Merge pull request #341 from carla-simulator/some_benchmark_fixes
Some benchmark fixes
This commit is contained in:
commit
140500a6f8
|
@ -1,78 +0,0 @@
|
|||
<h1>CARLA Benchmark</h1>
|
||||
|
||||
Running the Benchmark
|
||||
---------------------
|
||||
|
||||
The "carla" api provides a basic benchmarking system, that allows making several
|
||||
tests on a certain agent. We already provide the same benchmark used in the CoRL
|
||||
2017 paper. By running this benchmark you can compare the results of your agent
|
||||
to the results obtained by the agents show in the paper.
|
||||
|
||||
Besides the requirements of the CARLA client, the benchmark package also needs
|
||||
the future package
|
||||
|
||||
$ sudo pip install future
|
||||
|
||||
By running the benchmark a default agent that just go straight will be tested.
|
||||
To run the benchmark you need a server running. For a default localhost server
|
||||
on port 2000, to run the benchmark you just need to run
|
||||
|
||||
$ ./run_benchmark.py
|
||||
|
||||
or
|
||||
|
||||
$ python run_benchmark.py
|
||||
|
||||
Run the help command to see options available
|
||||
|
||||
$ ./run_benchmark.py --help
|
||||
|
||||
Benchmarking your Agent
|
||||
-----------------------
|
||||
|
||||
The benchmark works by calling three lines of code
|
||||
|
||||
```python
|
||||
corl = CoRL2017(city_name=args.city_name, name_to_save=args.log_name)
|
||||
agent = Manual(args.city_name)
|
||||
results = corl.benchmark_agent(agent, client)
|
||||
```
|
||||
|
||||
This is excerpt is executed in the
|
||||
[run_benchmark.py](https://github.com/carla-simulator/carla/blob/master/PythonClient/run_benchmark.py)
|
||||
example.
|
||||
|
||||
First a *benchmark* object is defined, for this case, a CoRL2017 benchmark. This
|
||||
is object is used to benchmark a certain Agent.
|
||||
|
||||
On the second line of our sample code, there is an object of a Manual class
|
||||
instanced. This class inherited an Agent base class that is used by the
|
||||
*benchmark* object. To be benchmarked, an Agent subclass must redefine the
|
||||
*run_step* function as it is done in the following excerpt:
|
||||
|
||||
```python
|
||||
def run_step(self, measurements, sensor_data, target):
|
||||
"""
|
||||
Function to run a control step in the CARLA vehicle.
|
||||
:param measurements: object of the Measurements type
|
||||
:param sensor_data: images list object
|
||||
:param target: target position of Transform type
|
||||
:return: an object of the control type.
|
||||
"""
|
||||
control = VehicleControl()
|
||||
control.throttle = 0.9
|
||||
return control
|
||||
```
|
||||
|
||||
The function receives measurements from the world, sensor data and a target
|
||||
position. With this, the function must return a control to the car, *i.e.*
|
||||
steering value, throttle value, brake value, etc.
|
||||
|
||||
The [measurements](measurements.md), [target](measurements.md),
|
||||
[sensor_data](cameras_and_sensors.md) and [control](measurements.md) types are
|
||||
described on the documentation.
|
||||
|
||||
Creating your Benchmark
|
||||
-----------------------
|
||||
|
||||
> TODO
|
|
@ -0,0 +1,189 @@
|
|||
We show the results for test and train weathers when
|
||||
[running the simple example](benchmark_creating/#expected-results) for Town01.
|
||||
The following result should print on the screen after running the
|
||||
example.
|
||||
|
||||
----- Printing results for training weathers (Seen in Training) -----
|
||||
|
||||
|
||||
Percentage of Successful Episodes
|
||||
|
||||
Weather: Clear Noon
|
||||
Task: 0 -> 1.0
|
||||
Task: 1 -> 0.0
|
||||
Task: 2 -> 0.0
|
||||
Task: 3 -> 0.0
|
||||
Average Between Weathers
|
||||
Task 0 -> 1.0
|
||||
Task 1 -> 0.0
|
||||
Task 2 -> 0.0
|
||||
Task 3 -> 0.0
|
||||
|
||||
Average Percentage of Distance to Goal Travelled
|
||||
|
||||
Weather: Clear Noon
|
||||
Task: 0 -> 0.9643630125892909
|
||||
Task: 1 -> 0.6794216252808839
|
||||
Task: 2 -> 0.6593855166486696
|
||||
Task: 3 -> 0.6646695325122313
|
||||
Average Between Weathers
|
||||
Task 0 -> 0.9643630125892909
|
||||
Task 1 -> 0.6794216252808839
|
||||
Task 2 -> 0.6593855166486696
|
||||
Task 3 -> 0.6646695325122313
|
||||
|
||||
Avg. Kilometers driven before a collision to a PEDESTRIAN
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> more than 0.22983408429063365
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> more than 0.22983408429063365
|
||||
|
||||
Avg. Kilometers driven before a collision to a VEHICLE
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> 0.11491704214531683
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> 0.11491704214531683
|
||||
|
||||
Avg. Kilometers driven before a collision to a STATIC OBSTACLE
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> 0.22983408429063365
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> 0.22983408429063365
|
||||
|
||||
Avg. Kilometers driven before going OUTSIDE OF THE ROAD
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> 0.12350085985904342
|
||||
Task 2 -> 0.2400373917146113
|
||||
Task 3 -> more than 0.22983408429063365
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> 0.12350085985904342
|
||||
Task 2 -> 0.2400373917146113
|
||||
Task 3 -> more than 0.22983408429063365
|
||||
|
||||
Avg. Kilometers driven before invading the OPPOSITE LANE
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> more than 0.22983408429063365
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> more than 0.22983408429063365
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
----- Printing results for test weathers (Unseen in Training) -----
|
||||
|
||||
|
||||
Percentage of Successful Episodes
|
||||
|
||||
Weather: Clear Noon
|
||||
Task: 0 -> 1.0
|
||||
Task: 1 -> 0.0
|
||||
Task: 2 -> 0.0
|
||||
Task: 3 -> 0.0
|
||||
Average Between Weathers
|
||||
Task 0 -> 1.0
|
||||
Task 1 -> 0.0
|
||||
Task 2 -> 0.0
|
||||
Task 3 -> 0.0
|
||||
|
||||
Average Percentage of Distance to Goal Travelled
|
||||
|
||||
Weather: Clear Noon
|
||||
Task: 0 -> 0.9643630125892909
|
||||
Task: 1 -> 0.6794216252808839
|
||||
Task: 2 -> 0.6593855166486696
|
||||
Task: 3 -> 0.6646695325122313
|
||||
Average Between Weathers
|
||||
Task 0 -> 0.9643630125892909
|
||||
Task 1 -> 0.6794216252808839
|
||||
Task 2 -> 0.6593855166486696
|
||||
Task 3 -> 0.6646695325122313
|
||||
|
||||
Avg. Kilometers driven before a collision to a PEDESTRIAN
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> more than 0.22983408429063365
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> more than 0.22983408429063365
|
||||
|
||||
Avg. Kilometers driven before a collision to a VEHICLE
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> 0.11491704214531683
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> 0.11491704214531683
|
||||
|
||||
Avg. Kilometers driven before a collision to a STATIC OBSTACLE
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> 0.22983408429063365
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> 0.22983408429063365
|
||||
|
||||
Avg. Kilometers driven before going OUTSIDE OF THE ROAD
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> 0.12350085985904342
|
||||
Task 2 -> 0.2400373917146113
|
||||
Task 3 -> more than 0.22983408429063365
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> 0.12350085985904342
|
||||
Task 2 -> 0.2400373917146113
|
||||
Task 3 -> more than 0.22983408429063365
|
||||
|
||||
Avg. Kilometers driven before invading the OPPOSITE LANE
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> more than 0.22983408429063365
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.04316352371637994
|
||||
Task 1 -> more than 0.12350085985904342
|
||||
Task 2 -> more than 0.2400373917146113
|
||||
Task 3 -> more than 0.22983408429063365
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,187 @@
|
|||
We show the results for test and train weathers when
|
||||
[running the simple example](benchmark_creating/#expected-results) for Town02.
|
||||
The following result should print on the screen after running the
|
||||
example.
|
||||
|
||||
|
||||
----- Printing results for training weathers (Seen in Training) -----
|
||||
|
||||
|
||||
Percentage of Successful Episodes
|
||||
|
||||
Weather: Clear Noon
|
||||
Task: 0 -> 1.0
|
||||
Task: 1 -> 0.0
|
||||
Task: 2 -> 0.0
|
||||
Task: 3 -> 0.0
|
||||
Average Between Weathers
|
||||
Task 0 -> 1.0
|
||||
Task 1 -> 0.0
|
||||
Task 2 -> 0.0
|
||||
Task 3 -> 0.0
|
||||
|
||||
Average Percentage of Distance to Goal Travelled
|
||||
|
||||
Weather: Clear Noon
|
||||
Task: 0 -> 0.8127653637426329
|
||||
Task: 1 -> 0.10658303206448155
|
||||
Task: 2 -> -0.20448736444348714
|
||||
Task: 3 -> -0.20446966646041384
|
||||
Average Between Weathers
|
||||
Task 0 -> 0.8127653637426329
|
||||
Task 1 -> 0.10658303206448155
|
||||
Task 2 -> -0.20448736444348714
|
||||
Task 3 -> -0.20446966646041384
|
||||
|
||||
Avg. Kilometers driven before a collision to a PEDESTRIAN
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> more than 0.039282971002912705
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> more than 0.039282971002912705
|
||||
|
||||
Avg. Kilometers driven before a collision to a VEHICLE
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> more than 0.039282971002912705
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> more than 0.039282971002912705
|
||||
|
||||
Avg. Kilometers driven before a collision to a STATIC OBSTACLE
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> 0.019641485501456352
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> 0.019641485501456352
|
||||
|
||||
Avg. Kilometers driven before going OUTSIDE OF THE ROAD
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> 0.03856641710143665
|
||||
Task 2 -> 0.03928511962584409
|
||||
Task 3 -> 0.039282971002912705
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> 0.03856641710143665
|
||||
Task 2 -> 0.03928511962584409
|
||||
Task 3 -> 0.039282971002912705
|
||||
|
||||
Avg. Kilometers driven before invading the OPPOSITE LANE
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> more than 0.039282971002912705
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> more than 0.039282971002912705
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
----- Printing results for test weathers (Unseen in Training) -----
|
||||
|
||||
|
||||
Percentage of Successful Episodes
|
||||
|
||||
Weather: Clear Noon
|
||||
Task: 0 -> 1.0
|
||||
Task: 1 -> 0.0
|
||||
Task: 2 -> 0.0
|
||||
Task: 3 -> 0.0
|
||||
Average Between Weathers
|
||||
Task 0 -> 1.0
|
||||
Task 1 -> 0.0
|
||||
Task 2 -> 0.0
|
||||
Task 3 -> 0.0
|
||||
|
||||
Average Percentage of Distance to Goal Travelled
|
||||
|
||||
Weather: Clear Noon
|
||||
Task: 0 -> 0.8127653637426329
|
||||
Task: 1 -> 0.10658303206448155
|
||||
Task: 2 -> -0.20448736444348714
|
||||
Task: 3 -> -0.20446966646041384
|
||||
Average Between Weathers
|
||||
Task 0 -> 0.8127653637426329
|
||||
Task 1 -> 0.10658303206448155
|
||||
Task 2 -> -0.20448736444348714
|
||||
Task 3 -> -0.20446966646041384
|
||||
|
||||
Avg. Kilometers driven before a collision to a PEDESTRIAN
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> more than 0.039282971002912705
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> more than 0.039282971002912705
|
||||
|
||||
Avg. Kilometers driven before a collision to a VEHICLE
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> more than 0.039282971002912705
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> more than 0.039282971002912705
|
||||
|
||||
Avg. Kilometers driven before a collision to a STATIC OBSTACLE
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> 0.019641485501456352
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> 0.019641485501456352
|
||||
|
||||
Avg. Kilometers driven before going OUTSIDE OF THE ROAD
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> 0.03856641710143665
|
||||
Task 2 -> 0.03928511962584409
|
||||
Task 3 -> 0.039282971002912705
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> 0.03856641710143665
|
||||
Task 2 -> 0.03928511962584409
|
||||
Task 3 -> 0.039282971002912705
|
||||
|
||||
Avg. Kilometers driven before invading the OPPOSITE LANE
|
||||
Weather: Clear Noon
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> more than 0.039282971002912705
|
||||
Average Between Weathers
|
||||
Task 0 -> more than 0.0071004936693366055
|
||||
Task 1 -> more than 0.03856641710143665
|
||||
Task 2 -> more than 0.03928511962584409
|
||||
Task 3 -> more than 0.039282971002912705
|
|
@ -0,0 +1,241 @@
|
|||
Benchmarking your Agent
|
||||
---------------------------
|
||||
|
||||
|
||||
In this tutorial we show:
|
||||
|
||||
* [How to define a trivial agent with a forward going policy.](#defining-the-agent)
|
||||
* [How to define a basic experiment suite.](#defining-the-experiment-suite)
|
||||
|
||||
|
||||
#### Introduction
|
||||
|
||||
![Benchmark_structure](img/benchmark_diagram_small.png)
|
||||
|
||||
The driving benchmark is associated with other two modules.
|
||||
The *agent* module, that is a controller which performs in
|
||||
another module: the *experiment suite*.
|
||||
Both modules are abstract classes that must be redefined by
|
||||
the user.
|
||||
|
||||
The following code excerpt is
|
||||
an example of how to apply a driving benchmark;
|
||||
|
||||
# We instantiate a forward agent, a simple policy that just set
|
||||
# acceleration as 0.9 and steering as zero
|
||||
agent = ForwardAgent()
|
||||
|
||||
# We instantiate an experiment suite. Basically a set of experiments
|
||||
# that are going to be evaluated on this benchmark.
|
||||
experiment_suite = BasicExperimentSuite(city_name)
|
||||
|
||||
# Now actually run the driving_benchmark
|
||||
# Besides the agent and experiment suite we should send
|
||||
# the city name ( Town01, Town02) the log
|
||||
run_driving_benchmark(agent, experiment_suite, city_name,
|
||||
log_name, continue_experiment,
|
||||
host, port)
|
||||
|
||||
|
||||
|
||||
Following this excerpt, there are two classes to be defined.
|
||||
The ForwardAgent() and the BasicExperimentSuite().
|
||||
After that, the benchmark can ne run with the "run_driving_benchmark" function.
|
||||
The summary of the execution, the [performance metrics](benchmark_metrics.md), are stored
|
||||
in a json file and printed to the screen.
|
||||
|
||||
|
||||
|
||||
|
||||
#### Defining the Agent
|
||||
|
||||
The tested agent must inherit the base *Agent* class.
|
||||
Let's start by deriving a simple forward agent:
|
||||
|
||||
from carla.agent.agent import Agent
|
||||
from carla.client import VehicleControl
|
||||
|
||||
class ForwardAgent(Agent):
|
||||
|
||||
|
||||
To have its performance evaluated, the ForwardAgent derived class _must_
|
||||
redefine the *run_step* function as it is done in the following excerpt:
|
||||
|
||||
def run_step(self, measurements, sensor_data, directions, target):
|
||||
"""
|
||||
Function to run a control step in the CARLA vehicle.
|
||||
"""
|
||||
control = VehicleControl()
|
||||
control.throttle = 0.9
|
||||
return control
|
||||
|
||||
|
||||
This function receives the following parameters:
|
||||
|
||||
* [Measurements](measurements.md): the entire state of the world received
|
||||
by the client from the CARLA Simulator. These measurements contains agent position, orientation,
|
||||
dynamic objects information, etc.
|
||||
* [Sensor Data](cameras_and_sensors.md): The measured data from defined sensors,
|
||||
such as Lidars or RGB cameras.
|
||||
* Directions: Information from the high level planner. Currently the planner sends
|
||||
a high level command from the follwoing set: STRAIGHT, RIGHT, LEFT, NOTHING.
|
||||
* Target Position: The position and orientation of the target.
|
||||
|
||||
With all this information, the *run_step* function is expected
|
||||
to return a [vehicle control message](measurements.md), containing:
|
||||
steering value, throttle value, brake value, etc.
|
||||
|
||||
|
||||
|
||||
#### Defining the Experiment Suite
|
||||
|
||||
|
||||
To create a Experiment Suite class you need to perform
|
||||
the following steps:
|
||||
|
||||
* Create your custom class by inheriting the ExperimentSuite base class.
|
||||
* Define the test and train weather conditions to be used.
|
||||
* Build the *Experiment* objects .
|
||||
|
||||
|
||||
|
||||
##### Definition
|
||||
|
||||
|
||||
The defined set of experiments must derive the *ExperimentSuite* class
|
||||
as in the following code excerpt:
|
||||
|
||||
from carla.agent_benchmark.experiment import Experiment
|
||||
from carla.sensor import Camera
|
||||
from carla.settings import CarlaSettings
|
||||
|
||||
from .experiment_suite import ExperimentSuite
|
||||
|
||||
|
||||
class BasicExperimentSuite(ExperimentSuite):
|
||||
|
||||
##### Define test and train weather conditions
|
||||
|
||||
The user must select the weathers to be used. One should select the set
|
||||
of test weathers and the set of train weathers. This is defined as a
|
||||
class property as in the following example:
|
||||
|
||||
@property
|
||||
def train_weathers(self):
|
||||
return [1]
|
||||
@property
|
||||
def test_weathers(self):
|
||||
return [1]
|
||||
|
||||
|
||||
##### Building Experiments
|
||||
|
||||
The [experiments are composed by a *task* that is defined by a set of *poses*](benchmark_structure.md).
|
||||
Let's start by selecting poses for one of the cities, let's take Town01, for instance.
|
||||
First of all, we need to see all the possible positions, for that, with
|
||||
a CARLA simulator running in a terminal, run:
|
||||
|
||||
python view_start_positions.py
|
||||
|
||||
![town01_positions](img/town01_positions.png)
|
||||
|
||||
|
||||
Now let's choose, for instance, 140 as start position and 134
|
||||
as the end position. This two positions can be visualized by running:
|
||||
|
||||
python view_start_positions.py --pos 140,134 --no-labels
|
||||
|
||||
![town01_positions](img/town01_140_134.png)
|
||||
|
||||
Let's choose two more poses, one for going straight, other one for one simple turn.
|
||||
Also, let's also choose three poses for Town02:
|
||||
|
||||
|
||||
![town01_positions](img/initial_positions.png)
|
||||
>Figure: The poses used on this basic *Experiment Suite* example. Poses are
|
||||
a tuple of start and end position of a goal-directed episode. Start positions are
|
||||
shown in Blue, end positions in Red. Left: Straight poses,
|
||||
where the goal is just straight away from the start position. Middle: One turn
|
||||
episode, where the goal is one turn away from the start point. Right: arbitrary position,
|
||||
the goal is far away from the start position, usually more than one turn.
|
||||
|
||||
|
||||
We define each of these poses as a task. Plus, we also set
|
||||
the number of dynamic objects for each of these tasks and repeat
|
||||
the arbitrary position task to have it also defined with dynamic
|
||||
objects. In the following code excerpt we show the final
|
||||
defined positions and the number of dynamic objects for each task:
|
||||
|
||||
# Define the start/end position below as tasks
|
||||
poses_task0 = [[7, 3]]
|
||||
poses_task1 = [[138, 17]]
|
||||
poses_task2 = [[140, 134]]
|
||||
poses_task3 = [[140, 134]]
|
||||
# Concatenate all the tasks
|
||||
poses_tasks = [poses_task0, poses_task1 , poses_task1 , poses_task3]
|
||||
# Add dynamic objects to tasks
|
||||
vehicles_tasks = [0, 0, 0, 20]
|
||||
pedestrians_tasks = [0, 0, 0, 50]
|
||||
|
||||
|
||||
Finally by using the defined tasks we can build the experiments
|
||||
vector as we show in the following code excerpt:
|
||||
|
||||
|
||||
experiments_vector = []
|
||||
# The used weathers is the union between test and train weathers
|
||||
for weather in used_weathers:
|
||||
for iteration in range(len(poses_tasks)):
|
||||
poses = poses_tasks[iteration]
|
||||
vehicles = vehicles_tasks[iteration]
|
||||
pedestrians = pedestrians_tasks[iteration]
|
||||
|
||||
conditions = CarlaSettings()
|
||||
conditions.set(
|
||||
SendNonPlayerAgentsInfo=True,
|
||||
NumberOfVehicles=vehicles,
|
||||
NumberOfPedestrians=pedestrians,
|
||||
WeatherId=weather
|
||||
|
||||
)
|
||||
# Add all the cameras that were set for this experiments
|
||||
conditions.add_sensor(camera)
|
||||
experiment = Experiment()
|
||||
experiment.set(
|
||||
Conditions=conditions,
|
||||
Poses=poses,
|
||||
Task=iteration,
|
||||
Repetitions=1
|
||||
)
|
||||
experiments_vector.append(experiment)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
The full code could be found at [basic_experiment_suite.py](https://github.com/carla-simulator/carla/blob/master/PythonClient/carla/driving_benchmark/experiment_suites/basic_experiment_suite.py)
|
||||
|
||||
|
||||
|
||||
#### Expected Results
|
||||
|
||||
First you need a CARLA Simulator running with [fixed time-step](configuring_the_simulation/#fixed-time-step)
|
||||
, so the results you will obtain will be more or less reproducible.
|
||||
For that you should run the CARLA simulator as:
|
||||
|
||||
./CarlaUE4.sh /Game/Maps/<Town_name> -windowed -world-port=2000 -benchmark -fps=10
|
||||
|
||||
The example presented in this tutorial can be executed for Town01 as:
|
||||
|
||||
./driving_benchmark_example.py -c Town01
|
||||
|
||||
You should expect these results: [town01_basic_forward_results](benchmark_basic_results_town01)
|
||||
|
||||
For Town02:
|
||||
|
||||
./driving_benchmark_example.py -c Town02
|
||||
|
||||
You should expect these results: [town01_basic_forward_results](benchmark_basic_results_town02)
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,97 @@
|
|||
|
||||
Driving Benchmark Performance Metrics
|
||||
------------------------------
|
||||
|
||||
This page explains the performance metrics module.
|
||||
This module is used to compute a summary of results based on the actions
|
||||
performed by the agent during the benchmark.
|
||||
|
||||
|
||||
### Provided performance metrics
|
||||
|
||||
The driving benchmark performance metrics module provides the following performance metrics:
|
||||
|
||||
* **Percentage of Success**: The percentage of episodes (poses from tasks),
|
||||
that the agent successfully completed.
|
||||
|
||||
* **Average Completion**: The average distance towards the goal that the
|
||||
agent was able to travel.
|
||||
|
||||
* **Off Road Intersection**: The number of times the agent goes out of the road.
|
||||
The intersection is only counted if the area of the vehicle outside
|
||||
of the road is bigger than a *threshold*.
|
||||
|
||||
* **Other Lane Intersection**: The number of times the agent goes to the other
|
||||
lane. The intersection is only counted if the area of the vehicle on the
|
||||
other lane is bigger than a *threshold*.
|
||||
|
||||
* **Vehicle Collisions**: The number of collisions with vehicles that had
|
||||
an impact bigger than a *threshold*.
|
||||
|
||||
* **Pedestrian Collisions**: The number of collisions with pedestrians
|
||||
that had an impact bigger than a *threshold*.
|
||||
|
||||
* **General Collisions**: The number of collisions with all other
|
||||
objects with an impact bigger than a *threshold*.
|
||||
|
||||
|
||||
### Executing and Setting Parameters
|
||||
|
||||
The metrics are computed as the final step of the benchmark
|
||||
and stores a summary of the results a json file.
|
||||
Internally it is executed as follows:
|
||||
|
||||
```python
|
||||
metrics_object = Metrics(metrics_parameters)
|
||||
summary_dictionary = metrics_object.compute(path_to_execution_log)
|
||||
```
|
||||
|
||||
The Metric's compute function
|
||||
receives the full path to the execution log.
|
||||
The Metric class should be instanced with some parameters.
|
||||
The parameters are:
|
||||
|
||||
* **Threshold**: The threshold used by the metrics.
|
||||
* **Frames Recount**: After making the infraction, set the number
|
||||
of frames that the agent needs to keep doing the infraction for
|
||||
it to be counted as another infraction.
|
||||
* **Frames Skip**: It is related to the number of frames that are
|
||||
skipped after a collision or a intersection starts.
|
||||
|
||||
These parameters are defined as property of the *Experiment Suite*
|
||||
base class and can be redefined at your
|
||||
[custom *Experiment Suite*](benchmark_creating/#defining-the-experiment-suite).
|
||||
|
||||
The default parameters are:
|
||||
|
||||
|
||||
@property
|
||||
def metrics_parameters(self):
|
||||
"""
|
||||
Property to return the parameters for the metrics module
|
||||
Could be redefined depending on the needs of the user.
|
||||
"""
|
||||
return {
|
||||
|
||||
'intersection_offroad': {'frames_skip': 10,
|
||||
'frames_recount': 20,
|
||||
'threshold': 0.3
|
||||
},
|
||||
'intersection_otherlane': {'frames_skip': 10,
|
||||
'frames_recount': 20,
|
||||
'threshold': 0.4
|
||||
},
|
||||
'collision_other': {'frames_skip': 10,
|
||||
'frames_recount': 20,
|
||||
'threshold': 400
|
||||
},
|
||||
'collision_vehicles': {'frames_skip': 10,
|
||||
'frames_recount': 30,
|
||||
'threshold': 400
|
||||
},
|
||||
'collision_pedestrians': {'frames_skip': 5,
|
||||
'frames_recount': 100,
|
||||
'threshold': 300
|
||||
},
|
||||
|
||||
}
|
|
@ -0,0 +1,69 @@
|
|||
Driving Benchmark
|
||||
===============
|
||||
|
||||
The *driving benchmark* module is made
|
||||
to evaluate a driving controller (agent) and obtain
|
||||
metrics about its performance.
|
||||
|
||||
This module is mainly designed for:
|
||||
|
||||
* Users that work developing autonomous driving agents and want
|
||||
to see how they perform in CARLA.
|
||||
|
||||
On this section you will learn.
|
||||
|
||||
* How to quickly get started and benchmark a trivial agent right away.
|
||||
* Learn about the general implementation [architecture of the driving
|
||||
benchmark module](benchmark_structure.md).
|
||||
* Learn [how to set up your agent and create your
|
||||
own set of experiments](benchmark_creating.md).
|
||||
* Learn about the [performance metrics used](benchmark_metrics.md).
|
||||
|
||||
|
||||
|
||||
|
||||
Getting Started
|
||||
----------------
|
||||
|
||||
As a way to familiarize yourself with the system we
|
||||
provide a trivial agent performing in an small
|
||||
set of experiments (Basic). To execute it, simply
|
||||
run:
|
||||
|
||||
|
||||
$ ./driving_benchmark_example.py
|
||||
|
||||
|
||||
Keep in mind that, to run the command above, you need a CARLA simulator
|
||||
running at localhost and on port 2000.
|
||||
|
||||
|
||||
We already provide the same benchmark used in the [CoRL
|
||||
2017 paper](http://proceedings.mlr.press/v78/dosovitskiy17a/dosovitskiy17a.pdf).
|
||||
The CoRL 2017 experiment suite can be run in a trivial agent by
|
||||
running:
|
||||
|
||||
$ ./driving_benchmark_example.py --corl-2017
|
||||
|
||||
This benchmark example can be further configured.
|
||||
Run the help command to see options available.
|
||||
|
||||
$ ./driving_benchmark_example.py --help
|
||||
|
||||
One of the options available is to be able to continue
|
||||
from a previous benchmark execution. For example,
|
||||
to continue a experiment in CoRL2017 with a log name of "driving_benchmark_test", run:
|
||||
|
||||
$ ./driving_benchmark_example.py --continue-experiment -n driving_benchmark_test --corl-2017
|
||||
|
||||
|
||||
!!! note
|
||||
if the log name already exists and you don't set it to continue, it
|
||||
will create another log under a different name.
|
||||
|
||||
When running the driving benchmark for the basic configuration
|
||||
you should [expect these results](benchmark_creating/#expected-results)
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
|
||||
Driving Benchmark Structure
|
||||
-------------------
|
||||
|
||||
The figure below shows the general structure of the driving
|
||||
benchmark module.
|
||||
|
||||
|
||||
|
||||
![Benchmark_structure](img/benchmark_diagram.png)
|
||||
>Figure: The general structure of the agent benchmark module.
|
||||
|
||||
|
||||
The *driving benchmark* is the module responsible for evaluating a certain
|
||||
*agent* in an *experiment suite*.
|
||||
|
||||
The *experiment suite* is an abstract module.
|
||||
Thus, the user must define its own derivation
|
||||
of *experiment suite*. We already provide the CoRL2017 suite and a simple
|
||||
*experiment suite* for testing.
|
||||
|
||||
The *experiment suite* is composed by set of *experiments*.
|
||||
Each *experiment* contains a *task* that consists of a set of navigation
|
||||
episodes, represented by a set of *poses*.
|
||||
These *poses* are tuples containing the start and end points of an
|
||||
episode.
|
||||
|
||||
The *experiments* are also associated with a *condition*. A
|
||||
condition is represented by a [carla settings](carla_settings.md) object.
|
||||
The conditions specify simulation parameters such as: weather, sensor suite, number of
|
||||
vehicles and pedestrians, etc.
|
||||
|
||||
|
||||
The user also should derivate an *agent* class. The *agent* is the active
|
||||
part which will be evaluated on the driving benchmark.
|
||||
|
||||
The driving benchmark also contains two auxiliary modules.
|
||||
The *recording module* is used to keep track of all measurements and
|
||||
can be used to pause and continue a driving benchmark.
|
||||
The [*metrics module*](benchmark_metrics.md) is used to compute the performance metrics
|
||||
by using the recorded measurements.
|
||||
|
||||
|
||||
|
||||
|
||||
Example: CORL 2017
|
||||
----------------------
|
||||
|
||||
We already provide the CoRL 2017 experiment suite used to benchmark the
|
||||
agents for the [CoRL 2017 paper](http://proceedings.mlr.press/v78/dosovitskiy17a/dosovitskiy17a.pdf).
|
||||
|
||||
The CoRL 2017 experiment suite has the following composition:
|
||||
|
||||
* A total of 24 experiments for each CARLA town containing:
|
||||
* A task for going straight.
|
||||
* A task for making a single turn.
|
||||
* A task for going to an arbitrary position.
|
||||
* A task for going to an arbitrary position with dynamic objects.
|
||||
* Each task is composed of 25 poses that are repeated in 6 different weathers (Clear Noon, Heavy Rain Noon, Clear Sunset, After Rain Noon, Cloudy After Rain and Soft Rain Sunset).
|
||||
* The entire experiment set has 600 episodes.
|
||||
* The CoRL 2017 can take up to 24 hours to execute for Town01 and up to 15
|
||||
hours for Town02 depending on the agent performance.
|
||||
|
||||
|
||||
|
||||
|
Binary file not shown.
After Width: | Height: | Size: 169 KiB |
Binary file not shown.
After Width: | Height: | Size: 66 KiB |
Binary file not shown.
After Width: | Height: | Size: 172 KiB |
Binary file not shown.
After Width: | Height: | Size: 93 KiB |
Binary file not shown.
After Width: | Height: | Size: 320 KiB |
|
@ -15,11 +15,17 @@
|
|||
* [How to build on Linux](how_to_build_on_linux.md)
|
||||
* [How to build on Windows](how_to_build_on_windows.md)
|
||||
|
||||
<h3> Driving Benchmark </h3>
|
||||
|
||||
* [Quick Start](benchmark_start.md)
|
||||
* [General Structure](benchmark_structure.md)
|
||||
* [Creating Your Benchmark](benchmark_creating.md)
|
||||
* [Computed Performance Metrics](benchmark_metrics.md)
|
||||
|
||||
<h3>Advanced topics</h3>
|
||||
|
||||
* [CARLA settings](carla_settings.md)
|
||||
* [Simulator keyboard input](simulator_keyboard_input.md)
|
||||
* [Benchmark](benchmark.md)
|
||||
* [Running without display and selecting GPUs](carla_headless.md)
|
||||
* [How to link Epic's Automotive Materials](epic_automotive_materials.md)
|
||||
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
from .forward_agent import ForwardAgent
|
||||
from .agent import Agent
|
|
@ -0,0 +1,24 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
|
||||
# Barcelona (UAB).
|
||||
#
|
||||
# This work is licensed under the terms of the MIT license.
|
||||
# For a copy, see <https://opensource.org/licenses/MIT>.
|
||||
# @author: german,felipecode
|
||||
|
||||
|
||||
from __future__ import print_function
|
||||
import abc
|
||||
|
||||
|
||||
class Agent(object):
|
||||
def __init__(self):
|
||||
self.__metaclass__ = abc.ABCMeta
|
||||
|
||||
@abc.abstractmethod
|
||||
def run_step(self, measurements, sensor_data, directions, target):
|
||||
"""
|
||||
Function to be redefined by an agent.
|
||||
:param The measurements like speed, the image data and a target
|
||||
:returns A carla Control object, with the steering/gas/brake for the agent
|
||||
"""
|
|
@ -0,0 +1,15 @@
|
|||
|
||||
from carla.agent.agent import Agent
|
||||
from carla.client import VehicleControl
|
||||
|
||||
|
||||
class ForwardAgent(Agent):
|
||||
"""
|
||||
Simple derivation of Agent Class,
|
||||
A trivial agent agent that goes straight
|
||||
"""
|
||||
def run_step(self, measurements, sensor_data, directions, target):
|
||||
control = VehicleControl()
|
||||
control.throttle = 0.9
|
||||
|
||||
return control
|
|
@ -1,38 +0,0 @@
|
|||
#!/usr/bin/env python2
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
|
||||
# Barcelona (UAB).
|
||||
#
|
||||
# This work is licensed under the terms of the MIT license.
|
||||
# For a copy, see <https://opensource.org/licenses/MIT>.
|
||||
# @author: german,felipecode
|
||||
|
||||
|
||||
from __future__ import print_function
|
||||
import abc
|
||||
|
||||
from carla.planner.planner import Planner
|
||||
|
||||
|
||||
class Agent(object):
|
||||
def __init__(self, city_name):
|
||||
self.__metaclass__ = abc.ABCMeta
|
||||
self._planner = Planner(city_name)
|
||||
|
||||
def get_distance(self, start_point, end_point):
|
||||
path_distance = self._planner.get_shortest_path_distance(
|
||||
[start_point.location.x, start_point.location.y, 22]
|
||||
, [start_point.orientation.x, start_point.orientation.y, 22]
|
||||
, [end_point.location.x, end_point.location.y, 22]
|
||||
, [end_point.orientation.x, end_point.orientation.y, 22])
|
||||
# We calculate the timout based on the distance
|
||||
|
||||
return path_distance
|
||||
|
||||
@abc.abstractmethod
|
||||
def run_step(self, measurements, sensor_data, target):
|
||||
"""
|
||||
Function to be redefined by an agent.
|
||||
:param The measurements like speed, the image data and a target
|
||||
:returns A carla Control object, with the steering/gas/brake for the agent
|
||||
"""
|
|
@ -1,377 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
|
||||
# Barcelona (UAB).
|
||||
#
|
||||
# This work is licensed under the terms of the MIT license.
|
||||
# For a copy, see <https://opensource.org/licenses/MIT>.
|
||||
|
||||
|
||||
import csv
|
||||
import datetime
|
||||
import math
|
||||
import os
|
||||
import abc
|
||||
import logging
|
||||
|
||||
|
||||
from builtins import input as input_data
|
||||
|
||||
|
||||
from carla.client import VehicleControl
|
||||
|
||||
def sldist(c1, c2):
|
||||
return math.sqrt((c2[0] - c1[0])**2 + (c2[1] - c1[1])**2)
|
||||
|
||||
|
||||
class Benchmark(object):
|
||||
|
||||
"""
|
||||
The Benchmark class, controls the execution of the benchmark by an
|
||||
Agent class.
|
||||
The benchmark class must be inherited
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
city_name,
|
||||
name_to_save,
|
||||
continue_experiment=False,
|
||||
save_images=False
|
||||
):
|
||||
|
||||
|
||||
self.__metaclass__ = abc.ABCMeta
|
||||
|
||||
self._city_name = city_name
|
||||
|
||||
|
||||
|
||||
self._base_name = name_to_save
|
||||
self._dict_stats = {'exp_id': -1,
|
||||
'rep': -1,
|
||||
'weather': -1,
|
||||
'start_point': -1,
|
||||
'end_point': -1,
|
||||
'result': -1,
|
||||
'initial_distance': -1,
|
||||
'final_distance': -1,
|
||||
'final_time': -1,
|
||||
'time_out': -1
|
||||
}
|
||||
|
||||
self._dict_rewards = {'exp_id': -1,
|
||||
'rep': -1,
|
||||
'weather': -1,
|
||||
'collision_gen': -1,
|
||||
'collision_ped': -1,
|
||||
'collision_car': -1,
|
||||
'lane_intersect': -1,
|
||||
'sidewalk_intersect': -1,
|
||||
'pos_x': -1,
|
||||
'pos_y': -1
|
||||
}
|
||||
|
||||
|
||||
self._experiments = self._build_experiments()
|
||||
# Create the log files and get the names
|
||||
self._suffix_name, self._full_name = self._create_log_record(name_to_save, self._experiments)
|
||||
# Get the line for the experiment to be continued
|
||||
self._line_on_file = self._continue_experiment(continue_experiment)
|
||||
|
||||
|
||||
|
||||
self._save_images = save_images
|
||||
self._image_filename_format = os.path.join(
|
||||
self._full_name, '_images/episode_{:s}/{:s}/image_{:0>5d}.jpg')
|
||||
|
||||
def run_navigation_episode(
|
||||
self,
|
||||
agent,
|
||||
carla,
|
||||
time_out,
|
||||
target,
|
||||
episode_name):
|
||||
|
||||
measurements, sensor_data = carla.read_data()
|
||||
carla.send_control(VehicleControl())
|
||||
|
||||
t0 = measurements.game_timestamp
|
||||
t1 = t0
|
||||
success = False
|
||||
measurement_vec = []
|
||||
frame = 0
|
||||
distance = 10000
|
||||
|
||||
while(t1 - t0) < (time_out * 1000) and not success:
|
||||
measurements, sensor_data = carla.read_data()
|
||||
|
||||
control = agent.run_step(measurements, sensor_data, target)
|
||||
|
||||
logging.info("Controller is Inputting:")
|
||||
logging.info('Steer = %f Throttle = %f Brake = %f ',
|
||||
control.steer, control.throttle, control.brake)
|
||||
|
||||
carla.send_control(control)
|
||||
|
||||
# measure distance to target
|
||||
if self._save_images:
|
||||
for name, image in sensor_data.items():
|
||||
image.save_to_disk(self._image_filename_format.format(
|
||||
episode_name, name, frame))
|
||||
|
||||
curr_x = 1e2 * measurements.player_measurements.transform.location.x
|
||||
curr_y = 1e2 * measurements.player_measurements.transform.location.y
|
||||
|
||||
measurement_vec.append(measurements.player_measurements)
|
||||
|
||||
t1 = measurements.game_timestamp
|
||||
|
||||
distance = sldist([curr_x, curr_y],
|
||||
[target.location.x, target.location.y])
|
||||
|
||||
logging.info('Status:')
|
||||
logging.info(
|
||||
'[d=%f] c_x = %f, c_y = %f ---> t_x = %f, t_y = %f',
|
||||
float(distance), curr_x, curr_y, target.location.x,
|
||||
target.location.y)
|
||||
|
||||
if distance < 200.0:
|
||||
success = True
|
||||
|
||||
frame += 1
|
||||
|
||||
if success:
|
||||
return 1, measurement_vec, float(t1 - t0) / 1000.0, distance
|
||||
return 0, measurement_vec, time_out, distance
|
||||
|
||||
def benchmark_agent(self, agent, carla):
|
||||
|
||||
if self._line_on_file == 0:
|
||||
# The fixed name considering all the experiments being run
|
||||
with open(os.path.join(self._full_name,
|
||||
self._suffix_name), 'w') as ofd:
|
||||
|
||||
w = csv.DictWriter(ofd, self._dict_stats.keys())
|
||||
w.writeheader()
|
||||
|
||||
with open(os.path.join(self._full_name,
|
||||
'details_' + self._suffix_name), 'w') as rfd:
|
||||
|
||||
rw = csv.DictWriter(rfd, self._dict_rewards.keys())
|
||||
rw.writeheader()
|
||||
start_task = 0
|
||||
start_pose = 0
|
||||
else:
|
||||
(start_task, start_pose) = self._get_pose_and_task(self._line_on_file)
|
||||
|
||||
logging.info(' START ')
|
||||
|
||||
for experiment in self._experiments[start_task:]:
|
||||
|
||||
positions = carla.load_settings(
|
||||
experiment.conditions).player_start_spots
|
||||
|
||||
for pose in experiment.poses[start_pose:]:
|
||||
for rep in range(experiment.repetitions):
|
||||
|
||||
start_point = pose[0]
|
||||
end_point = pose[1]
|
||||
|
||||
carla.start_episode(start_point)
|
||||
|
||||
logging.info('======== !!!! ==========')
|
||||
logging.info(' Start Position %d End Position %d ',
|
||||
start_point, end_point)
|
||||
|
||||
path_distance = agent.get_distance(
|
||||
positions[start_point], positions[end_point])
|
||||
euclidean_distance = \
|
||||
sldist([positions[start_point].location.x, positions[start_point].location.y],
|
||||
[positions[end_point].location.x, positions[end_point].location.y])
|
||||
|
||||
time_out = self._calculate_time_out(path_distance)
|
||||
# running the agent
|
||||
(result, reward_vec, final_time, remaining_distance) = \
|
||||
self.run_navigation_episode(
|
||||
agent, carla, time_out, positions[end_point],
|
||||
str(experiment.Conditions.WeatherId) + '_'
|
||||
+ str(experiment.id) + '_' + str(start_point)
|
||||
+ '.' + str(end_point))
|
||||
|
||||
# compute stats for the experiment
|
||||
|
||||
self._write_summary_results(
|
||||
experiment, pose, rep, euclidean_distance,
|
||||
remaining_distance, final_time, time_out, result)
|
||||
|
||||
self._write_details_results(experiment, rep, reward_vec)
|
||||
|
||||
if(result > 0):
|
||||
logging.info('+++++ Target achieved in %f seconds! +++++',
|
||||
final_time)
|
||||
else:
|
||||
logging.info('----- Timeout! -----')
|
||||
return self.get_all_statistics()
|
||||
|
||||
def _write_summary_results(self, experiment, pose, rep,
|
||||
path_distance, remaining_distance,
|
||||
final_time, time_out, result):
|
||||
|
||||
self._dict_stats['exp_id'] = experiment.id
|
||||
self._dict_stats['rep'] = rep
|
||||
self._dict_stats['weather'] = experiment.Conditions.WeatherId
|
||||
self._dict_stats['start_point'] = pose[0]
|
||||
self._dict_stats['end_point'] = pose[1]
|
||||
self._dict_stats['result'] = result
|
||||
self._dict_stats['initial_distance'] = path_distance
|
||||
self._dict_stats['final_distance'] = remaining_distance
|
||||
self._dict_stats['final_time'] = final_time
|
||||
self._dict_stats['time_out'] = time_out
|
||||
|
||||
with open(os.path.join(self._full_name, self._suffix_name), 'a+') as ofd:
|
||||
|
||||
w = csv.DictWriter(ofd, self._dict_stats.keys())
|
||||
|
||||
w.writerow(self._dict_stats)
|
||||
|
||||
def _write_details_results(self, experiment, rep, reward_vec):
|
||||
|
||||
with open(os.path.join(self._full_name,
|
||||
'details_' + self._suffix_name), 'a+') as rfd:
|
||||
|
||||
rw = csv.DictWriter(rfd, self._dict_rewards.keys())
|
||||
|
||||
for i in range(len(reward_vec)):
|
||||
self._dict_rewards['exp_id'] = experiment.id
|
||||
self._dict_rewards['rep'] = rep
|
||||
self._dict_rewards['weather'] = experiment.Conditions.WeatherId
|
||||
self._dict_rewards['collision_gen'] = reward_vec[
|
||||
i].collision_other
|
||||
self._dict_rewards['collision_ped'] = reward_vec[
|
||||
i].collision_pedestrians
|
||||
self._dict_rewards['collision_car'] = reward_vec[
|
||||
i].collision_vehicles
|
||||
self._dict_rewards['lane_intersect'] = reward_vec[
|
||||
i].intersection_otherlane
|
||||
self._dict_rewards['sidewalk_intersect'] = reward_vec[
|
||||
i].intersection_offroad
|
||||
self._dict_rewards['pos_x'] = reward_vec[
|
||||
i].transform.location.x
|
||||
self._dict_rewards['pos_y'] = reward_vec[
|
||||
i].transform.location.y
|
||||
|
||||
rw.writerow(self._dict_rewards)
|
||||
|
||||
def _create_log_record(self, base_name, experiments):
|
||||
"""
|
||||
This function creates the log files for the benchmark.
|
||||
|
||||
"""
|
||||
suffix_name = self._get_experiments_names(experiments)
|
||||
full_name = os.path.join('_benchmarks_results',
|
||||
base_name + '_'
|
||||
+ self._get_details() + '/')
|
||||
|
||||
folder = os.path.dirname(full_name)
|
||||
if not os.path.isdir(folder):
|
||||
os.makedirs(folder)
|
||||
|
||||
# Make a date file: to show when this was modified,
|
||||
# the number of times the experiments were run
|
||||
now = datetime.datetime.now()
|
||||
open(os.path.join(full_name, now.strftime("%Y%m%d%H%M")),'w').close()
|
||||
|
||||
return suffix_name, full_name
|
||||
|
||||
|
||||
def _continue_experiment(self, continue_experiment):
|
||||
|
||||
if self._experiment_exist():
|
||||
|
||||
if continue_experiment:
|
||||
line_on_file = self._get_last_position()
|
||||
|
||||
else:
|
||||
# Ask question, to avoid mistaken override situations
|
||||
answer = input_data("The experiment was already found in the files"
|
||||
+ ", Do you want to continue (y/n)? \n"
|
||||
)
|
||||
if answer == 'Yes' or answer == 'y':
|
||||
line_on_file = self._get_last_position()
|
||||
else:
|
||||
line_on_file = 0
|
||||
|
||||
else:
|
||||
line_on_file = 0
|
||||
|
||||
return line_on_file
|
||||
|
||||
|
||||
|
||||
def _experiment_exist(self):
|
||||
return os.path.isfile(self._full_name)
|
||||
|
||||
def _get_last_position(self):
|
||||
|
||||
with open(os.path.join(self._full_name, self._suffix_name)) as f:
|
||||
return sum(1 for _ in f)
|
||||
|
||||
|
||||
# To be redefined on subclasses on how to calculate timeout for an episode
|
||||
@abc.abstractmethod
|
||||
def _calculate_time_out(self, distance):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def _get_details(self):
|
||||
"""
|
||||
Get details
|
||||
:return: a string with name and town of the subclass
|
||||
"""
|
||||
@abc.abstractmethod
|
||||
def _build_experiments(self):
|
||||
"""
|
||||
Returns a set of experiments to be evaluated
|
||||
Must be redefined in an inherited class.
|
||||
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def get_all_statistics(self):
|
||||
"""
|
||||
Get the statistics of the evaluated experiments
|
||||
:return:
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def _get_pose_and_task(self, line_on_file):
|
||||
"""
|
||||
Parse the experiment depending on number of poses and tasks
|
||||
"""
|
||||
|
||||
|
||||
@abc.abstractmethod
|
||||
def plot_summary_train(self):
|
||||
"""
|
||||
returns the summary for the train weather/task episodes
|
||||
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def plot_summary_test(self):
|
||||
"""
|
||||
returns the summary for the test weather/task episodes
|
||||
|
||||
"""
|
||||
@staticmethod
|
||||
def _get_experiments_names(experiments):
|
||||
|
||||
name_cat = 'w'
|
||||
|
||||
for experiment in experiments:
|
||||
|
||||
name_cat += str(experiment.Conditions.WeatherId) + '.'
|
||||
|
||||
return name_cat
|
||||
|
||||
|
|
@ -1,205 +0,0 @@
|
|||
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
|
||||
# Barcelona (UAB).
|
||||
#
|
||||
# This work is licensed under the terms of the MIT license.
|
||||
# For a copy, see <https://opensource.org/licenses/MIT>.
|
||||
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
import os
|
||||
|
||||
|
||||
sldist = lambda c1, c2: math.sqrt((c2[0] - c1[0])**2 + (c2[1] - c1[1])**2)
|
||||
flatten = lambda l: [item for sublist in l for item in sublist]
|
||||
|
||||
|
||||
def get_colisions(selected_matrix, header):
|
||||
|
||||
count_gen = 0
|
||||
count_ped = 0
|
||||
count_car = 0
|
||||
i = 1
|
||||
|
||||
while i < selected_matrix.shape[0]:
|
||||
if (selected_matrix[i, header.index('collision_gen')]
|
||||
- selected_matrix[(i-10), header.index('collision_gen')]) > 40000:
|
||||
count_gen += 1
|
||||
i += 20
|
||||
i += 1
|
||||
|
||||
i = 1
|
||||
while i < selected_matrix.shape[0]:
|
||||
if (selected_matrix[i, header.index('collision_car')]
|
||||
- selected_matrix[(i-10), header.index('collision_car')]) > 40000:
|
||||
count_car += 1
|
||||
i += 30
|
||||
i += 1
|
||||
|
||||
i = 1
|
||||
while i < selected_matrix.shape[0]:
|
||||
if (selected_matrix[i, header.index('collision_ped')]
|
||||
- selected_matrix[i-5, header.index('collision_ped')]) > 30000:
|
||||
count_ped += 1
|
||||
i += 100
|
||||
i += 1
|
||||
|
||||
return count_gen, count_car, count_ped
|
||||
|
||||
|
||||
def get_distance_traveled(selected_matrix, header):
|
||||
|
||||
prev_x = selected_matrix[0, header.index('pos_x')]
|
||||
prev_y = selected_matrix[0, header.index('pos_y')]
|
||||
|
||||
i = 1
|
||||
acummulated_distance = 0
|
||||
while i < selected_matrix.shape[0]:
|
||||
|
||||
x = selected_matrix[i, header.index('pos_x')]
|
||||
y = selected_matrix[i, header.index('pos_y')]
|
||||
# Here we defined a maximun distance in a tick, this case 8 meters or 288km/h
|
||||
if sldist((x, y), (prev_x, prev_y)) < 800:
|
||||
acummulated_distance += sldist((x, y), (prev_x, prev_y))
|
||||
|
||||
|
||||
prev_x = x
|
||||
prev_y = y
|
||||
|
||||
i += 1
|
||||
|
||||
return float(acummulated_distance)/float(100*1000)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def get_out_of_road_lane(selected_matrix, header):
|
||||
|
||||
count_road = 0
|
||||
count_lane = 0
|
||||
|
||||
i = 0
|
||||
|
||||
while i < selected_matrix.shape[0]:
|
||||
# print selected_matrix[i,6]
|
||||
if (selected_matrix[i, header.index('sidewalk_intersect')]
|
||||
- selected_matrix[(i-10), header.index('sidewalk_intersect')]) > 0.3:
|
||||
count_road += 1
|
||||
i += 20
|
||||
if i >= selected_matrix.shape[0]:
|
||||
break
|
||||
|
||||
if (selected_matrix[i, header.index('lane_intersect')]
|
||||
- selected_matrix[(i-10), header.index('lane_intersect')]) > 0.4:
|
||||
count_lane += 1
|
||||
i += 20
|
||||
|
||||
i += 1
|
||||
|
||||
return count_lane, count_road
|
||||
|
||||
|
||||
|
||||
def compute_summary(filename, dynamic_episodes):
|
||||
|
||||
# Separate the PATH and the basename
|
||||
path = os.path.dirname(filename)
|
||||
base_name = os.path.basename(filename)
|
||||
|
||||
|
||||
|
||||
f = open(filename, "rb")
|
||||
header = f.readline()
|
||||
header = header.split(',')
|
||||
header[-1] = header[-1][:-2]
|
||||
f.close()
|
||||
|
||||
f = open(os.path.join(path, 'details_' + base_name), "rb")
|
||||
header_details = f.readline()
|
||||
header_details = header_details.split(',')
|
||||
header_details[-1] = header_details[-1][:-2]
|
||||
f.close()
|
||||
|
||||
data_matrix = np.loadtxt(open(filename, "rb"), delimiter=",", skiprows=1)
|
||||
|
||||
# Corner Case: The presented test just had one episode
|
||||
if data_matrix.ndim == 1:
|
||||
data_matrix = np.expand_dims(data_matrix, axis=0)
|
||||
|
||||
|
||||
tasks = np.unique(data_matrix[:, header.index('exp_id')])
|
||||
|
||||
all_weathers = np.unique(data_matrix[:, header.index('weather')])
|
||||
|
||||
reward_matrix = np.loadtxt(open(os.path.join(
|
||||
path, 'details_' + base_name), "rb"), delimiter=",", skiprows=1)
|
||||
|
||||
metrics_dictionary = {'average_completion': {w: [0.0]*len(tasks) for w in all_weathers},
|
||||
'intersection_offroad': {w: [0.0]*len(tasks) for w in all_weathers},
|
||||
'intersection_otherlane': {w: [0.0]*len(tasks) for w in all_weathers},
|
||||
'collision_pedestrians': {w: [0.0]*len(tasks) for w in all_weathers},
|
||||
'collision_vehicles': {w: [0.0]*len(tasks) for w in all_weathers},
|
||||
'collision_other': {w: [0.0]*len(tasks) for w in all_weathers},
|
||||
'average_fully_completed': {w: [0.0]*len(tasks) for w in all_weathers},
|
||||
'average_speed': {w: [0.0]*len(tasks) for w in all_weathers},
|
||||
'driven_kilometers': {w: [0.0]*len(tasks) for w in all_weathers}
|
||||
}
|
||||
|
||||
for t in tasks:
|
||||
task_data_matrix = data_matrix[
|
||||
data_matrix[:, header.index('exp_id')] == t]
|
||||
weathers = np.unique(task_data_matrix[:, header.index('weather')])
|
||||
|
||||
|
||||
|
||||
for w in weathers:
|
||||
t = int(t)
|
||||
|
||||
task_data_matrix = data_matrix[np.logical_and(data_matrix[:, header.index(
|
||||
'exp_id')] == t, data_matrix[:, header.index('weather')] == w)]
|
||||
|
||||
|
||||
task_reward_matrix = reward_matrix[np.logical_and(reward_matrix[:, header_details.index(
|
||||
'exp_id')] == float(t), reward_matrix[:, header_details.index('weather')] == float(w))]
|
||||
|
||||
km_run = get_distance_traveled(
|
||||
task_reward_matrix, header_details)
|
||||
|
||||
metrics_dictionary['average_fully_completed'][w][t] = sum(
|
||||
task_data_matrix[:, header.index('result')])/task_data_matrix.shape[0]
|
||||
|
||||
metrics_dictionary['average_completion'][w][t] = sum(
|
||||
(task_data_matrix[:, header.index('initial_distance')]
|
||||
- task_data_matrix[:, header.index('final_distance')])
|
||||
/ task_data_matrix[:, header.index('initial_distance')]) \
|
||||
/ len(task_data_matrix[:, header.index('final_distance')])
|
||||
|
||||
|
||||
metrics_dictionary['driven_kilometers'][w][t]= km_run
|
||||
metrics_dictionary['average_speed'][w][t]= km_run/ \
|
||||
((sum(task_data_matrix[:, header.index('final_time')]))/3600.0)
|
||||
|
||||
|
||||
|
||||
if list(tasks).index(t) in set(dynamic_episodes):
|
||||
|
||||
lane_road = get_out_of_road_lane(
|
||||
task_reward_matrix, header_details)
|
||||
colisions = get_colisions(task_reward_matrix, header_details)
|
||||
|
||||
|
||||
|
||||
metrics_dictionary['intersection_offroad'][
|
||||
w][t] = lane_road[0]/km_run
|
||||
metrics_dictionary['intersection_otherlane'][
|
||||
w][t] = lane_road[1]/km_run
|
||||
metrics_dictionary['collision_pedestrians'][
|
||||
w][t] = colisions[2]/km_run
|
||||
metrics_dictionary['collision_vehicles'][
|
||||
w][t] = colisions[1]/km_run
|
||||
metrics_dictionary['collision_other'][
|
||||
w][t] = colisions[0]/km_run
|
||||
|
||||
|
||||
return metrics_dictionary
|
|
@ -0,0 +1 @@
|
|||
from .driving_benchmark import run_driving_benchmark
|
|
@ -0,0 +1,317 @@
|
|||
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
|
||||
# Barcelona (UAB).
|
||||
#
|
||||
# This work is licensed under the terms of the MIT license.
|
||||
# For a copy, see <https://opensource.org/licenses/MIT>.
|
||||
|
||||
|
||||
import abc
|
||||
import logging
|
||||
import math
|
||||
import time
|
||||
|
||||
from carla.client import VehicleControl
|
||||
from carla.client import make_carla_client
|
||||
from carla.driving_benchmark.metrics import Metrics
|
||||
from carla.planner.planner import Planner
|
||||
from carla.settings import CarlaSettings
|
||||
from carla.tcp import TCPConnectionError
|
||||
|
||||
from . import results_printer
|
||||
from .recording import Recording
|
||||
|
||||
|
||||
def sldist(c1, c2):
|
||||
return math.sqrt((c2[0] - c1[0]) ** 2 + (c2[1] - c1[1]) ** 2)
|
||||
|
||||
|
||||
class DrivingBenchmark(object):
|
||||
"""
|
||||
The Benchmark class, controls the execution of the benchmark interfacing
|
||||
an Agent class with a set Suite.
|
||||
|
||||
|
||||
The benchmark class must be inherited with a class that defines the
|
||||
all the experiments to be run by the agent
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
city_name='Town01',
|
||||
name_to_save='Test',
|
||||
continue_experiment=False,
|
||||
save_images=False,
|
||||
distance_for_success=2.0
|
||||
):
|
||||
|
||||
self.__metaclass__ = abc.ABCMeta
|
||||
|
||||
self._city_name = city_name
|
||||
self._base_name = name_to_save
|
||||
# The minimum distance for arriving into the goal point in
|
||||
# order to consider ir a success
|
||||
self._distance_for_success = distance_for_success
|
||||
# The object used to record the benchmark and to able to continue after
|
||||
self._recording = Recording(name_to_save=name_to_save,
|
||||
continue_experiment=continue_experiment,
|
||||
save_images=save_images
|
||||
)
|
||||
|
||||
# We have a default planner instantiated that produces high level commands
|
||||
self._planner = Planner(city_name)
|
||||
|
||||
def benchmark_agent(self, experiment_suite, agent, client):
|
||||
"""
|
||||
Function to benchmark the agent.
|
||||
It first check the log file for this benchmark.
|
||||
if it exist it continues from the experiment where it stopped.
|
||||
|
||||
|
||||
Args:
|
||||
experiment_suite
|
||||
agent: an agent object with the run step class implemented.
|
||||
client:
|
||||
|
||||
|
||||
Return:
|
||||
A dictionary with all the metrics computed from the
|
||||
agent running the set of experiments.
|
||||
"""
|
||||
|
||||
# Instantiate a metric object that will be used to compute the metrics for
|
||||
# the benchmark afterwards.
|
||||
metrics_object = Metrics(experiment_suite.metrics_parameters,
|
||||
experiment_suite.dynamic_tasks)
|
||||
|
||||
# Function return the current pose and task for this benchmark.
|
||||
start_pose, start_experiment = self._recording.get_pose_and_experiment(
|
||||
experiment_suite.get_number_of_poses_task())
|
||||
|
||||
logging.info('START')
|
||||
|
||||
for experiment in experiment_suite.get_experiments()[int(start_experiment):]:
|
||||
|
||||
positions = client.load_settings(
|
||||
experiment.conditions).player_start_spots
|
||||
|
||||
self._recording.log_start(experiment.task)
|
||||
|
||||
for pose in experiment.poses[start_pose:]:
|
||||
for rep in range(experiment.repetitions):
|
||||
|
||||
start_index = pose[0]
|
||||
end_index = pose[1]
|
||||
|
||||
client.start_episode(start_index)
|
||||
# Print information on
|
||||
logging.info('======== !!!! ==========')
|
||||
logging.info(' Start Position %d End Position %d ',
|
||||
start_index, end_index)
|
||||
|
||||
self._recording.log_poses(start_index, end_index,
|
||||
experiment.Conditions.WeatherId)
|
||||
|
||||
# Calculate the initial distance for this episode
|
||||
initial_distance = \
|
||||
sldist(
|
||||
[positions[start_index].location.x, positions[start_index].location.y],
|
||||
[positions[end_index].location.x, positions[end_index].location.y])
|
||||
|
||||
time_out = experiment_suite.calculate_time_out(
|
||||
self._get_shortest_path(positions[start_index], positions[end_index]))
|
||||
|
||||
# running the agent
|
||||
(result, reward_vec, control_vec, final_time, remaining_distance) = \
|
||||
self._run_navigation_episode(
|
||||
agent, client, time_out, positions[end_index],
|
||||
str(experiment.Conditions.WeatherId) + '_'
|
||||
+ str(experiment.task) + '_' + str(start_index)
|
||||
+ '.' + str(end_index))
|
||||
|
||||
# Write the general status of the just ran episode
|
||||
self._recording.write_summary_results(
|
||||
experiment, pose, rep, initial_distance,
|
||||
remaining_distance, final_time, time_out, result)
|
||||
|
||||
# Write the details of this episode.
|
||||
self._recording.write_measurements_results(experiment, rep, pose, reward_vec,
|
||||
control_vec)
|
||||
if result > 0:
|
||||
logging.info('+++++ Target achieved in %f seconds! +++++',
|
||||
final_time)
|
||||
else:
|
||||
logging.info('----- Timeout! -----')
|
||||
|
||||
start_pose = 0
|
||||
|
||||
self._recording.log_end()
|
||||
|
||||
return metrics_object.compute(self._recording.path)
|
||||
|
||||
def get_path(self):
|
||||
"""
|
||||
Returns the path were the log was saved.
|
||||
"""
|
||||
return self._recording.path
|
||||
|
||||
def _get_directions(self, current_point, end_point):
|
||||
"""
|
||||
Class that should return the directions to reach a certain goal
|
||||
"""
|
||||
|
||||
directions = self._planner.get_next_command(
|
||||
(current_point.location.x,
|
||||
current_point.location.y, 0.22),
|
||||
(current_point.orientation.x,
|
||||
current_point.orientation.y,
|
||||
current_point.orientation.z),
|
||||
(end_point.location.x, end_point.location.y, 0.22),
|
||||
(end_point.orientation.x, end_point.orientation.y, end_point.orientation.z))
|
||||
return directions
|
||||
|
||||
def _get_shortest_path(self, start_point, end_point):
|
||||
"""
|
||||
Calculates the shortest path between two points considering the road netowrk
|
||||
"""
|
||||
|
||||
return self._planner.get_shortest_path_distance(
|
||||
[
|
||||
start_point.location.x, start_point.location.y, 0.22], [
|
||||
start_point.orientation.x, start_point.orientation.y, 0.22], [
|
||||
end_point.location.x, end_point.location.y, end_point.location.z], [
|
||||
end_point.orientation.x, end_point.orientation.y, end_point.orientation.z])
|
||||
|
||||
def _run_navigation_episode(
|
||||
self,
|
||||
agent,
|
||||
client,
|
||||
time_out,
|
||||
target,
|
||||
episode_name):
|
||||
"""
|
||||
Run one episode of the benchmark (Pose) for a certain agent.
|
||||
|
||||
|
||||
Args:
|
||||
agent: the agent object
|
||||
client: an object of the carla client to communicate
|
||||
with the CARLA simulator
|
||||
time_out: the time limit to complete this episode
|
||||
target: the target to reach
|
||||
episode_name: The name for saving images of this episode
|
||||
|
||||
"""
|
||||
|
||||
# Send an initial command.
|
||||
measurements, sensor_data = client.read_data()
|
||||
client.send_control(VehicleControl())
|
||||
|
||||
initial_timestamp = measurements.game_timestamp
|
||||
current_timestamp = initial_timestamp
|
||||
|
||||
# The vector containing all measurements produced on this episode
|
||||
measurement_vec = []
|
||||
# The vector containing all controls produced on this episode
|
||||
control_vec = []
|
||||
frame = 0
|
||||
distance = 10000
|
||||
success = False
|
||||
|
||||
while (current_timestamp - initial_timestamp) < (time_out * 1000) and not success:
|
||||
|
||||
# Read data from server with the client
|
||||
measurements, sensor_data = client.read_data()
|
||||
# The directions to reach the goal are calculated.
|
||||
directions = self._get_directions(measurements.player_measurements.transform, target)
|
||||
# Agent process the data.
|
||||
control = agent.run_step(measurements, sensor_data, directions, target)
|
||||
# Send the control commands to the vehicle
|
||||
client.send_control(control)
|
||||
|
||||
# save images if the flag is activated
|
||||
self._recording.save_images(sensor_data, episode_name, frame)
|
||||
|
||||
current_x = measurements.player_measurements.transform.location.x
|
||||
current_y = measurements.player_measurements.transform.location.y
|
||||
|
||||
logging.info("Controller is Inputting:")
|
||||
logging.info('Steer = %f Throttle = %f Brake = %f ',
|
||||
control.steer, control.throttle, control.brake)
|
||||
|
||||
current_timestamp = measurements.game_timestamp
|
||||
# Get the distance travelled until now
|
||||
distance = sldist([current_x, current_y],
|
||||
[target.location.x, target.location.y])
|
||||
# Write status of the run on verbose mode
|
||||
logging.info('Status:')
|
||||
logging.info(
|
||||
'[d=%f] c_x = %f, c_y = %f ---> t_x = %f, t_y = %f',
|
||||
float(distance), current_x, current_y, target.location.x,
|
||||
target.location.y)
|
||||
# Check if reach the target
|
||||
if distance < self._distance_for_success:
|
||||
success = True
|
||||
|
||||
# Increment the vectors and append the measurements and controls.
|
||||
frame += 1
|
||||
measurement_vec.append(measurements.player_measurements)
|
||||
control_vec.append(control)
|
||||
|
||||
if success:
|
||||
return 1, measurement_vec, control_vec, float(
|
||||
current_timestamp - initial_timestamp) / 1000.0, distance
|
||||
return 0, measurement_vec, control_vec, time_out, distance
|
||||
|
||||
|
||||
def run_driving_benchmark(agent,
|
||||
experiment_suite,
|
||||
city_name='Town01',
|
||||
log_name='Test',
|
||||
continue_experiment=False,
|
||||
host='127.0.0.1',
|
||||
port=2000
|
||||
):
|
||||
while True:
|
||||
try:
|
||||
|
||||
with make_carla_client(host, port) as client:
|
||||
# Hack to fix for the issue 310, we force a reset, so it does not get
|
||||
# the positions on first server reset.
|
||||
client.load_settings(CarlaSettings())
|
||||
client.start_episode(0)
|
||||
|
||||
# We instantiate the driving benchmark, that is the engine used to
|
||||
# benchmark an agent. The instantiation starts the log process, sets
|
||||
|
||||
benchmark = DrivingBenchmark(city_name=city_name,
|
||||
name_to_save=log_name + '_'
|
||||
+ type(experiment_suite).__name__
|
||||
+ '_' + city_name,
|
||||
continue_experiment=continue_experiment)
|
||||
# This function performs the benchmark. It returns a dictionary summarizing
|
||||
# the entire execution.
|
||||
|
||||
benchmark_summary = benchmark.benchmark_agent(experiment_suite, agent, client)
|
||||
|
||||
print("")
|
||||
print("")
|
||||
print("----- Printing results for training weathers (Seen in Training) -----")
|
||||
print("")
|
||||
print("")
|
||||
results_printer.print_summary(benchmark_summary, experiment_suite.train_weathers,
|
||||
benchmark.get_path())
|
||||
|
||||
print("")
|
||||
print("")
|
||||
print("----- Printing results for test weathers (Unseen in Training) -----")
|
||||
print("")
|
||||
print("")
|
||||
|
||||
results_printer.print_summary(benchmark_summary, experiment_suite.test_weathers,
|
||||
benchmark.get_path())
|
||||
|
||||
break
|
||||
|
||||
except TCPConnectionError as error:
|
||||
logging.error(error)
|
||||
time.sleep(1)
|
|
@ -8,9 +8,21 @@ from carla.settings import CarlaSettings
|
|||
|
||||
|
||||
class Experiment(object):
|
||||
"""
|
||||
Experiment defines a certain task, under conditions
|
||||
A task is associated with a set of poses, containing start and end pose.
|
||||
|
||||
Conditions are associated with a carla Settings and describe the following:
|
||||
|
||||
Number Of Vehicles
|
||||
Number Of Pedestrians
|
||||
Weather
|
||||
Random Seed of the agents, describing their behaviour.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.Id = ''
|
||||
self.Task = 0
|
||||
self.Conditions = CarlaSettings()
|
||||
self.Poses = [[]]
|
||||
self.Repetitions = 1
|
||||
|
@ -21,9 +33,12 @@ class Experiment(object):
|
|||
raise ValueError('Experiment: no key named %r' % key)
|
||||
setattr(self, key, value)
|
||||
|
||||
if self.Repetitions != 1:
|
||||
raise NotImplementedError()
|
||||
|
||||
@property
|
||||
def id(self):
|
||||
return self.Id
|
||||
def task(self):
|
||||
return self.Task
|
||||
|
||||
@property
|
||||
def conditions(self):
|
|
@ -0,0 +1,2 @@
|
|||
from .basic_experiment_suite import BasicExperimentSuite
|
||||
from .corl_2017 import CoRL2017
|
|
@ -0,0 +1,83 @@
|
|||
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
|
||||
# Barcelona (UAB).
|
||||
#
|
||||
# This work is licensed under the terms of the MIT license.
|
||||
# For a copy, see <https://opensource.org/licenses/MIT>.
|
||||
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
from carla.driving_benchmark.experiment import Experiment
|
||||
from carla.sensor import Camera
|
||||
from carla.settings import CarlaSettings
|
||||
|
||||
from .experiment_suite import ExperimentSuite
|
||||
|
||||
|
||||
class BasicExperimentSuite(ExperimentSuite):
|
||||
|
||||
@property
|
||||
def train_weathers(self):
|
||||
return [1]
|
||||
|
||||
@property
|
||||
def test_weathers(self):
|
||||
return [1]
|
||||
|
||||
def build_experiments(self):
|
||||
"""
|
||||
Creates the whole set of experiment objects,
|
||||
The experiments created depends on the selected Town.
|
||||
|
||||
"""
|
||||
|
||||
# We check the town, based on that we define the town related parameters
|
||||
# The size of the vector is related to the number of tasks, inside each
|
||||
# task there is also multiple poses ( start end, positions )
|
||||
if self._city_name == 'Town01':
|
||||
poses_tasks = [[[7, 3]], [[138, 17]], [[140, 134]], [[140, 134]]]
|
||||
vehicles_tasks = [0, 0, 0, 20]
|
||||
pedestrians_tasks = [0, 0, 0, 50]
|
||||
else:
|
||||
poses_tasks = [[[4, 2]], [[37, 76]], [[19, 66]], [[19, 66]]]
|
||||
vehicles_tasks = [0, 0, 0, 15]
|
||||
pedestrians_tasks = [0, 0, 0, 50]
|
||||
|
||||
# We set the camera
|
||||
# This single RGB camera is used on every experiment
|
||||
|
||||
camera = Camera('CameraRGB')
|
||||
camera.set(FOV=100)
|
||||
camera.set_image_size(800, 600)
|
||||
camera.set_position(2.0, 0.0, 1.4)
|
||||
camera.set_rotation(-15.0, 0, 0)
|
||||
|
||||
# Based on the parameters, creates a vector with experiment objects.
|
||||
experiments_vector = []
|
||||
for weather in self.weathers:
|
||||
|
||||
for iteration in range(len(poses_tasks)):
|
||||
poses = poses_tasks[iteration]
|
||||
vehicles = vehicles_tasks[iteration]
|
||||
pedestrians = pedestrians_tasks[iteration]
|
||||
|
||||
conditions = CarlaSettings()
|
||||
conditions.set(
|
||||
SendNonPlayerAgentsInfo=True,
|
||||
NumberOfVehicles=vehicles,
|
||||
NumberOfPedestrians=pedestrians,
|
||||
WeatherId=weather
|
||||
|
||||
)
|
||||
# Add all the cameras that were set for this experiments
|
||||
conditions.add_sensor(camera)
|
||||
experiment = Experiment()
|
||||
experiment.set(
|
||||
Conditions=conditions,
|
||||
Poses=poses,
|
||||
Task=iteration,
|
||||
Repetitions=1
|
||||
)
|
||||
experiments_vector.append(experiment)
|
||||
|
||||
return experiments_vector
|
|
@ -8,63 +8,21 @@
|
|||
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
from .benchmark import Benchmark
|
||||
from .experiment import Experiment
|
||||
from carla.driving_benchmark.experiment import Experiment
|
||||
from carla.sensor import Camera
|
||||
from carla.settings import CarlaSettings
|
||||
|
||||
from .metrics import compute_summary
|
||||
from carla.driving_benchmark.experiment_suites.experiment_suite import ExperimentSuite
|
||||
|
||||
|
||||
class CoRL2017(Benchmark):
|
||||
class CoRL2017(ExperimentSuite):
|
||||
|
||||
def get_all_statistics(self):
|
||||
@property
|
||||
def train_weathers(self):
|
||||
return [1, 3, 6, 8]
|
||||
|
||||
summary = compute_summary(os.path.join(
|
||||
self._full_name, self._suffix_name), [3])
|
||||
|
||||
return summary
|
||||
|
||||
def plot_summary_train(self):
|
||||
|
||||
self._plot_summary([1.0, 3.0, 6.0, 8.0])
|
||||
|
||||
def plot_summary_test(self):
|
||||
|
||||
self._plot_summary([4.0, 14.0])
|
||||
|
||||
def _plot_summary(self, weathers):
|
||||
"""
|
||||
We plot the summary of the testing for the set selected weathers.
|
||||
The test weathers are [4,14]
|
||||
|
||||
"""
|
||||
|
||||
metrics_summary = compute_summary(os.path.join(
|
||||
self._full_name, self._suffix_name), [3])
|
||||
|
||||
for metric, values in metrics_summary.items():
|
||||
|
||||
print('Metric : ', metric)
|
||||
for weather, tasks in values.items():
|
||||
if weather in set(weathers):
|
||||
print(' Weather: ', weather)
|
||||
count = 0
|
||||
for t in tasks:
|
||||
print(' Task ', count, ' -> ', t)
|
||||
count += 1
|
||||
|
||||
print(' AvG -> ', float(sum(tasks)) / float(len(tasks)))
|
||||
|
||||
def _calculate_time_out(self, distance):
|
||||
"""
|
||||
Function to return the timeout ( in miliseconds) that is calculated based on distance to goal.
|
||||
This is the same timeout as used on the CoRL paper.
|
||||
"""
|
||||
|
||||
return ((distance / 100000.0) / 10.0) * 3600.0 + 10.0
|
||||
@property
|
||||
def test_weathers(self):
|
||||
return [4, 14]
|
||||
|
||||
def _poses_town01(self):
|
||||
"""
|
||||
|
@ -128,10 +86,12 @@ class CoRL2017(Benchmark):
|
|||
_poses_navigation()
|
||||
]
|
||||
|
||||
def _build_experiments(self):
|
||||
def build_experiments(self):
|
||||
"""
|
||||
Creates the whole set of experiment objects,
|
||||
The experiments created depend on the selected Town.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
# We set the camera
|
||||
|
@ -139,13 +99,10 @@ class CoRL2017(Benchmark):
|
|||
|
||||
camera = Camera('CameraRGB')
|
||||
camera.set(FOV=100)
|
||||
|
||||
camera.set_image_size(800, 600)
|
||||
|
||||
camera.set_position(2.0, 0.0, 1.4)
|
||||
camera.set_rotation(-15.0, 0, 0)
|
||||
|
||||
weathers = [1, 3, 6, 8, 4, 14]
|
||||
if self._city_name == 'Town01':
|
||||
poses_tasks = self._poses_town01()
|
||||
vehicles_tasks = [0, 0, 0, 20]
|
||||
|
@ -157,7 +114,7 @@ class CoRL2017(Benchmark):
|
|||
|
||||
experiments_vector = []
|
||||
|
||||
for weather in weathers:
|
||||
for weather in self.weathers:
|
||||
|
||||
for iteration in range(len(poses_tasks)):
|
||||
poses = poses_tasks[iteration]
|
||||
|
@ -166,13 +123,10 @@ class CoRL2017(Benchmark):
|
|||
|
||||
conditions = CarlaSettings()
|
||||
conditions.set(
|
||||
SynchronousMode=True,
|
||||
SendNonPlayerAgentsInfo=True,
|
||||
NumberOfVehicles=vehicles,
|
||||
NumberOfPedestrians=pedestrians,
|
||||
WeatherId=weather,
|
||||
SeedVehicles=123456789,
|
||||
SeedPedestrians=123456789
|
||||
WeatherId=weather
|
||||
)
|
||||
# Add all the cameras that were set for this experiments
|
||||
|
||||
|
@ -182,22 +136,9 @@ class CoRL2017(Benchmark):
|
|||
experiment.set(
|
||||
Conditions=conditions,
|
||||
Poses=poses,
|
||||
Id=iteration,
|
||||
Task=iteration,
|
||||
Repetitions=1
|
||||
)
|
||||
experiments_vector.append(experiment)
|
||||
|
||||
return experiments_vector
|
||||
|
||||
def _get_details(self):
|
||||
|
||||
# Function to get automatic information from the experiment for writing purposes
|
||||
return 'corl2017_' + self._city_name
|
||||
|
||||
def _get_pose_and_task(self, line_on_file):
|
||||
"""
|
||||
Returns the pose and task this experiment is, based on the line it was
|
||||
on the log file.
|
||||
"""
|
||||
# We assume that the number of poses is constant
|
||||
return int(line_on_file / len(self._experiments)), line_on_file % 25
|
|
@ -0,0 +1,102 @@
|
|||
# To be redefined on subclasses on how to calculate timeout for an episode
|
||||
import abc
|
||||
|
||||
|
||||
class ExperimentSuite(object):
|
||||
|
||||
def __init__(self, city_name):
|
||||
|
||||
self._city_name = city_name
|
||||
self._experiments = self.build_experiments()
|
||||
|
||||
def calculate_time_out(self, path_distance):
|
||||
"""
|
||||
Function to return the timeout ,in milliseconds,
|
||||
that is calculated based on distance to goal.
|
||||
This is the same timeout as used on the CoRL paper.
|
||||
"""
|
||||
return ((path_distance / 1000.0) / 10.0) * 3600.0 + 10.0
|
||||
|
||||
def get_number_of_poses_task(self):
|
||||
"""
|
||||
Get the number of poses a task have for this benchmark
|
||||
"""
|
||||
|
||||
# Warning: assumes that all tasks have the same size
|
||||
|
||||
return len(self._experiments[0].poses)
|
||||
|
||||
def get_experiments(self):
|
||||
"""
|
||||
Getter for the experiment set.
|
||||
"""
|
||||
return self._experiments
|
||||
|
||||
@property
|
||||
def dynamic_tasks(self):
|
||||
"""
|
||||
Returns the episodes that contain dynamic obstacles
|
||||
"""
|
||||
dynamic_tasks = set()
|
||||
for exp in self._experiments:
|
||||
if exp.conditions.NumberOfVehicles > 0 or exp.conditions.NumberOfPedestrians > 0:
|
||||
dynamic_tasks.add(exp.task)
|
||||
|
||||
return list(dynamic_tasks)
|
||||
|
||||
@property
|
||||
def metrics_parameters(self):
|
||||
"""
|
||||
Property to return the parameters for the metric module
|
||||
Could be redefined depending on the needs of the user.
|
||||
"""
|
||||
return {
|
||||
|
||||
'intersection_offroad': {'frames_skip': 10,
|
||||
'frames_recount': 20,
|
||||
'threshold': 0.3
|
||||
},
|
||||
'intersection_otherlane': {'frames_skip': 10,
|
||||
'frames_recount': 20,
|
||||
'threshold': 0.4
|
||||
},
|
||||
'collision_other': {'frames_skip': 10,
|
||||
'frames_recount': 20,
|
||||
'threshold': 400
|
||||
},
|
||||
'collision_vehicles': {'frames_skip': 10,
|
||||
'frames_recount': 30,
|
||||
'threshold': 400
|
||||
},
|
||||
'collision_pedestrians': {'frames_skip': 5,
|
||||
'frames_recount': 100,
|
||||
'threshold': 300
|
||||
},
|
||||
|
||||
}
|
||||
|
||||
@property
|
||||
def weathers(self):
|
||||
weathers = set(self.train_weathers)
|
||||
weathers.update(self.test_weathers)
|
||||
return weathers
|
||||
|
||||
@abc.abstractmethod
|
||||
def build_experiments(self):
|
||||
"""
|
||||
Returns a set of experiments to be evaluated
|
||||
Must be redefined in an inherited class.
|
||||
|
||||
"""
|
||||
|
||||
@abc.abstractproperty
|
||||
def train_weathers(self):
|
||||
"""
|
||||
Return the weathers that are considered as training conditions
|
||||
"""
|
||||
|
||||
@abc.abstractproperty
|
||||
def test_weathers(self):
|
||||
"""
|
||||
Return the weathers that are considered as testing conditions
|
||||
"""
|
|
@ -0,0 +1,335 @@
|
|||
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
|
||||
# Barcelona (UAB).
|
||||
#
|
||||
# This work is licensed under the terms of the MIT license.
|
||||
# For a copy, see <https://opensource.org/licenses/MIT>.
|
||||
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
import os
|
||||
|
||||
sldist = lambda c1, c2: math.sqrt((c2[0] - c1[0]) ** 2 + (c2[1] - c1[1]) ** 2)
|
||||
flatten = lambda l: [item for sublist in l for item in sublist]
|
||||
|
||||
|
||||
class Metrics(object):
|
||||
"""
|
||||
The metrics class is made to take the driving measurements
|
||||
and calculate some specific performance metrics.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, parameters, dynamic_tasks):
|
||||
"""
|
||||
Args
|
||||
parameters: A dictionary with the used parameters for checking how to count infractions
|
||||
dynamic_tasks: A list of the all dynamic tasks (That contain dynamic objects)
|
||||
"""
|
||||
|
||||
self._parameters = parameters
|
||||
self._parameters['dynamic_tasks'] = dynamic_tasks
|
||||
|
||||
def _divide_by_episodes(self, measurements_matrix, header):
|
||||
|
||||
"""
|
||||
Divides the measurements matrix on different episodes.
|
||||
|
||||
Args:
|
||||
measurements_matrix: The full measurements matrix
|
||||
header: The header from the measurements matrix
|
||||
|
||||
"""
|
||||
|
||||
# Read previous for position zero
|
||||
prev_start = measurements_matrix[0, header.index('start_point')]
|
||||
prev_end = measurements_matrix[0, header.index('end_point')]
|
||||
prev_exp_id = measurements_matrix[0, header.index('exp_id')]
|
||||
|
||||
# Start at the position 1.
|
||||
i = 1
|
||||
prev_i_position = 0
|
||||
episode_matrix_metrics = []
|
||||
|
||||
while i < measurements_matrix.shape[0]:
|
||||
|
||||
current_start = measurements_matrix[i, header.index('start_point')]
|
||||
current_end = measurements_matrix[i, header.index('end_point')]
|
||||
current_exp_id = measurements_matrix[i, header.index('exp_id')]
|
||||
|
||||
# If there is a change in the position it means it is a new episode for sure.
|
||||
if (current_start != prev_start and current_end != prev_end) \
|
||||
or current_exp_id != prev_exp_id:
|
||||
episode_matrix_metrics.append(measurements_matrix[prev_i_position:i, :])
|
||||
prev_i_position = i
|
||||
|
||||
prev_start = current_start
|
||||
prev_end = current_end
|
||||
prev_exp_id = current_exp_id
|
||||
|
||||
i += 1
|
||||
|
||||
episode_matrix_metrics.append(measurements_matrix[prev_i_position:-1, :])
|
||||
|
||||
return episode_matrix_metrics
|
||||
|
||||
def _get_collisions(self, selected_matrix, header):
|
||||
"""
|
||||
Get the number of collisions for pedestrians, vehicles or other
|
||||
Args:
|
||||
selected_matrix: The matrix with all the experiments summary
|
||||
header: The header , to know the positions of details
|
||||
|
||||
|
||||
"""
|
||||
count_collisions_general = 0
|
||||
count_collisions_pedestrian = 0
|
||||
count_collisions_vehicle = 0
|
||||
i = 1
|
||||
# Computing general collisions
|
||||
while i < selected_matrix.shape[0]:
|
||||
if (selected_matrix[i, header.index('collision_other')]
|
||||
- selected_matrix[
|
||||
(i - self._parameters['collision_other']['frames_skip']), header.index(
|
||||
'collision_other')]) > \
|
||||
self._parameters['collision_other']['threshold']:
|
||||
count_collisions_general += 1
|
||||
i += self._parameters['collision_other']['frames_recount']
|
||||
i += 1
|
||||
|
||||
i = 1
|
||||
# Computing collisions for vehicles
|
||||
while i < selected_matrix.shape[0]:
|
||||
if (selected_matrix[i, header.index('collision_vehicles')]
|
||||
- selected_matrix[
|
||||
(i - self._parameters['collision_vehicles']['frames_skip']), header.index(
|
||||
'collision_vehicles')]) > \
|
||||
self._parameters['collision_vehicles']['threshold']:
|
||||
count_collisions_vehicle += 1
|
||||
i += self._parameters['collision_vehicles']['frames_recount']
|
||||
i += 1
|
||||
|
||||
i = 1
|
||||
|
||||
# Computing the collisions for pedestrians
|
||||
while i < selected_matrix.shape[0]:
|
||||
if (selected_matrix[i, header.index('collision_pedestrians')]
|
||||
- selected_matrix[i - self._parameters['collision_pedestrians']['frames_skip'],
|
||||
header.index('collision_pedestrians')]) > \
|
||||
self._parameters['collision_pedestrians']['threshold']:
|
||||
count_collisions_pedestrian += 1
|
||||
i += self._parameters['collision_pedestrians']['frames_recount']
|
||||
i += 1
|
||||
|
||||
return count_collisions_general, count_collisions_vehicle, count_collisions_pedestrian
|
||||
|
||||
def _get_distance_traveled(self, selected_matrix, header):
|
||||
"""
|
||||
Compute the total distance travelled
|
||||
Args:
|
||||
selected_matrix: The matrix with all the experiments summary
|
||||
header: The header , to know the positions of details
|
||||
|
||||
|
||||
"""
|
||||
|
||||
prev_x = selected_matrix[0, header.index('pos_x')]
|
||||
prev_y = selected_matrix[0, header.index('pos_y')]
|
||||
|
||||
i = 1
|
||||
acummulated_distance = 0
|
||||
|
||||
while i < selected_matrix.shape[0]:
|
||||
x = selected_matrix[i, header.index('pos_x')]
|
||||
y = selected_matrix[i, header.index('pos_y')]
|
||||
|
||||
acummulated_distance += sldist((x, y), (prev_x, prev_y))
|
||||
|
||||
prev_x = x
|
||||
prev_y = y
|
||||
|
||||
i += 1
|
||||
|
||||
return acummulated_distance / (1000.0)
|
||||
|
||||
def _get_out_of_road_lane(self, selected_matrix, header):
|
||||
|
||||
"""
|
||||
Check for the situations were the agent goes out of the road.
|
||||
Args:
|
||||
selected_matrix: The matrix with all the experiments summary
|
||||
header: The header , to know the positions of details
|
||||
|
||||
|
||||
"""
|
||||
|
||||
count_sidewalk_intersect = 0
|
||||
count_lane_intersect = 0
|
||||
|
||||
i = 0
|
||||
|
||||
while i < selected_matrix.shape[0]:
|
||||
|
||||
if (selected_matrix[i, header.index('intersection_offroad')]
|
||||
- selected_matrix[(i - self._parameters['intersection_offroad']['frames_skip']),
|
||||
header.index('intersection_offroad')]) \
|
||||
> self._parameters['intersection_offroad']['threshold']:
|
||||
count_sidewalk_intersect += 1
|
||||
i += self._parameters['intersection_offroad']['frames_recount']
|
||||
if i >= selected_matrix.shape[0]:
|
||||
break
|
||||
|
||||
if (selected_matrix[i, header.index('intersection_otherlane')]
|
||||
- selected_matrix[(i - self._parameters['intersection_otherlane']['frames_skip']),
|
||||
header.index('intersection_otherlane')]) \
|
||||
> self._parameters['intersection_otherlane']['threshold']:
|
||||
count_lane_intersect += 1
|
||||
i += self._parameters['intersection_otherlane']['frames_recount']
|
||||
|
||||
i += 1
|
||||
|
||||
return count_lane_intersect, count_sidewalk_intersect
|
||||
|
||||
def compute(self, path):
|
||||
|
||||
"""
|
||||
Compute a dictionary containing the following metrics
|
||||
|
||||
* Off Road Intersection: The number of times the agent goes out of the road.
|
||||
The intersection is only counted if the area of the vehicle outside
|
||||
of the road is bigger than a *threshold*.
|
||||
|
||||
* Other Lane Intersection: The number of times the agent goes to the other
|
||||
lane. The intersection is only counted if the area of the vehicle on the
|
||||
other lane is bigger than a *threshold*.
|
||||
|
||||
* Vehicle Collisions: The number of collisions with vehicles that have
|
||||
an impact bigger than a *threshold*.
|
||||
|
||||
* Pedestrian Collisions: The number of collisions with pedestrians
|
||||
that have an impact bigger than a threshold.
|
||||
|
||||
* General Collisions: The number of collisions with all other
|
||||
objects.
|
||||
|
||||
|
||||
Args:
|
||||
path: Path where the log files are.
|
||||
|
||||
"""
|
||||
|
||||
with open(os.path.join(path, 'summary.csv'), "rU") as f:
|
||||
header = f.readline()
|
||||
header = header.split(',')
|
||||
header[-1] = header[-1][:-1]
|
||||
|
||||
with open(os.path.join(path, 'measurements.csv'), "rU") as f:
|
||||
|
||||
header_metrics = f.readline()
|
||||
header_metrics = header_metrics.split(',')
|
||||
header_metrics[-1] = header_metrics[-1][:-1]
|
||||
|
||||
result_matrix = np.loadtxt(os.path.join(path, 'summary.csv'), delimiter=",", skiprows=1)
|
||||
|
||||
# Corner Case: The presented test just had one episode
|
||||
if result_matrix.ndim == 1:
|
||||
result_matrix = np.expand_dims(result_matrix, axis=0)
|
||||
|
||||
tasks = np.unique(result_matrix[:, header.index('exp_id')])
|
||||
|
||||
all_weathers = np.unique(result_matrix[:, header.index('weather')])
|
||||
|
||||
measurements_matrix = np.loadtxt(os.path.join(path, 'measurements.csv'), delimiter=",",
|
||||
skiprows=1)
|
||||
|
||||
metrics_dictionary = {'episodes_completion': {w: [0] * len(tasks) for w in all_weathers},
|
||||
'intersection_offroad': {w: [[] for i in range(len(tasks))] for w in
|
||||
all_weathers},
|
||||
'intersection_otherlane': {w: [[] for i in range(len(tasks))] for w in
|
||||
all_weathers},
|
||||
'collision_pedestrians': {w: [[] for i in range(len(tasks))] for w in
|
||||
all_weathers},
|
||||
'collision_vehicles': {w: [[] for i in range(len(tasks))] for w in
|
||||
all_weathers},
|
||||
'collision_other': {w: [[] for i in range(len(tasks))] for w in
|
||||
all_weathers},
|
||||
'episodes_fully_completed': {w: [0] * len(tasks) for w in
|
||||
all_weathers},
|
||||
'average_speed': {w: [0] * len(tasks) for w in all_weathers},
|
||||
'driven_kilometers': {w: [0] * len(tasks) for w in all_weathers}
|
||||
}
|
||||
|
||||
for t in range(len(tasks)):
|
||||
experiment_results_matrix = result_matrix[
|
||||
result_matrix[:, header.index('exp_id')] == tasks[t]]
|
||||
|
||||
weathers = np.unique(experiment_results_matrix[:, header.index('weather')])
|
||||
|
||||
for w in weathers:
|
||||
|
||||
experiment_results_matrix = result_matrix[
|
||||
np.logical_and(result_matrix[:, header.index(
|
||||
'exp_id')] == tasks[t], result_matrix[:, header.index('weather')] == w)]
|
||||
|
||||
experiment_metrics_matrix = measurements_matrix[
|
||||
np.logical_and(measurements_matrix[:, header_metrics.index(
|
||||
'exp_id')] == float(tasks[t]),
|
||||
measurements_matrix[:, header_metrics.index('weather')] == float(
|
||||
w))]
|
||||
|
||||
metrics_dictionary['episodes_fully_completed'][w][t] = \
|
||||
experiment_results_matrix[:, header.index('result')].tolist()
|
||||
|
||||
metrics_dictionary['episodes_completion'][w][t] = \
|
||||
((experiment_results_matrix[:, header.index('initial_distance')]
|
||||
- experiment_results_matrix[:, header.index('final_distance')])
|
||||
/ experiment_results_matrix[:, header.index('initial_distance')]).tolist()
|
||||
|
||||
# Now we divide the experiment metrics matrix
|
||||
|
||||
episode_experiment_metrics_matrix = self._divide_by_episodes(
|
||||
experiment_metrics_matrix, header_metrics)
|
||||
|
||||
count = 0
|
||||
|
||||
for episode_experiment_metrics in episode_experiment_metrics_matrix:
|
||||
|
||||
km_run_episodes = self._get_distance_traveled(
|
||||
episode_experiment_metrics, header_metrics)
|
||||
metrics_dictionary['driven_kilometers'][w][t] += km_run_episodes
|
||||
metrics_dictionary['average_speed'][w][t] = \
|
||||
km_run_episodes / (experiment_results_matrix[count,
|
||||
header.index(
|
||||
'final_time')] / 3600.0)
|
||||
count += 1
|
||||
|
||||
lane_road = self._get_out_of_road_lane(
|
||||
episode_experiment_metrics, header_metrics)
|
||||
|
||||
metrics_dictionary['intersection_otherlane'][
|
||||
w][t].append(lane_road[0])
|
||||
metrics_dictionary['intersection_offroad'][
|
||||
w][t].append(lane_road[1])
|
||||
|
||||
if tasks[t] in set(self._parameters['dynamic_tasks']):
|
||||
|
||||
collisions = self._get_collisions(episode_experiment_metrics,
|
||||
header_metrics)
|
||||
|
||||
metrics_dictionary['collision_pedestrians'][
|
||||
w][t].append(collisions[2])
|
||||
metrics_dictionary['collision_vehicles'][
|
||||
w][t].append(collisions[1])
|
||||
metrics_dictionary['collision_other'][
|
||||
w][t].append(collisions[0])
|
||||
|
||||
else:
|
||||
|
||||
metrics_dictionary['collision_pedestrians'][
|
||||
w][t].append(0)
|
||||
metrics_dictionary['collision_vehicles'][
|
||||
w][t].append(0)
|
||||
metrics_dictionary['collision_other'][
|
||||
w][t].append(0)
|
||||
|
||||
return metrics_dictionary
|
|
@ -0,0 +1,244 @@
|
|||
import csv
|
||||
import datetime
|
||||
import os
|
||||
|
||||
|
||||
class Recording(object):
|
||||
|
||||
def __init__(self
|
||||
, name_to_save
|
||||
, continue_experiment
|
||||
, save_images
|
||||
):
|
||||
|
||||
self._dict_summary = {'exp_id': -1,
|
||||
'rep': -1,
|
||||
'weather': -1,
|
||||
'start_point': -1,
|
||||
'end_point': -1,
|
||||
'result': -1,
|
||||
'initial_distance': -1,
|
||||
'final_distance': -1,
|
||||
'final_time': -1,
|
||||
'time_out': -1
|
||||
}
|
||||
self._dict_measurements = {'exp_id': -1,
|
||||
'rep': -1,
|
||||
'weather': -1,
|
||||
'start_point': -1,
|
||||
'end_point': -1,
|
||||
'collision_other': -1,
|
||||
'collision_pedestrians': -1,
|
||||
'collision_vehicles': -1,
|
||||
'intersection_otherlane': -1,
|
||||
'intersection_offroad': -1,
|
||||
'pos_x': -1,
|
||||
'pos_y': -1,
|
||||
'steer': -1,
|
||||
'throttle': -1,
|
||||
'brake': -1
|
||||
}
|
||||
|
||||
# Just in the case is the first time and there is no benchmark results folder
|
||||
if not os.path.exists('_benchmarks_results'):
|
||||
os.mkdir('_benchmarks_results')
|
||||
|
||||
# Generate the full path for the log files
|
||||
self._path = os.path.join('_benchmarks_results'
|
||||
, name_to_save
|
||||
)
|
||||
|
||||
# Check for continuation of experiment, also returns the last line, used for test purposes
|
||||
# If you don't want to continue it will create a new path name with a number
|
||||
self._path, _ = self._continue_experiment(continue_experiment)
|
||||
|
||||
self._create_log_files()
|
||||
|
||||
# A log with a date file: to show when was the last access and log what was tested,
|
||||
now = datetime.datetime.now()
|
||||
self._internal_log_name = os.path.join(self._path, 'log_' + now.strftime("%Y%m%d%H%M"))
|
||||
open(self._internal_log_name, 'w').close()
|
||||
|
||||
# store the save images flag, and already store the format for image saving
|
||||
self._save_images = save_images
|
||||
self._image_filename_format = os.path.join(
|
||||
self._path, '_images/episode_{:s}/{:s}/image_{:0>5d}.jpg')
|
||||
|
||||
@property
|
||||
def path(self):
|
||||
return self._path
|
||||
|
||||
def log_poses(self, start_index, end_index, weather_id):
|
||||
with open(self._internal_log_name, 'a+') as log:
|
||||
log.write(' Start Poses (%d %d ) on weather %d \n ' %
|
||||
(start_index, end_index, weather_id))
|
||||
|
||||
def log_poses_finish(self):
|
||||
with open(self._internal_log_name, 'a+') as log:
|
||||
log.write('Finished Task')
|
||||
|
||||
def log_start(self, id_experiment):
|
||||
|
||||
with open(self._internal_log_name, 'a+') as log:
|
||||
log.write('Start Task %d \n' % id_experiment)
|
||||
|
||||
def log_end(self):
|
||||
with open(self._internal_log_name, 'a+') as log:
|
||||
log.write('====== Finished Entire Benchmark ======')
|
||||
|
||||
def write_summary_results(self, experiment, pose, rep,
|
||||
path_distance, remaining_distance,
|
||||
final_time, time_out, result):
|
||||
"""
|
||||
Method to record the summary of an episode(pose) execution
|
||||
"""
|
||||
|
||||
self._dict_summary['exp_id'] = experiment.task
|
||||
self._dict_summary['rep'] = rep
|
||||
self._dict_summary['weather'] = experiment.Conditions.WeatherId
|
||||
self._dict_summary['start_point'] = pose[0]
|
||||
self._dict_summary['end_point'] = pose[1]
|
||||
self._dict_summary['result'] = result
|
||||
self._dict_summary['initial_distance'] = path_distance
|
||||
self._dict_summary['final_distance'] = remaining_distance
|
||||
self._dict_summary['final_time'] = final_time
|
||||
self._dict_summary['time_out'] = time_out
|
||||
|
||||
with open(os.path.join(self._path, 'summary.csv'), 'a+') as ofd:
|
||||
w = csv.DictWriter(ofd, self._dict_summary.keys())
|
||||
|
||||
w.writerow(self._dict_summary)
|
||||
|
||||
def write_measurements_results(self, experiment, rep, pose, reward_vec, control_vec):
|
||||
"""
|
||||
Method to record the measurements, sensors,
|
||||
controls and status of the entire benchmark.
|
||||
"""
|
||||
with open(os.path.join(self._path, 'measurements.csv'), 'a+') as rfd:
|
||||
rw = csv.DictWriter(rfd, self._dict_measurements.keys())
|
||||
|
||||
for i in range(len(reward_vec)):
|
||||
self._dict_measurements['exp_id'] = experiment.task
|
||||
self._dict_measurements['rep'] = rep
|
||||
self._dict_measurements['start_point'] = pose[0]
|
||||
self._dict_measurements['end_point'] = pose[1]
|
||||
self._dict_measurements['weather'] = experiment.Conditions.WeatherId
|
||||
self._dict_measurements['collision_other'] = reward_vec[
|
||||
i].collision_other
|
||||
self._dict_measurements['collision_pedestrians'] = reward_vec[
|
||||
i].collision_pedestrians
|
||||
self._dict_measurements['collision_vehicles'] = reward_vec[
|
||||
i].collision_vehicles
|
||||
self._dict_measurements['intersection_otherlane'] = reward_vec[
|
||||
i].intersection_otherlane
|
||||
self._dict_measurements['intersection_offroad'] = reward_vec[
|
||||
i].intersection_offroad
|
||||
self._dict_measurements['pos_x'] = reward_vec[
|
||||
i].transform.location.x
|
||||
self._dict_measurements['pos_y'] = reward_vec[
|
||||
i].transform.location.y
|
||||
self._dict_measurements['steer'] = control_vec[
|
||||
i].steer
|
||||
self._dict_measurements['throttle'] = control_vec[
|
||||
i].throttle
|
||||
self._dict_measurements['brake'] = control_vec[
|
||||
i].brake
|
||||
|
||||
rw.writerow(self._dict_measurements)
|
||||
|
||||
def _create_log_files(self):
|
||||
"""
|
||||
Just create the log files and add the necessary header for it.
|
||||
"""
|
||||
|
||||
if not self._experiment_exist():
|
||||
os.mkdir(self._path)
|
||||
|
||||
with open(os.path.join(self._path, 'summary.csv'), 'w') as ofd:
|
||||
w = csv.DictWriter(ofd, self._dict_summary.keys())
|
||||
w.writeheader()
|
||||
|
||||
with open(os.path.join(self._path, 'measurements.csv'), 'w') as rfd:
|
||||
rw = csv.DictWriter(rfd, self._dict_measurements.keys())
|
||||
rw.writeheader()
|
||||
|
||||
def _continue_experiment(self, continue_experiment):
|
||||
"""
|
||||
Get the line on the file for the experiment.
|
||||
If continue_experiment is false and experiment exist, generates a new file path
|
||||
|
||||
"""
|
||||
|
||||
def get_non_existent_path(f_name_path):
|
||||
"""
|
||||
Get the path to a filename which does not exist by incrementing path.
|
||||
"""
|
||||
if not os.path.exists(f_name_path):
|
||||
return f_name_path
|
||||
filename, file_extension = os.path.splitext(f_name_path)
|
||||
i = 1
|
||||
new_f_name = "{}-{}{}".format(filename, i, file_extension)
|
||||
while os.path.exists(new_f_name):
|
||||
i += 1
|
||||
new_f_name = "{}-{}{}".format(filename, i, file_extension)
|
||||
return new_f_name
|
||||
|
||||
# start the new path as the same one as before
|
||||
new_path = self._path
|
||||
|
||||
# if the experiment exist
|
||||
if self._experiment_exist():
|
||||
|
||||
# If you want to continue just get the last position
|
||||
if continue_experiment:
|
||||
line_on_file = self._get_last_position()
|
||||
|
||||
else:
|
||||
# Get a new non_conflicting path name
|
||||
new_path = get_non_existent_path(new_path)
|
||||
line_on_file = 1
|
||||
|
||||
else:
|
||||
line_on_file = 1
|
||||
return new_path, line_on_file
|
||||
|
||||
def save_images(self, sensor_data, episode_name, frame):
|
||||
"""
|
||||
Save a image during the experiment
|
||||
"""
|
||||
if self._save_images:
|
||||
for name, image in sensor_data.items():
|
||||
image.save_to_disk(self._image_filename_format.format(
|
||||
episode_name, name, frame))
|
||||
|
||||
def get_pose_and_experiment(self, number_poses_task):
|
||||
"""
|
||||
Based on the line in log file, return the current pose and experiment.
|
||||
If the line is zero, create new log files.
|
||||
|
||||
"""
|
||||
# Warning: assumes that all tasks have the same size
|
||||
line_on_file = self._get_last_position() - 1
|
||||
if line_on_file == 0:
|
||||
return 0, 0
|
||||
else:
|
||||
return line_on_file % number_poses_task, line_on_file // number_poses_task
|
||||
|
||||
def _experiment_exist(self):
|
||||
|
||||
return os.path.exists(self._path)
|
||||
|
||||
def _get_last_position(self):
|
||||
"""
|
||||
Get the last position on the summary experiment file
|
||||
With this you are able to continue from there
|
||||
|
||||
Returns:
|
||||
int, position:
|
||||
"""
|
||||
# Try to open, if the file is not found
|
||||
try:
|
||||
with open(os.path.join(self._path, 'summary.csv')) as f:
|
||||
return sum(1 for _ in f)
|
||||
except IOError:
|
||||
return 0
|
|
@ -0,0 +1,124 @@
|
|||
import os
|
||||
import numpy as np
|
||||
import json
|
||||
|
||||
|
||||
def print_summary(metrics_summary, weathers, path):
|
||||
"""
|
||||
We plot the summary of the testing for the set selected weathers.
|
||||
|
||||
We take the raw data and print the way it was described on CORL 2017 paper
|
||||
|
||||
"""
|
||||
|
||||
# Improve readability by adding a weather dictionary
|
||||
weather_name_dict = {1: 'Clear Noon', 3: 'After Rain Noon',
|
||||
6: 'Heavy Rain Noon', 8: 'Clear Sunset',
|
||||
4: 'Cloudy After Rain', 14: 'Soft Rain Sunset'}
|
||||
|
||||
# First we write the entire dictionary on the benchmark folder.
|
||||
with open(os.path.join(path, 'metrics.json'), 'w') as fo:
|
||||
fo.write(json.dumps(metrics_summary))
|
||||
|
||||
# Second we plot the metrics that are already ready by averaging
|
||||
|
||||
metrics_to_average = [
|
||||
'episodes_fully_completed',
|
||||
'episodes_completion'
|
||||
|
||||
]
|
||||
# We compute the number of episodes based on size of average completion
|
||||
number_of_episodes = len(list(metrics_summary['episodes_fully_completed'].items())[0][1])
|
||||
|
||||
for metric in metrics_to_average:
|
||||
|
||||
if metric == 'episodes_completion':
|
||||
print ("Average Percentage of Distance to Goal Travelled ")
|
||||
else:
|
||||
print ("Percentage of Successful Episodes")
|
||||
|
||||
print ("")
|
||||
values = metrics_summary[metric]
|
||||
|
||||
metric_sum_values = np.zeros(number_of_episodes)
|
||||
for weather, tasks in values.items():
|
||||
if weather in set(weathers):
|
||||
print(' Weather: ', weather_name_dict[weather])
|
||||
count = 0
|
||||
for t in tasks:
|
||||
# if isinstance(t, np.ndarray) or isinstance(t, list):
|
||||
if t == []:
|
||||
print(' Metric Not Computed')
|
||||
else:
|
||||
print(' Task:', count, ' -> ', float(sum(t)) / float(len(t)))
|
||||
metric_sum_values[count] += (float(sum(t)) / float(len(t))) * 1.0 / float(
|
||||
len(weathers))
|
||||
|
||||
count += 1
|
||||
|
||||
print (' Average Between Weathers')
|
||||
for i in range(len(metric_sum_values)):
|
||||
print(' Task ', i, ' -> ', metric_sum_values[i])
|
||||
print ("")
|
||||
|
||||
infraction_metrics = [
|
||||
'collision_pedestrians',
|
||||
'collision_vehicles',
|
||||
'collision_other',
|
||||
'intersection_offroad',
|
||||
'intersection_otherlane'
|
||||
|
||||
]
|
||||
|
||||
# We need to collect the total number of kilometers for each task
|
||||
|
||||
for metric in infraction_metrics:
|
||||
values_driven = metrics_summary['driven_kilometers']
|
||||
values = metrics_summary[metric]
|
||||
metric_sum_values = np.zeros(number_of_episodes)
|
||||
summed_driven_kilometers = np.zeros(number_of_episodes)
|
||||
|
||||
if metric == 'collision_pedestrians':
|
||||
print ('Avg. Kilometers driven before a collision to a PEDESTRIAN')
|
||||
elif metric == 'collision_vehicles':
|
||||
print('Avg. Kilometers driven before a collision to a VEHICLE')
|
||||
elif metric == 'collision_other':
|
||||
print('Avg. Kilometers driven before a collision to a STATIC OBSTACLE')
|
||||
elif metric == 'intersection_offroad':
|
||||
print('Avg. Kilometers driven before going OUTSIDE OF THE ROAD')
|
||||
else:
|
||||
print('Avg. Kilometers driven before invading the OPPOSITE LANE')
|
||||
|
||||
# print (zip(values.items(), values_driven.items()))
|
||||
for items_metric, items_driven in zip(values.items(), values_driven.items()):
|
||||
weather = items_metric[0]
|
||||
tasks = items_metric[1]
|
||||
tasks_driven = items_driven[1]
|
||||
|
||||
if weather in set(weathers):
|
||||
print(' Weather: ', weather_name_dict[weather])
|
||||
count = 0
|
||||
for t, t_driven in zip(tasks, tasks_driven):
|
||||
# if isinstance(t, np.ndarray) or isinstance(t, list):
|
||||
if t == []:
|
||||
print('Metric Not Computed')
|
||||
else:
|
||||
if sum(t) > 0:
|
||||
print(' Task ', count, ' -> ', t_driven / float(sum(t)))
|
||||
else:
|
||||
print(' Task ', count, ' -> more than', t_driven)
|
||||
|
||||
metric_sum_values[count] += float(sum(t))
|
||||
summed_driven_kilometers[count] += t_driven
|
||||
|
||||
count += 1
|
||||
print (' Average Between Weathers')
|
||||
for i in range(len(metric_sum_values)):
|
||||
if metric_sum_values[i] == 0:
|
||||
print(' Task ', i, ' -> more than ', summed_driven_kilometers[i])
|
||||
else:
|
||||
print(' Task ', i, ' -> ', summed_driven_kilometers[i] / metric_sum_values[i])
|
||||
print ("")
|
||||
|
||||
print("")
|
||||
print("")
|
|
@ -1,7 +1,7 @@
|
|||
0.0,0.0,-3811.000000
|
||||
0.0,0.0,-0.3811000000
|
||||
0.000000,0.000000,0.0
|
||||
1.000000,1.000000,1.000000
|
||||
-1643.022,-1643.022,0.000
|
||||
-16.43022,-16.43022,0.000
|
||||
49, 41
|
||||
0,0 0,40 40
|
||||
0,40 0,0 40
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
544.000000,-10748.000000,-22.000000
|
||||
5.4400,-107.48000,-0.22000000
|
||||
0.000000,0.000000,0.000000
|
||||
1.000000,1.000000,1.000000
|
||||
-1643.022,-1643.022,0.000
|
||||
-16.43022,-16.43022,0.000
|
||||
25, 25
|
||||
0,10 0,24 14
|
||||
0,24 0,10 14
|
||||
|
|
|
@ -14,8 +14,9 @@ class CityTrack(object):
|
|||
|
||||
def __init__(self, city_name):
|
||||
|
||||
# These values are fixed for every city.
|
||||
self._node_density = 50.0
|
||||
self._pixel_density = 16.43
|
||||
self._pixel_density = 0.1643
|
||||
|
||||
self._map = CarlaMap(city_name, self._pixel_density, self._node_density)
|
||||
|
||||
|
|
|
@ -137,7 +137,6 @@ class Converter(object):
|
|||
"""
|
||||
|
||||
rotation = np.array([world[0], world[1], world[2]])
|
||||
rotation *= 1e2 # meters to centimeters.
|
||||
rotation = rotation.dot(self._worldrotation)
|
||||
|
||||
relative_location = [rotation[0] + self._worldoffset[0] - self._mapoffset[0],
|
||||
|
|
|
@ -50,11 +50,13 @@ class Planner(object):
|
|||
def get_next_command(self, source, source_ori, target, target_ori):
|
||||
"""
|
||||
Computes the full plan and returns the next command,
|
||||
:param source: source position
|
||||
:param source_ori: source orientation
|
||||
:param target: target position
|
||||
:param target_ori: target orientation
|
||||
:return: a command ( Straight,Lane Follow, Left or Right)
|
||||
Args
|
||||
source: source position
|
||||
source_ori: source orientation
|
||||
target: target position
|
||||
target_ori: target orientation
|
||||
Returns
|
||||
a command ( Straight,Lane Follow, Left or Right)
|
||||
"""
|
||||
|
||||
track_source = self._city_track.project_node(source)
|
||||
|
|
|
@ -8,26 +8,11 @@
|
|||
|
||||
import argparse
|
||||
import logging
|
||||
import time
|
||||
|
||||
from carla.benchmarks.agent import Agent
|
||||
from carla.benchmarks.corl_2017 import CoRL2017
|
||||
|
||||
from carla.client import make_carla_client, VehicleControl
|
||||
from carla.tcp import TCPConnectionError
|
||||
|
||||
|
||||
class Manual(Agent):
|
||||
"""
|
||||
Sample redefinition of the Agent,
|
||||
An agent that goes straight
|
||||
"""
|
||||
def run_step(self, measurements, sensor_data, target):
|
||||
control = VehicleControl()
|
||||
control.throttle = 0.9
|
||||
|
||||
return control
|
||||
|
||||
from carla.driving_benchmark import run_driving_benchmark
|
||||
from carla.driving_benchmark.experiment_suites import CoRL2017
|
||||
from carla.driving_benchmark.experiment_suites import BasicExperimentSuite
|
||||
from carla.agent import ForwardAgent
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
|
@ -65,6 +50,16 @@ if __name__ == '__main__':
|
|||
default='test',
|
||||
help='The name of the log file to be created by the benchmark'
|
||||
)
|
||||
argparser.add_argument(
|
||||
'--corl-2017',
|
||||
action='store_true',
|
||||
help='If you want to benchmark the corl-2017 instead of the Basic one'
|
||||
)
|
||||
argparser.add_argument(
|
||||
'--continue-experiment',
|
||||
action='store_true',
|
||||
help='If you want to continue the experiment with the same name'
|
||||
)
|
||||
|
||||
args = argparser.parse_args()
|
||||
if args.debug:
|
||||
|
@ -75,20 +70,23 @@ if __name__ == '__main__':
|
|||
log_level = logging.WARNING
|
||||
|
||||
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
|
||||
|
||||
logging.info('listening to server %s:%s', args.host, args.port)
|
||||
|
||||
while True:
|
||||
try:
|
||||
with make_carla_client(args.host, args.port) as client:
|
||||
corl = CoRL2017(city_name=args.city_name, name_to_save=args.log_name)
|
||||
agent = Manual(args.city_name)
|
||||
results = corl.benchmark_agent(agent, client)
|
||||
corl.plot_summary_test()
|
||||
corl.plot_summary_train()
|
||||
# We instantiate a forward agent, a simple policy that just set
|
||||
# acceleration as 0.9 and steering as zero
|
||||
agent = ForwardAgent()
|
||||
|
||||
break
|
||||
# We instantiate an experiment suite. Basically a set of experiments
|
||||
# that are going to be evaluated on this benchmark.
|
||||
if args.corl_2017:
|
||||
experiment_suite = CoRL2017(args.city_name)
|
||||
else:
|
||||
print (' WARNING: running the basic driving benchmark, to run for CoRL 2017'
|
||||
' experiment suites, you should run'
|
||||
' python driving_benchmark_example.py --corl-2017')
|
||||
experiment_suite = BasicExperimentSuite(args.city_name)
|
||||
|
||||
except TCPConnectionError as error:
|
||||
logging.error(error)
|
||||
time.sleep(1)
|
||||
# Now actually run the driving_benchmark
|
||||
run_driving_benchmark(agent, experiment_suite, args.city_name,
|
||||
args.log_name, args.continue_experiment,
|
||||
args.host, args.port)
|
|
@ -5,7 +5,8 @@ from setuptools import setup
|
|||
setup(
|
||||
name='carla_client',
|
||||
version='0.8.1',
|
||||
packages=['carla', 'carla.benchmarks', 'carla.planner'],
|
||||
packages=['carla', 'carla.driving_benchmark', 'carla.agent',
|
||||
'carla.driving_benchmark.experiment_suites', 'carla.planner'],
|
||||
license='MIT License',
|
||||
description='Python API for communicating with the CARLA server.',
|
||||
url='https://github.com/carla-simulator/carla',
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
import logging
|
||||
import random
|
||||
|
||||
import unit_tests
|
||||
import suite
|
||||
|
||||
import carla
|
||||
|
||||
|
@ -18,7 +18,7 @@ from carla.settings import CarlaSettings
|
|||
from carla.util import make_connection
|
||||
|
||||
|
||||
class _BasicTestBase(unit_tests.CarlaServerTest):
|
||||
class _BasicTestBase(suite.CarlaServerTest):
|
||||
def run_carla_client(self, carla_settings, number_of_episodes, number_of_frames, use_autopilot_control=None):
|
||||
with make_connection(CarlaClient, self.args.host, self.args.port, timeout=15) as client:
|
||||
logging.info('CarlaClient connected, running %d episodes', number_of_episodes)
|
|
@ -4,6 +4,7 @@
|
|||
# This work is licensed under the terms of the MIT license.
|
||||
# For a copy, see <https://opensource.org/licenses/MIT>.
|
||||
|
||||
|
||||
class CarlaServerTest(object):
|
||||
def __init__(self, args):
|
||||
self.args = args
|
|
@ -26,7 +26,7 @@ import carla
|
|||
from carla.tcp import TCPConnectionError
|
||||
from carla.util import StopWatch
|
||||
|
||||
from unit_tests import CarlaServerTest
|
||||
from suite import CarlaServerTest
|
||||
|
||||
# Modified by command-line args.
|
||||
LOGGING_TO_FILE = False
|
||||
|
@ -74,7 +74,7 @@ def iterate_tests():
|
|||
strip_ext = lambda f: os.path.splitext(os.path.basename(f))[0]
|
||||
is_valid = lambda obj: inspect.isclass(obj) and issubclass(obj, interface)
|
||||
|
||||
folder = os.path.join(os.path.dirname(__file__), 'unit_tests')
|
||||
folder = os.path.join(os.path.dirname(__file__), 'suite')
|
||||
modules = glob.glob(os.path.join(folder, "*.py"))
|
||||
|
||||
for module_name in set(strip_ext(m) for m in modules if not m.startswith('_')):
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,3 @@
|
|||
weather,time_out,result,final_time,end_point,final_distance,exp_id,rep,start_point,initial_distance
|
||||
3,335314,0,335314,29,171.3219381575824,3,0,105,280.44944447968976
|
||||
3,243.6346,0,243.6346,130,215.56398248559435,3,0,27,174.94691018267446
|
|
|
@ -0,0 +1,26 @@
|
|||
import unittest
|
||||
from carla.driving_benchmark.experiment_suites.experiment_suite import ExperimentSuite
|
||||
|
||||
from carla.driving_benchmark.experiment_suites.basic_experiment_suite import BasicExperimentSuite
|
||||
|
||||
from carla.driving_benchmark.experiment_suites.corl_2017 import CoRL2017
|
||||
|
||||
class testExperimentSuite(unittest.TestCase):
|
||||
|
||||
|
||||
def test_init(self):
|
||||
|
||||
base_class = ExperimentSuite('Town01')
|
||||
subclasses_instanciate = [obj('Town01') for obj in ExperimentSuite.__subclasses__()]
|
||||
|
||||
|
||||
def test_properties(self):
|
||||
|
||||
all_classes = [obj('Town01') for obj in ExperimentSuite.__subclasses__()]
|
||||
print (all_classes)
|
||||
for exp_suite in all_classes:
|
||||
print(exp_suite.__class__)
|
||||
print(exp_suite.dynamic_tasks)
|
||||
print(exp_suite.weathers)
|
||||
|
||||
|
|
@ -0,0 +1,190 @@
|
|||
import os
|
||||
import numpy as np
|
||||
import unittest
|
||||
from carla.driving_benchmark.metrics import Metrics
|
||||
from carla.driving_benchmark.recording import Recording
|
||||
|
||||
|
||||
|
||||
def sum_matrix(matrix):
|
||||
# Line trick to reduce sum a matrix in one line
|
||||
return sum(sum(matrix, []))
|
||||
|
||||
|
||||
class testMetrics(unittest.TestCase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(testMetrics, self).__init__(*args, **kwargs)
|
||||
|
||||
self._metrics_parameters = {
|
||||
|
||||
'intersection_offroad': {'frames_skip': 10, # Check intersection always with 10 frames tolerance
|
||||
'frames_recount': 20,
|
||||
'threshold': 0.3
|
||||
},
|
||||
'intersection_otherlane': {'frames_skip': 10, # Check intersection always with 10 frames tolerance
|
||||
'frames_recount': 20,
|
||||
'threshold': 0.4
|
||||
},
|
||||
'collision_other': {'frames_skip': 10,
|
||||
'frames_recount': 20,
|
||||
'threshold': 400
|
||||
},
|
||||
'collision_vehicles': {'frames_skip': 10,
|
||||
'frames_recount': 30,
|
||||
'threshold': 400
|
||||
},
|
||||
'collision_pedestrians': {'frames_skip': 5,
|
||||
'frames_recount': 100,
|
||||
'threshold': 300
|
||||
},
|
||||
'dynamic_episodes': [3]
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
def _generate_test_case(self, poses_to_test):
|
||||
|
||||
|
||||
|
||||
recording = Recording(name_to_save='TestMetric'
|
||||
, continue_experiment=False, save_images=True
|
||||
)
|
||||
|
||||
|
||||
|
||||
from carla.driving_benchmark.experiment import Experiment
|
||||
from carla.carla_server_pb2 import Measurements
|
||||
from carla.carla_server_pb2 import Control
|
||||
|
||||
|
||||
for pose in poses_to_test:
|
||||
experiment = Experiment()
|
||||
|
||||
recording.write_summary_results(experiment=experiment, pose=pose, rep=1,
|
||||
path_distance=200, remaining_distance=0,
|
||||
final_time=0.2, time_out=49, result=1)
|
||||
|
||||
|
||||
reward_vec = [Measurements().player_measurements for x in range(25)]
|
||||
control_vec = [Control() for x in range(25)]
|
||||
|
||||
recording.write_measurements_results(experiment=experiment,
|
||||
rep=1, pose=pose, reward_vec=reward_vec,
|
||||
control_vec=control_vec)
|
||||
|
||||
|
||||
|
||||
return recording._path
|
||||
|
||||
def test_init(self):
|
||||
|
||||
# Metric should instantiate with parameters
|
||||
Metrics(self._metrics_parameters,[3])
|
||||
|
||||
|
||||
|
||||
def test_divide_by_episodes(self):
|
||||
|
||||
|
||||
metrics_obj = Metrics(self._metrics_parameters,[3])
|
||||
|
||||
poses_to_test = [[24, 32], [34, 36], [54, 67]]
|
||||
path = self._generate_test_case(poses_to_test)
|
||||
|
||||
# We start by reading the summary header file and the measurements header file.
|
||||
with open(os.path.join(path, 'summary.csv'), "r") as f:
|
||||
header = f.readline()
|
||||
header = header.split(',')
|
||||
header[-1] = header[-1][:-2]
|
||||
|
||||
|
||||
|
||||
with open(os.path.join(path,'measurements.csv'), "r") as f:
|
||||
|
||||
header_metrics = f.readline()
|
||||
header_metrics = header_metrics.split(',')
|
||||
header_metrics[-1] = header_metrics[-1][:-2]
|
||||
|
||||
|
||||
result_matrix = np.loadtxt(os.path.join(path, 'summary.csv'), delimiter=",", skiprows=1)
|
||||
|
||||
# Corner Case: The presented test just had one episode
|
||||
if result_matrix.ndim == 1:
|
||||
result_matrix = np.expand_dims(result_matrix, axis=0)
|
||||
|
||||
|
||||
tasks = np.unique(result_matrix[:, header.index('exp_id')])
|
||||
|
||||
|
||||
all_weathers = np.unique(result_matrix[:, header.index('weather')])
|
||||
|
||||
measurements_matrix = np.loadtxt(os.path.join(path, 'measurements.csv'), delimiter=",", skiprows=1)
|
||||
|
||||
|
||||
episodes = metrics_obj._divide_by_episodes(measurements_matrix,header_metrics)
|
||||
|
||||
|
||||
self.assertEqual(len(episodes),3)
|
||||
|
||||
|
||||
|
||||
def test_compute(self):
|
||||
|
||||
# This is is the last one, generate many cases, corner cases, to be tested.
|
||||
|
||||
metrics_obj = Metrics(self._metrics_parameters,[3])
|
||||
|
||||
|
||||
# Lets start testing a general file, not from a real run
|
||||
# The case is basically an empty case
|
||||
poses_to_test = [[24, 32], [34, 36], [54, 67]]
|
||||
path = self._generate_test_case(poses_to_test)
|
||||
|
||||
|
||||
|
||||
summary_dict = metrics_obj.compute(path)
|
||||
|
||||
|
||||
number_of_colisions_vehicles = sum_matrix(summary_dict['collision_vehicles'][1.0])
|
||||
number_of_colisions_general = sum_matrix(summary_dict['collision_other'][1.0])
|
||||
number_of_colisions_pedestrians = sum_matrix(summary_dict['collision_pedestrians'][1.0])
|
||||
number_of_intersection_offroad = sum_matrix(summary_dict['intersection_offroad'][1.0])
|
||||
number_of_intersection_otherlane = sum_matrix(summary_dict['intersection_otherlane'][1.0])
|
||||
|
||||
|
||||
|
||||
self.assertEqual(number_of_colisions_vehicles, 0)
|
||||
self.assertEqual(number_of_colisions_general, 0)
|
||||
self.assertEqual(number_of_colisions_pedestrians, 0)
|
||||
self.assertEqual(number_of_intersection_offroad, 0)
|
||||
self.assertEqual(number_of_intersection_otherlane, 0)
|
||||
|
||||
|
||||
# Now lets make a collision test on a premade file
|
||||
|
||||
path = 'test/unit_tests/test_data/testfile_collisions'
|
||||
|
||||
summary_dict = metrics_obj.compute(path)
|
||||
|
||||
number_of_colisions_vehicles = sum_matrix(summary_dict['collision_vehicles'][3.0])
|
||||
number_of_colisions_general = sum_matrix(summary_dict['collision_other'][3.0])
|
||||
number_of_colisions_pedestrians = sum_matrix(summary_dict['collision_pedestrians'][3.0])
|
||||
number_of_intersection_offroad = sum_matrix(summary_dict['intersection_offroad'][3.0])
|
||||
number_of_intersection_otherlane = sum_matrix(summary_dict['intersection_otherlane'][3.0])
|
||||
|
||||
|
||||
|
||||
self.assertEqual(number_of_colisions_vehicles, 2)
|
||||
self.assertEqual(number_of_colisions_general, 9)
|
||||
self.assertEqual(number_of_colisions_pedestrians, 0)
|
||||
self.assertEqual(number_of_intersection_offroad, 1)
|
||||
self.assertEqual(number_of_intersection_otherlane, 3)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,235 @@
|
|||
|
||||
import unittest
|
||||
from carla.driving_benchmark.recording import Recording
|
||||
|
||||
class testRecording(unittest.TestCase):
|
||||
|
||||
|
||||
def test_init(self):
|
||||
import os
|
||||
|
||||
"""
|
||||
The recording should have a reasonable full name
|
||||
|
||||
"""
|
||||
|
||||
|
||||
recording = Recording(name_to_save='Test1'
|
||||
, continue_experiment=False, save_images=True
|
||||
)
|
||||
|
||||
|
||||
_ = open(os.path.join(recording._path,'summary.csv'), 'r')
|
||||
_ = open(os.path.join(recording._path, 'measurements.csv'), 'r')
|
||||
|
||||
# There should be three files in any newly created case
|
||||
self.assertEqual(len(os.listdir(recording._path)), 3)
|
||||
|
||||
|
||||
def test_write_summary_results(self):
|
||||
|
||||
import os
|
||||
from carla.driving_benchmark.experiment import Experiment
|
||||
|
||||
recording = Recording(name_to_save='Test1'
|
||||
, continue_experiment=False, save_images=True
|
||||
)
|
||||
|
||||
recording.write_summary_results( experiment=Experiment(), pose=[24,32], rep=1,
|
||||
path_distance=200, remaining_distance=0,
|
||||
final_time=0.2, time_out=49, result=1)
|
||||
|
||||
with open(os.path.join(recording._path, 'summary.csv'), 'r') as f:
|
||||
|
||||
header = f.readline().split(',')
|
||||
#Assert if header is header
|
||||
self.assertIn('exp_id', header)
|
||||
|
||||
self.assertEqual(len(header), len(recording._dict_summary))
|
||||
#Assert if there is something writen in the row
|
||||
|
||||
written_row = f.readline().split(',')
|
||||
|
||||
#Assert if the number of collums is correct
|
||||
self.assertEqual(len(written_row), len(recording._dict_summary))
|
||||
|
||||
|
||||
|
||||
def teste_write_measurements_results(self):
|
||||
|
||||
import os
|
||||
from carla.driving_benchmark.experiment import Experiment
|
||||
from carla.carla_server_pb2 import Measurements
|
||||
from carla.carla_server_pb2 import Control
|
||||
|
||||
|
||||
recording = Recording(name_to_save='Test1'
|
||||
, continue_experiment=False, save_images=True
|
||||
)
|
||||
|
||||
|
||||
reward_vec = [Measurements().player_measurements for x in range(20)]
|
||||
control_vec = [Control() for x in range(25)]
|
||||
|
||||
recording.write_measurements_results(experiment=Experiment(),
|
||||
rep=1, pose=[24, 32], reward_vec=reward_vec,
|
||||
control_vec=control_vec)
|
||||
|
||||
with open(os.path.join(recording._path, 'measurements.csv'), 'r') as f:
|
||||
|
||||
header = f.readline().split(',')
|
||||
#Assert if header is header
|
||||
self.assertIn('exp_id', header)
|
||||
|
||||
self.assertEqual(len(header), len(recording._dict_measurements))
|
||||
#Assert if there is something writen in the row
|
||||
|
||||
written_row = f.readline().split(',')
|
||||
|
||||
#Assert if the number of collums is correct
|
||||
self.assertEqual(len(written_row), len(recording._dict_measurements))
|
||||
|
||||
|
||||
def test_continue_experiment(self):
|
||||
|
||||
recording = Recording( name_to_save='Test1'
|
||||
, continue_experiment=False, save_images=True
|
||||
)
|
||||
|
||||
# A just started case should return the continue experiment case
|
||||
self.assertEqual(recording._continue_experiment(True)[1], 1)
|
||||
# If you don't want to continue, should return also one
|
||||
self.assertEqual(recording._continue_experiment(False)[1], 1)
|
||||
|
||||
from carla.driving_benchmark.experiment import Experiment
|
||||
|
||||
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
|
||||
path_distance=200, remaining_distance=0,
|
||||
final_time=0.2, time_out=49, result=1)
|
||||
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
|
||||
path_distance=200, remaining_distance=0,
|
||||
final_time=0.2, time_out=49, result=1)
|
||||
|
||||
# After writing two experiments it should return 2, so you could start writing os pos 3
|
||||
self.assertEqual(recording._continue_experiment(True)[1], 3)
|
||||
# If you dont want to continue, should return also one
|
||||
self.assertEqual(recording._continue_experiment(False)[1], 1)
|
||||
|
||||
|
||||
def test_get_pose_and_experiment(self):
|
||||
|
||||
|
||||
|
||||
recording = Recording( name_to_save='Test1'
|
||||
, continue_experiment=False, save_images=True
|
||||
)
|
||||
|
||||
|
||||
|
||||
from carla.driving_benchmark.experiment import Experiment
|
||||
|
||||
|
||||
pose, experiment = recording.get_pose_and_experiment(25)
|
||||
|
||||
# An starting experiment should return zero zero
|
||||
|
||||
self.assertEqual(pose, 0)
|
||||
self.assertEqual(experiment, 0)
|
||||
|
||||
|
||||
recording.write_summary_results( experiment=Experiment(), pose=[24,32], rep=1,
|
||||
path_distance=200, remaining_distance=0,
|
||||
final_time=0.2, time_out=49, result=1)
|
||||
recording.write_summary_results( experiment=Experiment(), pose=[24,32], rep=1,
|
||||
path_distance=200, remaining_distance=0,
|
||||
final_time=0.2, time_out=49, result=1)
|
||||
|
||||
pose, experiment = recording.get_pose_and_experiment(25)
|
||||
self.assertEqual(pose, 2)
|
||||
self.assertEqual(experiment, 0)
|
||||
|
||||
for i in range(23):
|
||||
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
|
||||
path_distance=200, remaining_distance=0,
|
||||
final_time=0.2, time_out=49, result=1)
|
||||
|
||||
pose, experiment = recording.get_pose_and_experiment(25)
|
||||
self.assertEqual(pose, 0)
|
||||
self.assertEqual(experiment, 1)
|
||||
|
||||
for i in range(23):
|
||||
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
|
||||
path_distance=200, remaining_distance=0,
|
||||
final_time=0.2, time_out=49, result=1)
|
||||
|
||||
pose, experiment = recording.get_pose_and_experiment(25)
|
||||
self.assertEqual(pose, 23)
|
||||
self.assertEqual(experiment, 1)
|
||||
|
||||
def test_get_pose_and_experiment_corner(self):
|
||||
|
||||
|
||||
from carla.driving_benchmark.experiment import Experiment
|
||||
|
||||
recording = Recording( name_to_save='Test1'
|
||||
, continue_experiment=False, save_images=True
|
||||
)
|
||||
|
||||
pose, experiment = recording.get_pose_and_experiment(1)
|
||||
|
||||
# An starting experiment should return one
|
||||
|
||||
self.assertEqual(pose, 0)
|
||||
self.assertEqual(experiment, 0)
|
||||
|
||||
pose, experiment = recording.get_pose_and_experiment(2)
|
||||
self.assertEqual(pose, 0)
|
||||
self.assertEqual(experiment, 0)
|
||||
|
||||
|
||||
recording.write_summary_results( experiment=Experiment(), pose=[24, 32], rep=1,
|
||||
path_distance=200, remaining_distance=0,
|
||||
final_time=0.2, time_out=49, result=1)
|
||||
|
||||
|
||||
pose, experiment = recording.get_pose_and_experiment(1)
|
||||
|
||||
print (pose, experiment)
|
||||
self.assertEqual(pose, 0)
|
||||
self.assertEqual(experiment, 1)
|
||||
|
||||
|
||||
pose, experiment = recording.get_pose_and_experiment(2)
|
||||
|
||||
print (pose, experiment)
|
||||
# An starting experiment should return one
|
||||
self.assertEqual(pose, 1)
|
||||
self.assertEqual(experiment, 0)
|
||||
|
||||
pose, experiment = recording.get_pose_and_experiment(3)
|
||||
|
||||
print (pose, experiment)
|
||||
# An starting experiment should return one
|
||||
self.assertEqual(pose, 1)
|
||||
self.assertEqual(experiment, 0)
|
||||
|
||||
recording.write_summary_results( experiment=Experiment(), pose=[24, 32], rep=1,
|
||||
path_distance=200, remaining_distance=0,
|
||||
final_time=0.2, time_out=49, result=1)
|
||||
|
||||
|
||||
pose, experiment = recording.get_pose_and_experiment(2)
|
||||
|
||||
self.assertEqual(pose, 0)
|
||||
self.assertEqual(experiment, 1)
|
||||
|
||||
|
||||
pose, experiment = recording.get_pose_and_experiment(3)
|
||||
|
||||
self.assertEqual(pose, 2)
|
||||
self.assertEqual(experiment, 0)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
|
@ -40,14 +40,14 @@ def view_start_positions(args):
|
|||
number_of_player_starts = len(scene.player_start_spots)
|
||||
if number_of_player_starts > 100: # WARNING: unsafe way to check for city, see issue #313
|
||||
image = mpimg.imread("carla/planner/Town01.png")
|
||||
carla_map = CarlaMap('Town01', 16.53, 50)
|
||||
carla_map = CarlaMap('Town01', 0.1653, 50)
|
||||
|
||||
else:
|
||||
|
||||
image = mpimg.imread("carla/planner/Town02.png")
|
||||
carla_map = CarlaMap('Town02', 16.53, 50)
|
||||
carla_map = CarlaMap('Town02', 0.1653, 50)
|
||||
|
||||
_, ax = plt.subplots(1)
|
||||
fig, ax = plt.subplots(1)
|
||||
|
||||
ax.imshow(image)
|
||||
|
||||
|
@ -65,14 +65,18 @@ def view_start_positions(args):
|
|||
pixel = carla_map.convert_to_pixel([scene.player_start_spots[position].location.x,
|
||||
scene.player_start_spots[position].location.y,
|
||||
scene.player_start_spots[position].location.z])
|
||||
|
||||
circle = Circle((pixel[0], pixel[1]), 12, color='r', label='A point')
|
||||
ax.add_patch(circle)
|
||||
|
||||
if not args.no_labels:
|
||||
plt.text(pixel[0], pixel[1], str(position), size='x-small')
|
||||
|
||||
plt.axis('off')
|
||||
plt.show()
|
||||
|
||||
fig.savefig('town_positions.pdf', orientation='landscape', bbox_inches='tight')
|
||||
|
||||
|
||||
def main():
|
||||
argparser = argparse.ArgumentParser(description=__doc__)
|
||||
|
|
11
mkdocs.yml
11
mkdocs.yml
|
@ -13,13 +13,17 @@ pages:
|
|||
- 'Measurements': 'measurements.md'
|
||||
- 'Cameras and sensors': 'cameras_and_sensors.md'
|
||||
- 'F.A.Q.': 'faq.md'
|
||||
- Driving Benchmark:
|
||||
- 'Quick Start': 'benchmark_start.md'
|
||||
- 'General Structure': 'benchmark_structure.md'
|
||||
- 'Creating Your Benchmark': 'benchmark_creating.md'
|
||||
- 'Computed Performance Metrics': 'benchmark_metrics.md'
|
||||
- Building from source:
|
||||
- 'How to build on Linux': 'how_to_build_on_linux.md'
|
||||
- 'How to build on Windows': 'how_to_build_on_windows.md'
|
||||
- Advanced topics:
|
||||
- 'CARLA Settings': 'carla_settings.md'
|
||||
- 'Simulator keyboard input': 'simulator_keyboard_input.md'
|
||||
- 'Benchmark': 'benchmark.md'
|
||||
- 'Running without display and selecting GPUs': 'carla_headless.md'
|
||||
- "How to link Epic's Automotive Materials": 'epic_automotive_materials.md'
|
||||
- Contributing:
|
||||
|
@ -31,6 +35,11 @@ pages:
|
|||
- 'How to add assets': 'how_to_add_assets.md'
|
||||
- 'CARLA design': 'carla_design.md'
|
||||
- 'CarlaServer documentation': 'carla_server.md'
|
||||
- Appendix:
|
||||
- 'Driving Benchmark Sample Results Town01': 'benchmark_basic_results_town01.md'
|
||||
- 'Driving Benchmark Sample Results Town02': 'benchmark_basic_results_town02.md'
|
||||
|
||||
|
||||
|
||||
markdown_extensions:
|
||||
- admonition
|
||||
|
|
Loading…
Reference in New Issue