEnforcement* policy = context_->enforcement_policy();
if (!policy) {
response.error = KM_ERROR_UNIMPLEMENTED;
return response;
}
response.error = policy->GetHmacSharingParameters(&response.params);
return response;
}
ComputeSharedHmacResponse
AndroidKeymaster::ComputeSharedHmac(const ComputeSharedHmacRequest& request) {
ComputeSharedHmacResponse response(message_version());
KeymasterEnforcement* policy = context_->enforcement_policy();
if (!policy) {
response.error = KM_ERROR_UNIMPLEMENTED;
return response;
}
response.error = policy->ComputeSharedHmac(request.params_array, &response.sharing_check);
return response;
}
VerifyAuthorizationResponse
AndroidKeymaster::VerifyAuthorization(const VerifyAuthorizationRequest& request) {
KeymasterEnforcement* policy = context_->enforcement_policy();
if (!policy) {
VerifyAuthorizationResponse response(message_version());
response.error = KM_ERROR_UNIMPLEMENTED;
return response;
}
return policy->VerifyAuthorization(request);
}
void AndroidKeymaster::GenerateTimestampToken(GenerateTimestampTokenRequest& request,
GenerateTimestampTokenResponse* response) {
KeymasterEnforcement* policy = context_->enforcement_policy();
if (!policy) {
response->error = KM_ERROR_UNIMPLEMENTED;
} else {
response->token.challenge = request.challenge;
response->error = policy->GenerateTimestampToken(&response->token);
}
}
void AndroidKeymaster::AddRngEntropy(const AddEntropyRequest& request,
AddEntropyResponse* response) {
response->error = context_->AddRngEntropy(request.random_data.peek_read(),
request.random_data.available_read());
}
const KeyFactory* get_key_factory(const AuthorizationSet& key_description,
const KeymasterContext& context, //
keymaster_error_t* error) {
keymaster_algorithm_t algorithm;
const KeyFactory* factory{};
if (!key_description.GetTagValue(TAG_ALGORITHM, &algorithm) ||
!(factory = context.GetKeyFactory(algorithm))) {
*error = KM_ERROR_UNSUPPORTED_ALGORITHM;
}
return factory;
}
void AndroidKeymaster::GenerateKey(const GenerateKeyRequest& request,
GenerateKeyResponse* response) {
if (response == nullptr) return;
const KeyFactory* factory =
get_key_factory(request.key_description, *context_, &response->error);
if (!factory) return;
UniquePtr<Key> attest_key;
if (request.attestation_signing_key_blob.key_material_size) {
attest_key = LoadKey(request.attestation_signing_key_blob, request.attest_key_params,
&response->error);
if (response->error != KM_ERROR_OK) return;
}
response->enforced.Clear();
response->unenforced.Clear();
response->error = factory->GenerateKey(request.key_description,
move(attest_key), //
request.issuer_subject,
&response->key_blob, //
&response->enforced,
&response->unenforced, //
&response->certificate_chain);
}
void AndroidKeymaster::GenerateRkpKey(const GenerateRkpKeyRequest& request,
GenerateRkpKeyResponse* response) {
if (response == nullptr) return;
auto rem_prov_ctx = context_->GetRemoteProvisioningContext();
if (rem_prov_ctx == nullptr) {
response->error = static_cast<keymaster_error_t>(kStatusFailed);
return;
}
// Generate the keypair that will become the attestation key.
GenerateKeyRequest gen_key_request(message_version_);
gen_key_request.key_description.Reinitialize(kKeyMintEcdsaP256Params,
array_length(kKeyMintEcdsaP256Params));
GenerateKeyResponse gen_key_response(message_version_);
GenerateKey(gen_key_request, &gen_key_response);
if (gen_key_response.error != KM_ERROR_OK) {
response->error = static_cast<keymaster_error_t>(kStatusFailed);
return;
}
// Retrieve the certificate and parse it to build a COSE_Key
if (gen_key_response.certificate_chain.entry_count != 1) {
// Error: Need the single non-signed certificate with the public key in it.
response->error = static_cast<keymaster_error_t>(kStatusFailed);
return;
}
std::vector<uint8_t> x_coord(kP256AffinePointSize);
std::vector<uint8_t> y_coord(kP256AffinePointSize);
response->error =
GetEcdsa256KeyFromCert(gen_key_response.certificate_chain.begin(), x_coord.data(),
x_coord.size(), y_coord.data(), y_coord.size());
if (response->error != KM_ERROR_OK) {
response->error = static_cast<keymaster_error_t>(kStatusFailed);
return;
}
cppbor::Map cose_public_key_map = cppbor::Map()
.add(CoseKey::KEY_TYPE, EC2)
.add(CoseKey::ALGORITHM, ES256)
.add(CoseKey::CURVE, P256)
.add(CoseKey::PUBKEY_X, x_coord)
.add(CoseKey::PUBKEY_Y, y_coord);
if (request.test_mode) {
cose_public_key_map.add(CoseKey::TEST_KEY, cppbor::Null());
}
std::vector<uint8_t> cosePublicKey = cose_public_key_map.canonicalize().encode();
auto macFunction = getMacFunction(request.test_mode, rem_prov_ctx);
auto macedKey = constructCoseMac0(macFunction, {} /* externalAad */, cosePublicKey);
if (!macedKey) {
response->error = static_cast<keymaster_error_t>(kStatusFailed);
return;
}
std::vector<uint8_t> enc = macedKey->encode();
response->maced_public_key = KeymasterBlob(enc.data(), enc.size());
response->key_blob = std::move(gen_key_response.key_blob);
response->error = KM_ERROR_OK;
}
void AndroidKeymaster::GenerateCsr(const GenerateCsrRequest& request,
GenerateCsrResponse* response) {
if (response == nullptr) return;
auto rem_prov_ctx = context_->GetRemoteProvisioningContext();
if (rem_prov_ctx == nullptr) {
LOG_E("Couldn't get a pointer to the remote provisioning context, returned null.", 0);
response->error = static_cast<keymaster_error_t>(kStatusFailed);
return;
}
auto macFunction = getMacFunction(request.test_mode, rem_prov_ctx);
auto pubKeysToSign = validateAndExtractPubkeys(request.test_mode, request.num_keys,
request.keys_to_sign_array, macFunction);
if (!pubKeysToSign.isOk()) {
LOG_E("Failed to validate and extract the public keys for the CSR", 0);
response->error = static_cast<keymaster_error_t>(pubKeysToSign.moveError());
return;
}
std::vector<uint8_t> ephemeral_mac_key(SHA256_DIGEST_LENGTH, 0 /* value */);
if (GenerateRandom(ephemeral_mac_key.data(), ephemeral_mac_key.size()) != KM_ERROR_OK) {
LOG_E("Failed to generate a random mac key.", 0);
response->error = static_cast<keymaster_error_t>(kStatusFailed);
return;
}
auto ephemeral_mac_function = [&ephemeral_mac_key](const cppcose::bytevec& input) {
return cppcose::generateHmacSha256(ephemeral_mac_key, input);
};
auto pubKeysToSignMac =
generateCoseMac0Mac(ephemeral_mac_function, std::vector<uint8_t>{}, *pubKeysToSign);
if (!pubKeysToSignMac) {
LOG_E("Failed to generate COSE_Mac0 over the public keys to sign.", 0);
response->error = static_cast<keymaster_error_t>(kStatusFailed);
return;
}
response->keys_to_sign_mac = KeymasterBlob(pubKeysToSignMac->data(), pubKeysToSignMac->size());
std::vector<uint8_t> devicePrivKey;
cppbor::Array bcc;
if (request.test_mode) {
std::tie(devicePrivKey, bcc) = rem_prov_ctx->GenerateBcc(/*testMode=*/true);
} else {
devicePrivKey = rem_prov_ctx->devicePrivKey_;
auto clone = rem_prov_ctx->bcc_.clone();
if (!clone->asArray()) {
LOG_E("The BCC is not an array.", 0);
response->error = static_cast<keymaster_error_t>(kStatusFailed);
return;
}
bcc = std::move(*clone->asArray());
}
std::unique_ptr<cppbor::Map> device_info_map = rem_prov_ctx->CreateDeviceInfo();
std::vector<uint8_t> device_info = device_info_map->encode();
response->device_info_blob = KeymasterBlob(device_info.data(), device_info.size());
auto signedMac =
constructCoseSign1(devicePrivKey /* Signing key */, //
ephemeral_mac_key /* Payload */,
cppbor::Array() /* AAD */
.add(std::pair(request.challenge.begin(),
request.challenge.end() - request.challenge.begin()))
.add(std::move(device_info_map))
.add(std::pair(pubKeysToSignMac->data(), pubKeysToSignMac->size()))
.encode());
if (!signedMac) {
LOG_E("Failed to construct COSE_Sign1 over the ephemeral mac key.", 0);
response->error = static_cast<keymaster_error_t>(kStatusFailed);
return;
}
std::vector<uint8_t> ephemeralPrivKey(X25519_PRIVATE_KEY_LEN);
std::vector<uint8_t> ephemeralPubKey(X25519_PUBLIC_VALUE_LEN);
X25519_keypair(ephemeralPubKey.data(), ephemeralPrivKey.data());
auto eek = validateAndExtractEekPubAndId(request.test_mode, request.endpoint_enc_cert_chain);
if (!eek.isOk()) {
LOG_E("Failed to validate and extract the endpoint encryption key.", 0);
response->error = static_cast<keymaster_error_t>(eek.moveError());
return;
}
auto sessionKey =
x25519_HKDF_DeriveKey(ephemeralPubKey, ephemeralPrivKey, eek->first, true /* senderIsA */);
if (!sessionKey) {
LOG_E("Failed to derive the session key.", 0);
response->error = static_cast<keymaster_error_t>(kStatusFailed);
return;
}
std::vector<uint8_t> nonce(kAesGcmNonceLength, 0 /* value */);
if (GenerateRandom(nonce.data(), nonce.size()) != KM_ERROR_OK) {
LOG_E("Failed to generate a random nonce.", 0);
response->error = static_cast<keymaster_error_t>(kStatusFailed);
return;
}
auto coseEncrypted = constructCoseEncrypt(*sessionKey, nonce,
cppbor::Array() // payload
.add(signedMac.moveValue())
.add(std::move(bcc))
.encode(),
{}, // aad
buildCertReqRecipients(ephemeralPubKey, eek->second));
if (!coseEncrypted) {
LOG_E("Failed to construct a COSE_Encrypt ProtectedData structure", 0);
response->error = static_cast<keymaster_error_t>(kStatusFailed);
return;
}
std::vector<uint8_t> payload = coseEncrypted->encode();
response->protected_data_blob = KeymasterBlob(payload.data(), payload.size());
response->error = KM_ERROR_OK;
}
void AndroidKeymaster::GetKeyCharacteristics(const GetKeyCharacteristicsRequest& request,
GetKeyCharacteristicsResponse* response) {
if (response == nullptr) return;
UniquePtr<Key> key;
response->error =
context_->ParseKeyBlob(KeymasterKeyBlob(request.key_blob), request.additional_params, &key);
if (response->error != KM_ERROR_OK) return;
// scavenge the key object for the auth lists
response->enforced = move(key->hw_enforced());
response->unenforced = move(key->sw_enforced());
response->error = CheckVersionInfo(response->enforced, response->unenforced, *context_);
}
void AndroidKeymaster::BeginOperation(const BeginOperationRequest& request,
BeginOperationResponse* response) {
if (response == nullptr) return;
response->op_handle = 0;
UniquePtr<Key> key = LoadKey(request.key_blob, request.additional_params, &response->error);
if (!key) return;
response->error = KM_ERROR_UNKNOWN_ERROR;
keymaster_algorithm_t key_algorithm;
if (!key->authorizations().GetTagValue(TAG_ALGORITHM, &key_algorithm)) return;
response->error = KM_ERROR_UNSUPPORTED_PURPOSE;
OperationFactory* factory = key->key_factory()->GetOperationFactory(request.purpose);
if (!factory) return;
OperationPtr operation(
factory->CreateOperation(move(*key), request.additional_params, &response->error));
if (operation.get() == nullptr) return;
if (operation->authorizations().Contains(TAG_TRUSTED_CONFIRMATION_REQUIRED)) {
if (!operation->create_confirmation_verifier_buffer()) {
response->error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return;
}
}
if (context_->enforcement_policy()) {
km_id_t key_id;
response->error = KM_ERROR_UNKNOWN_ERROR;
if (!context_->enforcement_policy()->CreateKeyId(request.key_blob, &key_id)) return;
operation->set_key_id(key_id);
response->error = context_->enforcement_policy()->AuthorizeOperation(
request.purpose, key_id, operation->authorizations(), request.additional_params,
0 /* op_handle */, true /* is_begin_operation */);
if (response->error != KM_ERROR_OK) return;
}
response->output_params.Clear();
response->error = operation->Begin(request.additional_params, &response->output_params);
if (response->error != KM_ERROR_OK) return;
response->op_handle = operation->operation_handle();
response->error = operation_table_->Add(move(operation));
}
void AndroidKeymaster::UpdateOperation(const UpdateOperationRequest& request,
UpdateOperationResponse* response) {
if (response == nullptr) return;
response->error = KM_ERROR_INVALID_OPERATION_HANDLE;
Operation* operation = operation_table_->Find(request.op_handle);
if (operation == nullptr) return;
Buffer* confirmation_verifier_buffer = operation->get_confirmation_verifier_buffer();
if (confirmation_verifier_buffer != nullptr) {
size_t input_num_bytes = request.input.available_read();
if (input_num_bytes + confirmation_verifier_buffer->available_read() >
kConfirmationMessageMaxSize + kConfirmationTokenMessageTagSize) {
response->error = KM_ERROR_INVALID_ARGUMENT;
operation_table_->Delete(request.op_handle);
return;
}
if (!confirmation_verifier_buffer->reserve(input_num_bytes)) {
response->error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
operation_table_->Delete(request.op_handle);
return;
}
confirmation_verifier_buffer->write(request.input.peek_read(), input_num_bytes);
}
if (context_->enforcement_policy()) {
response->error = context_->enforcement_policy()->AuthorizeOperation(
operation->purpose(), operation->key_id(), operation->authorizations(),
request.additional_params, request.op_handle, false /* is_begin_operation */);
if (response->error != KM_ERROR_OK) {
operation_table_->Delete(request.op_handle);
return;
}
}
response->error =
operation->Update(request.additional_params, request.input, &response->output_params,
&response->output, &response->input_consumed);
if (response->error != KM_ERROR_OK) {
// Any error invalidates the operation.
operation_table_->Delete(request.op_handle);
}
}
void AndroidKeymaster::FinishOperation(const FinishOperationRequest& request,
FinishOperationResponse* response) {
if (response == nullptr) return;
response->error = KM_ERROR_INVALID_OPERATION_HANDLE;
Operation* operation = operation_table_->Find(request.op_handle);
if (operation == nullptr) return;
Buffer* confirmation_verifier_buffer = operation->get_confirmation_verifier_buffer();
if (confirmation_verifier_buffer != nullptr) {
size_t input_num_bytes = request.input.available_read();
if (input_num_bytes + confirmation_verifier_buffer->available_read() >
kConfirmationMessageMaxSize + kConfirmationTokenMessageTagSize) {
response->error = KM_ERROR_INVALID_ARGUMENT;
operation_table_->Delete(request.op_handle);
return;
}
if (!confirmation_verifier_buffer->reserve(input_num_bytes)) {
response->error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
operation_table_->Delete(request.op_handle);
return;
}
confirmation_verifier_buffer->write(request.input.peek_read(), input_num_bytes);
}
if (context_->enforcement_policy()) {
response->error = context_->enforcement_policy()->AuthorizeOperation(
operation->purpose(), operation->key_id(), operation->authorizations(),
request.additional_params, request.op_handle, false /* is_begin_operation */);
if (response->error != KM_ERROR_OK) {
operation_table_->Delete(request.op_handle);
return;
}
}
response->error = operation->Finish(request.additional_params, request.input, request.signature,
&response->output_params, &response->output);
if (response->error != KM_ERROR_OK) {
operation_table_->Delete(request.op_handle);
return;
}
// Invalidate the single use key from secure storage after finish.
if (operation->hw_enforced().Contains(TAG_USAGE_COUNT_LIMIT, 1) &&
context_->secure_key_storage() != nullptr) {
response->error = context_->secure_key_storage()->DeleteKey(operation->key_id());
}
// If the operation succeeded and TAG_TRUSTED_CONFIRMATION_REQUIRED was
// set, the input must be checked against the confirmation token.
if (response->error == KM_ERROR_OK && confirmation_verifier_buffer != nullptr) {
keymaster_blob_t confirmation_token_blob;
if (!request.additional_params.GetTagValue(TAG_CONFIRMATION_TOKEN,
&confirmation_token_blob)) {
response->error = KM_ERROR_NO_USER_CONFIRMATION;
response->output.Clear();
} else {
if (confirmation_token_blob.data_length != kConfirmationTokenSize) {
LOG_E("TAG_CONFIRMATION_TOKEN wrong size, was %zd expected %zd",
confirmation_token_blob.data_length, kConfirmationTokenSize);
response->error = KM_ERROR_INVALID_ARGUMENT;
response->output.Clear();
} else {
keymaster_error_t verification_result = context_->CheckConfirmationToken(
confirmation_verifier_buffer->begin(),
confirmation_verifier_buffer->available_read(), confirmation_token_blob.data);
if (verification_result != KM_ERROR_OK) {
response->error = verification_result;
response->output.Clear();
}
}
}
}
operation_table_->Delete(request.op_handle);
}
void AndroidKeymaster::AbortOperation(const AbortOperationRequest& request,
AbortOperationResponse* response) {
if (!response) return;
Operation* operation = operation_table_->Find(request.op_handle);
if (!operation) {
response->error = KM_ERROR_INVALID_OPERATION_HANDLE;
return;
}
response->error = operation->Abort();
operation_table_->Delete(request.op_handle);
}
void AndroidKeymaster::ExportKey(const ExportKeyRequest& request, ExportKeyResponse* response) {
if (response == nullptr) return;
UniquePtr<Key> key;
response->error =
context_->ParseKeyBlob(KeymasterKeyBlob(request.key_blob), request.additional_params, &key);
if (response->error != KM_ERROR_OK) return;
UniquePtr<uint8_t[]> out_key;
size_t size;
response->error = key->formatted_key_material(request.key_format, &out_key, &size);
if (response->error == KM_ERROR_OK) {
response->key_data = out_key.release();
response->key_data_length = size;
}
}
void AndroidKeymaster::AttestKey(const AttestKeyRequest& request, AttestKeyResponse* response) {
if (!response) return;
UniquePtr<Key> key = LoadKey(request.key_blob, request.attest_params, &response->error);
if (!key) return;
keymaster_blob_t attestation_application_id;
if (request.attest_params.GetTagValue(TAG_ATTESTATION_APPLICATION_ID,
&attestation_application_id)) {
key->sw_enforced().push_back(TAG_ATTESTATION_APPLICATION_ID, attestation_application_id);
}
response->certificate_chain =
context_->GenerateAttestation(*key, request.attest_params, {} /* attestation_signing_key */,
{} /* issuer_subject */, &response->error);
}
void AndroidKeymaster::UpgradeKey(const UpgradeKeyRequest& request, UpgradeKeyResponse* response) {
if (!response) return;
KeymasterKeyBlob upgraded_key;
response->error = context_->UpgradeKeyBlob(KeymasterKeyBlob(request.key_blob),
request.upgrade_params, &upgraded_key);
if (response->error != KM_ERROR_OK) return;
response->upgraded_key = upgraded_key.release();
}
void AndroidKeymaster::ImportKey(const ImportKeyRequest& request, ImportKeyResponse* response) {
if (response == nullptr) return;
const KeyFactory* factory =
get_key_factory(request.key_description, *context_, &response->error);
if (!factory) return;
if (context_->enforcement_policy() &&
request.key_description.GetTagValue(TAG_EARLY_BOOT_ONLY) &&
!context_->enforcement_policy()->in_early_boot()) {
response->error = KM_ERROR_EARLY_BOOT_ENDED;
return;
}
UniquePtr<Key> attest_key;
if (request.attestation_signing_key_blob.key_material_size) {
attest_key =
LoadKey(request.attestation_signing_key_blob, {} /* params */, &response->error);
if (response->error != KM_ERROR_OK) return;
}
response->error = factory->ImportKey(request.key_description, //
request.key_format, //
request.key_data, //
move(attest_key), //
request.issuer_subject, //
&response->key_blob, //
&response->enforced, //
&response->unenforced, //
&response->certificate_chain);
}
void AndroidKeymaster::DeleteKey(const DeleteKeyRequest& request, DeleteKeyResponse* response) {
if (!response) return;
response->error = context_->DeleteKey(KeymasterKeyBlob(request.key_blob));
}
void AndroidKeymaster::DeleteAllKeys(const DeleteAllKeysRequest&, DeleteAllKeysResponse* response) {
if (!response) return;
response->error = context_->DeleteAllKeys();
}
void AndroidKeymaster::Configure(const ConfigureRequest& request, ConfigureResponse* response) {
if (!response) return;
response->error = context_->SetSystemVersion(request.os_version, request.os_patchlevel);
}
ConfigureVendorPatchlevelResponse
AndroidKeymaster::ConfigureVendorPatchlevel(const ConfigureVendorPatchlevelRequest& request) {
ConfigureVendorPatchlevelResponse rsp(message_version());
rsp.error = context_->SetVendorPatchlevel(request.vendor_patchlevel);
return rsp;
}
ConfigureBootPatchlevelResponse
AndroidKeymaster::ConfigureBootPatchlevel(const ConfigureBootPatchlevelRequest& request) {
ConfigureBootPatchlevelResponse rsp(message_version());
rsp.error = context_->SetBootPatchlevel(request.boot_patchlevel);
return rsp;
}
bool AndroidKeymaster::has_operation(keymaster_operation_handle_t op_handle) const {
return operation_table_->Find(op_handle) != nullptr;
}
UniquePtr<Key> AndroidKeymaster::LoadKey(const keymaster_key_blob_t& key_blob,
const AuthorizationSet& additional_params,
keymaster_error_t* error) {
if (!error) return {};
UniquePtr<Key> key;
KeymasterKeyBlob key_material;
*error = context_->ParseKeyBlob(KeymasterKeyBlob(key_blob), additional_params, &key);
if (*error != KM_ERROR_OK) return {};
*error = CheckVersionInfo(key->hw_enforced(), key->sw_enforced(), *context_);
if (*error != KM_ERROR_OK) return {};
return key;
}
void AndroidKeymaster::ImportWrappedKey(const ImportWrappedKeyRequest& request,
ImportWrappedKeyResponse* response) {
if (!response) return;
KeymasterKeyBlob secret_key;
AuthorizationSet key_description;
keymaster_key_format_t key_format;
response->error =
context_->UnwrapKey(request.wrapped_key, request.wrapping_key, request.additional_params,
request.masking_key, &key_description, &key_format, &secret_key);
if (response->error != KM_ERROR_OK) {
return;
}
int sid_idx = key_description.find(TAG_USER_SECURE_ID);
if (sid_idx != -1) {
uint8_t sids = key_description[sid_idx].long_integer;
if (!key_description.erase(sid_idx)) {
response->error = KM_ERROR_UNKNOWN_ERROR;
return;
}
if (sids & HW_AUTH_PASSWORD) {
key_description.push_back(TAG_USER_SECURE_ID, request.password_sid);
}
if (sids & HW_AUTH_FINGERPRINT) {
key_description.push_back(TAG_USER_SECURE_ID, request.biometric_sid);
}
if (context_->GetKmVersion() >= KmVersion::KEYMINT_1) {
key_description.push_back(TAG_CERTIFICATE_NOT_BEFORE, 0);
key_description.push_back(TAG_CERTIFICATE_NOT_AFTER, kUndefinedExpirationDateTime);
}
}
const KeyFactory* factory = get_key_factory(key_description, *context_, &response->error);
if (!factory) return;
response->error = factory->ImportKey(key_description, //
key_format, //
secret_key, //
{} /* attest_key */, //
{} /* issuer_subject */, //
&response->key_blob, //
&response->enforced, //
&response->unenforced, //
&response->certificate_chain);
}
EarlyBootEndedResponse AndroidKeymaster::EarlyBootEnded() {
if (context_->enforcement_policy()) {
context_->enforcement_policy()->early_boot_ended();
}
return EarlyBootEndedResponse(message_version());
}
DeviceLockedResponse AndroidKeymaster::DeviceLocked(const DeviceLockedRequest& request) {
if (context_->enforcement_policy()) {
context_->enforcement_policy()->device_locked(request.passwordOnly);
}
return DeviceLockedResponse(message_version());
}
} // namespace keymaster