Merge branch 'master' into manishthani/load_props_definition

This commit is contained in:
manishthani 2019-05-14 16:37:28 +02:00 committed by GitHub
commit 4a41672e85
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
250 changed files with 1321 additions and 23612 deletions

14
.readthedocs.yml Normal file
View File

@ -0,0 +1,14 @@
# Read the Docs configuration file
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
version: 2
mkdocs:
configuration: mkdocs.yml
formats: all
python:
version: 3.7
install:
- requirements: Docs/requirements.txt

View File

@ -13,9 +13,10 @@ matrix:
apt:
sources:
- ubuntu-toolchain-r-test
- llvm-toolchain-xenial-7
packages:
- g++-7 # we need this one for the libstdc++.
- clang-6.0
- clang-7
- ninja-build
- python
- python-pip

View File

@ -1,5 +1,6 @@
## Latest
* Upgraded to Unreal Engine 4.22
* Recorder fixes:
- Actors at start of playback could interpolate positions from its current position instead than the recorded position, making some fast sliding effect during 1 frame.
- Camera following in playback was not working if a new map was needed to load.
@ -7,6 +8,7 @@
- Script 'start_recording.py' now properly saves destruction of actors at stop.
* API extension: waypoint's `junction_id` that returns de OpenDrive identifier of the current junction
* API change: deprecated waypoint's `is_intersection`, now is `is_junction`
* Removed deprecated code and content
* New recorder features:
- Added optional parameter to show more details about a recorder file (related to `show_recorder_file_info.py`)
- Added playback speed (slow/fast motion) for the replayer
@ -15,11 +17,13 @@
- Wheels of vehicles are animated (steering, throttle, handbrake), also bikes and cycles
- Walkers animation is simulated in playback (through speed of walker), so they walk properly.
* Fixed Lidar effectiveness bug in manual_control.py
* Fixed dead-lock when loading a new map in synchronous mode
* Added C++ client example using LibCarla
* Updated OpenDriveActor to use the new Waypoint API
* Fixed wrong units in VehiclePhysicsControl's center of mass
* Several optimizations to the RPC server, now supports a bigger load of async messages
* Register user props in fbx format, make them available in Carla Blueprint Library and spawnable.
* Exposed 'is_invincible' for pedestrians
## CARLA 0.9.5
@ -74,6 +78,7 @@
* Fixed obstacle detector not working
* Fixed small float bug in misc.py
## CARLA 0.9.4
* Added recording and playback functionality

View File

@ -1,4 +0,0 @@
[TYPECHECK]
ignore=carla_server_pb2.py
ignored-modules=ConfigParser,numpy,numpy.random,pygame,shutil
ignored-classes=_socketobject,EpisodeReady,SceneDescription,Sensor

View File

@ -1,2 +0,0 @@
include carla/planner/*.txt
include carla/planner/*.png

View File

@ -1,2 +0,0 @@
from .forward_agent import ForwardAgent
from .agent import Agent

View File

@ -1,24 +0,0 @@
# -*- coding: utf-8 -*-
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
# @author: german,felipecode
from __future__ import print_function
import abc
class Agent(object):
def __init__(self):
self.__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def run_step(self, measurements, sensor_data, directions, target):
"""
Function to be redefined by an agent.
:param The measurements like speed, the image data and a target
:returns A carla Control object, with the steering/gas/brake for the agent
"""

View File

@ -1,15 +0,0 @@
from carla.agent.agent import Agent
from carla.client import VehicleControl
class ForwardAgent(Agent):
"""
Simple derivation of Agent Class,
A trivial agent agent that goes straight
"""
def run_step(self, measurements, sensor_data, directions, target):
control = VehicleControl()
control.throttle = 0.9
return control

File diff suppressed because it is too large Load Diff

View File

@ -1,232 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""CARLA Client."""
import logging
import struct
from contextlib import contextmanager
from . import sensor
from . import tcp
from . import util
try:
from . import carla_server_pb2 as carla_protocol
except ImportError:
raise RuntimeError('cannot import "carla_server_pb2.py", run the protobuf compiler to generate this file')
try:
import numpy
except ImportError:
raise RuntimeError('cannot import numpy, make sure numpy package is installed.')
VehicleControl = carla_protocol.Control
@contextmanager
def make_carla_client(host, world_port, timeout=15):
"""Context manager for creating and connecting a CarlaClient."""
with util.make_connection(CarlaClient, host, world_port, timeout) as client:
yield client
class CarlaClient(object):
"""The CARLA client. Manages communications with the CARLA server."""
def __init__(self, host, world_port, timeout=15):
self._world_client = tcp.TCPClient(host, world_port, timeout)
self._stream_client = tcp.TCPClient(host, world_port + 1, timeout)
self._control_client = tcp.TCPClient(host, world_port + 2, timeout)
self._current_settings = None
self._is_episode_requested = False
self._sensors = {}
def connect(self, connection_attempts=10):
"""
Try to establish a connection to a CARLA server at the given host:port.
"""
self._world_client.connect(connection_attempts)
def disconnect(self):
"""Disconnect from server."""
self._control_client.disconnect()
self._stream_client.disconnect()
self._world_client.disconnect()
def connected(self):
"""Return whether there is an active connection."""
return self._world_client.connected()
def load_settings(self, carla_settings):
"""
Load new settings and request a new episode based on these settings.
carla_settings object must be convertible to a str holding the contents
of a CarlaSettings.ini file.
Return a protobuf object holding the scene description.
"""
self._current_settings = carla_settings
return self._request_new_episode(carla_settings)
def start_episode(self, player_start_index):
"""
Start the new episode at the player start given by the
player_start_index. The list of player starts is retrieved by
"load_settings".
The new episode is started based on the last settings loaded by
"load_settings".
This function waits until the server answers with an EpisodeReady.
"""
if self._current_settings is None:
raise RuntimeError('no settings loaded, cannot start episode')
# if no new settings are loaded, request new episode with previous
if not self._is_episode_requested:
self._request_new_episode(self._current_settings)
try:
pb_message = carla_protocol.EpisodeStart()
pb_message.player_start_spot_index = player_start_index
self._world_client.write(pb_message.SerializeToString())
# Wait for EpisodeReady.
data = self._world_client.read()
if not data:
raise RuntimeError('failed to read data from server')
pb_message = carla_protocol.EpisodeReady()
pb_message.ParseFromString(data)
if not pb_message.ready:
raise RuntimeError('cannot start episode: server failed to start episode')
# We can start the agent clients now.
self._stream_client.connect()
self._control_client.connect()
# Set again the status for no episode requested
finally:
self._is_episode_requested = False
def read_data(self):
"""
Read the data sent from the server this frame. The episode must be
started. Return a pair containing the protobuf object containing the
measurements followed by the raw data of the sensors.
"""
# Read measurements.
data = self._stream_client.read()
if not data:
raise RuntimeError('failed to read data from server')
pb_message = carla_protocol.Measurements()
pb_message.ParseFromString(data)
# Read sensor data.
return pb_message, dict(x for x in self._read_sensor_data())
def send_control(self, *args, **kwargs):
"""
Send the VehicleControl to be applied this frame.
If synchronous mode was requested, the server will pause the simulation
until this message is received.
"""
if isinstance(args[0] if args else None, carla_protocol.Control):
pb_message = args[0]
else:
pb_message = carla_protocol.Control()
pb_message.steer = kwargs.get('steer', 0.0)
pb_message.throttle = kwargs.get('throttle', 0.0)
pb_message.brake = kwargs.get('brake', 0.0)
pb_message.hand_brake = kwargs.get('hand_brake', False)
pb_message.reverse = kwargs.get('reverse', False)
self._control_client.write(pb_message.SerializeToString())
def _request_new_episode(self, carla_settings):
"""
Internal function to request a new episode. Prepare the client for a new
episode by disconnecting agent clients.
"""
# Disconnect agent clients.
self._stream_client.disconnect()
self._control_client.disconnect()
# Send new episode request.
pb_message = carla_protocol.RequestNewEpisode()
pb_message.ini_file = str(carla_settings)
self._world_client.write(pb_message.SerializeToString())
# Read scene description.
data = self._world_client.read()
if not data:
raise RuntimeError('failed to read data from server')
pb_message = carla_protocol.SceneDescription()
pb_message.ParseFromString(data)
self._sensors = dict((sensor.id, sensor) \
for sensor in _make_sensor_parsers(pb_message.sensors))
self._is_episode_requested = True
return pb_message
def _read_sensor_data(self):
while True:
data = self._stream_client.read()
if not data:
raise StopIteration
yield self._parse_sensor_data(data)
def _parse_sensor_data(self, data):
sensor_id = struct.unpack('<L', data[0:4])[0]
parser = self._sensors[sensor_id]
return parser.name, parser.parse_raw_data(data[4:])
def _make_sensor_parsers(sensors):
image_types = ['None', 'SceneFinal', 'Depth', 'SemanticSegmentation']
getimgtype = lambda id: image_types[id] if len(image_types) > id else 'Unknown'
getint32 = lambda data, index: struct.unpack('<L', data[index*4:index*4+4])[0]
getint64 = lambda data, index: struct.unpack('<Q', data[index*4:index*4+8])[0]
getfloat = lambda data, index: struct.unpack('<f', data[index*4:index*4+4])[0]
def parse_image(data):
frame_number = getint64(data, 0)
width = getint32(data, 2)
height = getint32(data, 3)
image_type = getimgtype(getint32(data, 4))
fov = getfloat(data, 5)
return sensor.Image(frame_number, width, height, image_type, fov, data[24:])
def parse_lidar(data):
frame_number = getint64(data, 0)
horizontal_angle = getfloat(data, 2)
channels = getint32(data, 3)
header_size = 16
point_count_by_channel = numpy.frombuffer(
data[header_size:header_size+channels*4],
dtype=numpy.dtype('uint32'))
points = numpy.frombuffer(
data[header_size+channels*4:],
dtype=numpy.dtype('f4'))
points = numpy.reshape(points, (int(points.shape[0]/3), 3))
return sensor.LidarMeasurement(
frame_number,
horizontal_angle,
channels,
point_count_by_channel,
sensor.PointCloud(frame_number, points))
class SensorDefinition(object):
def __init__(self, s):
self.id = s.id
self.name = s.name
self.type = s.type
self.parse_raw_data = lambda x: x
for s in sensors:
sensor_def = SensorDefinition(s)
if sensor_def.type == carla_protocol.Sensor.CAMERA:
sensor_def.parse_raw_data = parse_image
elif sensor_def.type == carla_protocol.Sensor.LIDAR_RAY_CAST:
sensor_def.parse_raw_data = parse_lidar
else:
logging.error('unknown sensor type %s', sensor_def.type)
yield sensor_def

View File

@ -1 +0,0 @@
from .driving_benchmark import run_driving_benchmark

View File

@ -1,317 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import abc
import logging
import math
import time
from carla.client import VehicleControl
from carla.client import make_carla_client
from carla.driving_benchmark.metrics import Metrics
from carla.planner.planner import Planner
from carla.settings import CarlaSettings
from carla.tcp import TCPConnectionError
from . import results_printer
from .recording import Recording
def sldist(c1, c2):
return math.sqrt((c2[0] - c1[0]) ** 2 + (c2[1] - c1[1]) ** 2)
class DrivingBenchmark(object):
"""
The Benchmark class, controls the execution of the benchmark interfacing
an Agent class with a set Suite.
The benchmark class must be inherited by a class that defines the
all the experiments to be run by the agent
"""
def __init__(
self,
city_name='Town01',
name_to_save='Test',
continue_experiment=False,
save_images=False,
distance_for_success=2.0
):
self.__metaclass__ = abc.ABCMeta
self._city_name = city_name
self._base_name = name_to_save
# The minimum distance for arriving into the goal point in
# order to consider ir a success
self._distance_for_success = distance_for_success
# The object used to record the benchmark and to able to continue after
self._recording = Recording(name_to_save=name_to_save,
continue_experiment=continue_experiment,
save_images=save_images
)
# We have a default planner instantiated that produces high level commands
self._planner = Planner(city_name)
def benchmark_agent(self, experiment_suite, agent, client):
"""
Function to benchmark the agent.
It first checks the log file of this benchmark.
if it exists, it continues from the experiment where it stopped.
Args:
experiment_suite
agent: an agent object with the run step class implemented.
client:
Return:
A dictionary with all the metrics computed from the
agent running the set of experiments.
"""
# Instantiate a metric object that will be used to compute the metrics for
# the benchmark afterwards.
metrics_object = Metrics(experiment_suite.metrics_parameters,
experiment_suite.dynamic_tasks)
# Function returns the current pose and task for this benchmark.
start_pose, start_experiment = self._recording.get_pose_and_experiment(
experiment_suite.get_number_of_poses_task())
logging.info('START')
for experiment in experiment_suite.get_experiments()[int(start_experiment):]:
positions = client.load_settings(
experiment.conditions).player_start_spots
self._recording.log_start(experiment.task)
for pose in experiment.poses[start_pose:]:
for rep in range(experiment.repetitions):
start_index = pose[0]
end_index = pose[1]
client.start_episode(start_index)
# Print information on
logging.info('======== !!!! ==========')
logging.info(' Start Position %d End Position %d ',
start_index, end_index)
self._recording.log_poses(start_index, end_index,
experiment.Conditions.WeatherId)
# Calculate the initial distance for this episode
initial_distance = \
sldist(
[positions[start_index].location.x, positions[start_index].location.y],
[positions[end_index].location.x, positions[end_index].location.y])
time_out = experiment_suite.calculate_time_out(
self._get_shortest_path(positions[start_index], positions[end_index]))
# running the agent
(result, reward_vec, control_vec, final_time, remaining_distance) = \
self._run_navigation_episode(
agent, client, time_out, positions[end_index],
str(experiment.Conditions.WeatherId) + '_'
+ str(experiment.task) + '_' + str(start_index)
+ '.' + str(end_index))
# Write the general status of the just ran episode
self._recording.write_summary_results(
experiment, pose, rep, initial_distance,
remaining_distance, final_time, time_out, result)
# Write the details of this episode.
self._recording.write_measurements_results(experiment, rep, pose, reward_vec,
control_vec)
if result > 0:
logging.info('+++++ Target achieved in %f seconds! +++++',
final_time)
else:
logging.info('----- Timeout! -----')
start_pose = 0
self._recording.log_end()
return metrics_object.compute(self._recording.path)
def get_path(self):
"""
Returns the path where the log was saved.
"""
return self._recording.path
def _get_directions(self, current_point, end_point):
"""
Class that should return the directions to reach a certain goal
"""
directions = self._planner.get_next_command(
(current_point.location.x,
current_point.location.y, 0.22),
(current_point.orientation.x,
current_point.orientation.y,
current_point.orientation.z),
(end_point.location.x, end_point.location.y, 0.22),
(end_point.orientation.x, end_point.orientation.y, end_point.orientation.z))
return directions
def _get_shortest_path(self, start_point, end_point):
"""
Calculates the shortest path between two points considering the road network
"""
return self._planner.get_shortest_path_distance(
[
start_point.location.x, start_point.location.y, 0.22], [
start_point.orientation.x, start_point.orientation.y, 0.22], [
end_point.location.x, end_point.location.y, end_point.location.z], [
end_point.orientation.x, end_point.orientation.y, end_point.orientation.z])
def _run_navigation_episode(
self,
agent,
client,
time_out,
target,
episode_name):
"""
Runs one episode of the benchmark (Pose) for a certain agent.
Args:
agent: the agent object
client: an object of the carla client to communicate
with the CARLA simulator
time_out: the time limit to complete this episode
target: the target to reach
episode_name: The name for saving images of this episode
"""
# Send an initial command.
measurements, sensor_data = client.read_data()
client.send_control(VehicleControl())
initial_timestamp = measurements.game_timestamp
current_timestamp = initial_timestamp
# The vector containing all measurements produced on this episode
measurement_vec = []
# The vector containing all controls produced on this episode
control_vec = []
frame = 0
distance = 10000
success = False
while (current_timestamp - initial_timestamp) < (time_out * 1000) and not success:
# Read data from server with the client
measurements, sensor_data = client.read_data()
# The directions to reach the goal are calculated.
directions = self._get_directions(measurements.player_measurements.transform, target)
# The agent processes the data.
control = agent.run_step(measurements, sensor_data, directions, target)
# Send the control commands to the vehicle
client.send_control(control)
# save images if the flag is activated
self._recording.save_images(sensor_data, episode_name, frame)
current_x = measurements.player_measurements.transform.location.x
current_y = measurements.player_measurements.transform.location.y
logging.info("Controller is Inputting:")
logging.info('Steer = %f Throttle = %f Brake = %f ',
control.steer, control.throttle, control.brake)
current_timestamp = measurements.game_timestamp
# Get the distance travelled until now
distance = sldist([current_x, current_y],
[target.location.x, target.location.y])
# Write status of the run on verbose mode
logging.info('Status:')
logging.info(
'[d=%f] c_x = %f, c_y = %f ---> t_x = %f, t_y = %f',
float(distance), current_x, current_y, target.location.x,
target.location.y)
# Check if reach the target
if distance < self._distance_for_success:
success = True
# Increment the vectors and append the measurements and controls.
frame += 1
measurement_vec.append(measurements.player_measurements)
control_vec.append(control)
if success:
return 1, measurement_vec, control_vec, float(
current_timestamp - initial_timestamp) / 1000.0, distance
return 0, measurement_vec, control_vec, time_out, distance
def run_driving_benchmark(agent,
experiment_suite,
city_name='Town01',
log_name='Test',
continue_experiment=False,
host='127.0.0.1',
port=2000
):
while True:
try:
with make_carla_client(host, port) as client:
# Hack to fix for the issue 310, we force a reset, so it does not get
# the positions on first server reset.
client.load_settings(CarlaSettings())
client.start_episode(0)
# We instantiate the driving benchmark, that is the engine used to
# benchmark an agent. The instantiation starts the log process, sets
benchmark = DrivingBenchmark(city_name=city_name,
name_to_save=log_name + '_'
+ type(experiment_suite).__name__
+ '_' + city_name,
continue_experiment=continue_experiment)
# This function performs the benchmark. It returns a dictionary summarizing
# the entire execution.
benchmark_summary = benchmark.benchmark_agent(experiment_suite, agent, client)
print("")
print("")
print("----- Printing results for training weathers (Seen in Training) -----")
print("")
print("")
results_printer.print_summary(benchmark_summary, experiment_suite.train_weathers,
benchmark.get_path())
print("")
print("")
print("----- Printing results for test weathers (Unseen in Training) -----")
print("")
print("")
results_printer.print_summary(benchmark_summary, experiment_suite.test_weathers,
benchmark.get_path())
break
except TCPConnectionError as error:
logging.error(error)
time.sleep(1)

View File

@ -1,53 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
from carla.settings import CarlaSettings
class Experiment(object):
"""
Experiment defines a certain task, under conditions
A task is associated with a set of poses, containing start and end pose.
Conditions are associated with a carla Settings and describe the following:
Number Of Vehicles
Number Of Pedestrians
Weather
Random Seed of the agents, describing their behaviour.
"""
def __init__(self):
self.Task = 0
self.Conditions = CarlaSettings()
self.Poses = [[]]
self.Repetitions = 1
def set(self, **kwargs):
for key, value in kwargs.items():
if not hasattr(self, key):
raise ValueError('Experiment: no key named %r' % key)
setattr(self, key, value)
if self.Repetitions != 1:
raise NotImplementedError()
@property
def task(self):
return self.Task
@property
def conditions(self):
return self.Conditions
@property
def poses(self):
return self.Poses
@property
def repetitions(self):
return self.Repetitions

View File

@ -1,2 +0,0 @@
from .basic_experiment_suite import BasicExperimentSuite
from .corl_2017 import CoRL2017

View File

@ -1,83 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
from __future__ import print_function
from carla.driving_benchmark.experiment import Experiment
from carla.sensor import Camera
from carla.settings import CarlaSettings
from .experiment_suite import ExperimentSuite
class BasicExperimentSuite(ExperimentSuite):
@property
def train_weathers(self):
return [1]
@property
def test_weathers(self):
return [1]
def build_experiments(self):
"""
Creates the whole set of experiment objects,
The experiments created depends on the selected Town.
"""
# We check the town, based on that we define the town related parameters
# The size of the vector is related to the number of tasks, inside each
# task there is also multiple poses ( start end, positions )
if self._city_name == 'Town01':
poses_tasks = [[[7, 3]], [[138, 17]], [[140, 134]], [[140, 134]]]
vehicles_tasks = [0, 0, 0, 20]
pedestrians_tasks = [0, 0, 0, 50]
else:
poses_tasks = [[[4, 2]], [[37, 76]], [[19, 66]], [[19, 66]]]
vehicles_tasks = [0, 0, 0, 15]
pedestrians_tasks = [0, 0, 0, 50]
# We set the camera
# This single RGB camera is used on every experiment
camera = Camera('CameraRGB')
camera.set(FOV=100)
camera.set_image_size(800, 600)
camera.set_position(2.0, 0.0, 1.4)
camera.set_rotation(-15.0, 0, 0)
# Based on the parameters, creates a vector with experiment objects.
experiments_vector = []
for weather in self.weathers:
for iteration in range(len(poses_tasks)):
poses = poses_tasks[iteration]
vehicles = vehicles_tasks[iteration]
pedestrians = pedestrians_tasks[iteration]
conditions = CarlaSettings()
conditions.set(
SendNonPlayerAgentsInfo=True,
NumberOfVehicles=vehicles,
NumberOfPedestrians=pedestrians,
WeatherId=weather
)
# Add all the cameras that were set for this experiments
conditions.add_sensor(camera)
experiment = Experiment()
experiment.set(
Conditions=conditions,
Poses=poses,
Task=iteration,
Repetitions=1
)
experiments_vector.append(experiment)
return experiments_vector

View File

@ -1,144 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
# CORL experiment set.
from __future__ import print_function
from carla.driving_benchmark.experiment import Experiment
from carla.sensor import Camera
from carla.settings import CarlaSettings
from carla.driving_benchmark.experiment_suites.experiment_suite import ExperimentSuite
class CoRL2017(ExperimentSuite):
@property
def train_weathers(self):
return [1, 3, 6, 8]
@property
def test_weathers(self):
return [4, 14]
def _poses_town01(self):
"""
Each matrix is a new task. We have all the four tasks
"""
def _poses_straight():
return [[36, 40], [39, 35], [110, 114], [7, 3], [0, 4],
[68, 50], [61, 59], [47, 64], [147, 90], [33, 87],
[26, 19], [80, 76], [45, 49], [55, 44], [29, 107],
[95, 104], [84, 34], [53, 67], [22, 17], [91, 148],
[20, 107], [78, 70], [95, 102], [68, 44], [45, 69]]
def _poses_one_curve():
return [[138, 17], [47, 16], [26, 9], [42, 49], [140, 124],
[85, 98], [65, 133], [137, 51], [76, 66], [46, 39],
[40, 60], [0, 29], [4, 129], [121, 140], [2, 129],
[78, 44], [68, 85], [41, 102], [95, 70], [68, 129],
[84, 69], [47, 79], [110, 15], [130, 17], [0, 17]]
def _poses_navigation():
return [[105, 29], [27, 130], [102, 87], [132, 27], [24, 44],
[96, 26], [34, 67], [28, 1], [140, 134], [105, 9],
[148, 129], [65, 18], [21, 16], [147, 97], [42, 51],
[30, 41], [18, 107], [69, 45], [102, 95], [18, 145],
[111, 64], [79, 45], [84, 69], [73, 31], [37, 81]]
return [_poses_straight(),
_poses_one_curve(),
_poses_navigation(),
_poses_navigation()]
def _poses_town02(self):
def _poses_straight():
return [[38, 34], [4, 2], [12, 10], [62, 55], [43, 47],
[64, 66], [78, 76], [59, 57], [61, 18], [35, 39],
[12, 8], [0, 18], [75, 68], [54, 60], [45, 49],
[46, 42], [53, 46], [80, 29], [65, 63], [0, 81],
[54, 63], [51, 42], [16, 19], [17, 26], [77, 68]]
def _poses_one_curve():
return [[37, 76], [8, 24], [60, 69], [38, 10], [21, 1],
[58, 71], [74, 32], [44, 0], [71, 16], [14, 24],
[34, 11], [43, 14], [75, 16], [80, 21], [3, 23],
[75, 59], [50, 47], [11, 19], [77, 34], [79, 25],
[40, 63], [58, 76], [79, 55], [16, 61], [27, 11]]
def _poses_navigation():
return [[19, 66], [79, 14], [19, 57], [23, 1],
[53, 76], [42, 13], [31, 71], [33, 5],
[54, 30], [10, 61], [66, 3], [27, 12],
[79, 19], [2, 29], [16, 14], [5, 57],
[70, 73], [46, 67], [57, 50], [61, 49], [21, 12],
[51, 81], [77, 68], [56, 65], [43, 54]]
return [_poses_straight(),
_poses_one_curve(),
_poses_navigation(),
_poses_navigation()
]
def build_experiments(self):
"""
Creates the whole set of experiment objects,
The experiments created depend on the selected Town.
"""
# We set the camera
# This single RGB camera is used on every experiment
camera = Camera('CameraRGB')
camera.set(FOV=100)
camera.set_image_size(800, 600)
camera.set_position(2.0, 0.0, 1.4)
camera.set_rotation(-15.0, 0, 0)
if self._city_name == 'Town01':
poses_tasks = self._poses_town01()
vehicles_tasks = [0, 0, 0, 20]
pedestrians_tasks = [0, 0, 0, 50]
else:
poses_tasks = self._poses_town02()
vehicles_tasks = [0, 0, 0, 15]
pedestrians_tasks = [0, 0, 0, 50]
experiments_vector = []
for weather in self.weathers:
for iteration in range(len(poses_tasks)):
poses = poses_tasks[iteration]
vehicles = vehicles_tasks[iteration]
pedestrians = pedestrians_tasks[iteration]
conditions = CarlaSettings()
conditions.set(
SendNonPlayerAgentsInfo=True,
NumberOfVehicles=vehicles,
NumberOfPedestrians=pedestrians,
WeatherId=weather
)
# Add all the cameras that were set for this experiments
conditions.add_sensor(camera)
experiment = Experiment()
experiment.set(
Conditions=conditions,
Poses=poses,
Task=iteration,
Repetitions=1
)
experiments_vector.append(experiment)
return experiments_vector

View File

@ -1,102 +0,0 @@
# To be redefined on subclasses on how to calculate timeout for an episode
import abc
class ExperimentSuite(object):
def __init__(self, city_name):
self._city_name = city_name
self._experiments = self.build_experiments()
def calculate_time_out(self, path_distance):
"""
Function to return the timeout ,in milliseconds,
that is calculated based on distance to goal.
This is the same timeout as used on the CoRL paper.
"""
return ((path_distance / 1000.0) / 10.0) * 3600.0 + 10.0
def get_number_of_poses_task(self):
"""
Get the number of poses a task have for this benchmark
"""
# Warning: assumes that all tasks have the same size
return len(self._experiments[0].poses)
def get_experiments(self):
"""
Getter for the experiment set.
"""
return self._experiments
@property
def dynamic_tasks(self):
"""
Returns the episodes that contain dynamic obstacles
"""
dynamic_tasks = set()
for exp in self._experiments:
if exp.conditions.NumberOfVehicles > 0 or exp.conditions.NumberOfPedestrians > 0:
dynamic_tasks.add(exp.task)
return list(dynamic_tasks)
@property
def metrics_parameters(self):
"""
Property to return the parameters for the metric module
Could be redefined depending on the needs of the user.
"""
return {
'intersection_offroad': {'frames_skip': 10,
'frames_recount': 20,
'threshold': 0.3
},
'intersection_otherlane': {'frames_skip': 10,
'frames_recount': 20,
'threshold': 0.4
},
'collision_other': {'frames_skip': 10,
'frames_recount': 20,
'threshold': 400
},
'collision_vehicles': {'frames_skip': 10,
'frames_recount': 30,
'threshold': 400
},
'collision_pedestrians': {'frames_skip': 5,
'frames_recount': 100,
'threshold': 300
},
}
@property
def weathers(self):
weathers = set(self.train_weathers)
weathers.update(self.test_weathers)
return weathers
@abc.abstractmethod
def build_experiments(self):
"""
Returns a set of experiments to be evaluated
Must be redefined in an inherited class.
"""
@abc.abstractproperty
def train_weathers(self):
"""
Return the weathers that are considered as training conditions
"""
@abc.abstractproperty
def test_weathers(self):
"""
Return the weathers that are considered as testing conditions
"""

View File

@ -1,335 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import numpy as np
import math
import os
sldist = lambda c1, c2: math.sqrt((c2[0] - c1[0]) ** 2 + (c2[1] - c1[1]) ** 2)
flatten = lambda l: [item for sublist in l for item in sublist]
class Metrics(object):
"""
The metrics class is made to take the driving measurements
and calculate some specific performance metrics.
"""
def __init__(self, parameters, dynamic_tasks):
"""
Args
parameters: A dictionary with the used parameters for checking how to count infractions
dynamic_tasks: A list of the all dynamic tasks (That contain dynamic objects)
"""
self._parameters = parameters
self._parameters['dynamic_tasks'] = dynamic_tasks
def _divide_by_episodes(self, measurements_matrix, header):
"""
Divides the measurements matrix on different episodes.
Args:
measurements_matrix: The full measurements matrix
header: The header from the measurements matrix
"""
# Read previous for position zero
prev_start = measurements_matrix[0, header.index('start_point')]
prev_end = measurements_matrix[0, header.index('end_point')]
prev_exp_id = measurements_matrix[0, header.index('exp_id')]
# Start at the position 1.
i = 1
prev_i_position = 0
episode_matrix_metrics = []
while i < measurements_matrix.shape[0]:
current_start = measurements_matrix[i, header.index('start_point')]
current_end = measurements_matrix[i, header.index('end_point')]
current_exp_id = measurements_matrix[i, header.index('exp_id')]
# If there is a change in the position it means it is a new episode for sure.
if (current_start != prev_start and current_end != prev_end) \
or current_exp_id != prev_exp_id:
episode_matrix_metrics.append(measurements_matrix[prev_i_position:i, :])
prev_i_position = i
prev_start = current_start
prev_end = current_end
prev_exp_id = current_exp_id
i += 1
episode_matrix_metrics.append(measurements_matrix[prev_i_position:-1, :])
return episode_matrix_metrics
def _get_collisions(self, selected_matrix, header):
"""
Get the number of collisions for pedestrians, vehicles or other
Args:
selected_matrix: The matrix with all the experiments summary
header: The header , to know the positions of details
"""
count_collisions_general = 0
count_collisions_pedestrian = 0
count_collisions_vehicle = 0
i = 1
# Computing general collisions
while i < selected_matrix.shape[0]:
if (selected_matrix[i, header.index('collision_other')]
- selected_matrix[
(i - self._parameters['collision_other']['frames_skip']), header.index(
'collision_other')]) > \
self._parameters['collision_other']['threshold']:
count_collisions_general += 1
i += self._parameters['collision_other']['frames_recount']
i += 1
i = 1
# Computing collisions for vehicles
while i < selected_matrix.shape[0]:
if (selected_matrix[i, header.index('collision_vehicles')]
- selected_matrix[
(i - self._parameters['collision_vehicles']['frames_skip']), header.index(
'collision_vehicles')]) > \
self._parameters['collision_vehicles']['threshold']:
count_collisions_vehicle += 1
i += self._parameters['collision_vehicles']['frames_recount']
i += 1
i = 1
# Computing the collisions for pedestrians
while i < selected_matrix.shape[0]:
if (selected_matrix[i, header.index('collision_pedestrians')]
- selected_matrix[i - self._parameters['collision_pedestrians']['frames_skip'],
header.index('collision_pedestrians')]) > \
self._parameters['collision_pedestrians']['threshold']:
count_collisions_pedestrian += 1
i += self._parameters['collision_pedestrians']['frames_recount']
i += 1
return count_collisions_general, count_collisions_vehicle, count_collisions_pedestrian
def _get_distance_traveled(self, selected_matrix, header):
"""
Compute the total distance travelled
Args:
selected_matrix: The matrix with all the experiments summary
header: The header , to know the positions of details
"""
prev_x = selected_matrix[0, header.index('pos_x')]
prev_y = selected_matrix[0, header.index('pos_y')]
i = 1
acummulated_distance = 0
while i < selected_matrix.shape[0]:
x = selected_matrix[i, header.index('pos_x')]
y = selected_matrix[i, header.index('pos_y')]
acummulated_distance += sldist((x, y), (prev_x, prev_y))
prev_x = x
prev_y = y
i += 1
return acummulated_distance / (1000.0)
def _get_out_of_road_lane(self, selected_matrix, header):
"""
Check for the situations were the agent goes out of the road.
Args:
selected_matrix: The matrix with all the experiments summary
header: The header , to know the positions of details
"""
count_sidewalk_intersect = 0
count_lane_intersect = 0
i = 0
while i < selected_matrix.shape[0]:
if (selected_matrix[i, header.index('intersection_offroad')]
- selected_matrix[(i - self._parameters['intersection_offroad']['frames_skip']),
header.index('intersection_offroad')]) \
> self._parameters['intersection_offroad']['threshold']:
count_sidewalk_intersect += 1
i += self._parameters['intersection_offroad']['frames_recount']
if i >= selected_matrix.shape[0]:
break
if (selected_matrix[i, header.index('intersection_otherlane')]
- selected_matrix[(i - self._parameters['intersection_otherlane']['frames_skip']),
header.index('intersection_otherlane')]) \
> self._parameters['intersection_otherlane']['threshold']:
count_lane_intersect += 1
i += self._parameters['intersection_otherlane']['frames_recount']
i += 1
return count_lane_intersect, count_sidewalk_intersect
def compute(self, path):
"""
Compute a dictionary containing the following metrics
* Off Road Intersection: The number of times the agent goes out of the road.
The intersection is only counted if the area of the vehicle outside
of the road is bigger than a *threshold*.
* Other Lane Intersection: The number of times the agent goes to the other
lane. The intersection is only counted if the area of the vehicle on the
other lane is bigger than a *threshold*.
* Vehicle Collisions: The number of collisions with vehicles that have
an impact bigger than a *threshold*.
* Pedestrian Collisions: The number of collisions with pedestrians
that have an impact bigger than a threshold.
* General Collisions: The number of collisions with all other
objects.
Args:
path: Path where the log files are.
"""
with open(os.path.join(path, 'summary.csv'), "rU") as f:
header = f.readline()
header = header.split(',')
header[-1] = header[-1][:-1]
with open(os.path.join(path, 'measurements.csv'), "rU") as f:
header_metrics = f.readline()
header_metrics = header_metrics.split(',')
header_metrics[-1] = header_metrics[-1][:-1]
result_matrix = np.loadtxt(os.path.join(path, 'summary.csv'), delimiter=",", skiprows=1)
# Corner Case: The presented test just had one episode
if result_matrix.ndim == 1:
result_matrix = np.expand_dims(result_matrix, axis=0)
tasks = np.unique(result_matrix[:, header.index('exp_id')])
all_weathers = np.unique(result_matrix[:, header.index('weather')])
measurements_matrix = np.loadtxt(os.path.join(path, 'measurements.csv'), delimiter=",",
skiprows=1)
metrics_dictionary = {'episodes_completion': {w: [0] * len(tasks) for w in all_weathers},
'intersection_offroad': {w: [[] for i in range(len(tasks))] for w in
all_weathers},
'intersection_otherlane': {w: [[] for i in range(len(tasks))] for w in
all_weathers},
'collision_pedestrians': {w: [[] for i in range(len(tasks))] for w in
all_weathers},
'collision_vehicles': {w: [[] for i in range(len(tasks))] for w in
all_weathers},
'collision_other': {w: [[] for i in range(len(tasks))] for w in
all_weathers},
'episodes_fully_completed': {w: [0] * len(tasks) for w in
all_weathers},
'average_speed': {w: [0] * len(tasks) for w in all_weathers},
'driven_kilometers': {w: [0] * len(tasks) for w in all_weathers}
}
for t in range(len(tasks)):
experiment_results_matrix = result_matrix[
result_matrix[:, header.index('exp_id')] == tasks[t]]
weathers = np.unique(experiment_results_matrix[:, header.index('weather')])
for w in weathers:
experiment_results_matrix = result_matrix[
np.logical_and(result_matrix[:, header.index(
'exp_id')] == tasks[t], result_matrix[:, header.index('weather')] == w)]
experiment_metrics_matrix = measurements_matrix[
np.logical_and(measurements_matrix[:, header_metrics.index(
'exp_id')] == float(tasks[t]),
measurements_matrix[:, header_metrics.index('weather')] == float(
w))]
metrics_dictionary['episodes_fully_completed'][w][t] = \
experiment_results_matrix[:, header.index('result')].tolist()
metrics_dictionary['episodes_completion'][w][t] = \
((experiment_results_matrix[:, header.index('initial_distance')]
- experiment_results_matrix[:, header.index('final_distance')])
/ experiment_results_matrix[:, header.index('initial_distance')]).tolist()
# Now we divide the experiment metrics matrix
episode_experiment_metrics_matrix = self._divide_by_episodes(
experiment_metrics_matrix, header_metrics)
count = 0
for episode_experiment_metrics in episode_experiment_metrics_matrix:
km_run_episodes = self._get_distance_traveled(
episode_experiment_metrics, header_metrics)
metrics_dictionary['driven_kilometers'][w][t] += km_run_episodes
metrics_dictionary['average_speed'][w][t] = \
km_run_episodes / (experiment_results_matrix[count,
header.index(
'final_time')] / 3600.0)
count += 1
lane_road = self._get_out_of_road_lane(
episode_experiment_metrics, header_metrics)
metrics_dictionary['intersection_otherlane'][
w][t].append(lane_road[0])
metrics_dictionary['intersection_offroad'][
w][t].append(lane_road[1])
if tasks[t] in set(self._parameters['dynamic_tasks']):
collisions = self._get_collisions(episode_experiment_metrics,
header_metrics)
metrics_dictionary['collision_pedestrians'][
w][t].append(collisions[2])
metrics_dictionary['collision_vehicles'][
w][t].append(collisions[1])
metrics_dictionary['collision_other'][
w][t].append(collisions[0])
else:
metrics_dictionary['collision_pedestrians'][
w][t].append(0)
metrics_dictionary['collision_vehicles'][
w][t].append(0)
metrics_dictionary['collision_other'][
w][t].append(0)
return metrics_dictionary

View File

@ -1,276 +0,0 @@
import csv
import datetime
import os
class Recording(object):
"""
Class to record all the logs for the benchmark. It records individual episodes measurements
and also summary for each episodes.
"""
def __init__(self, name_to_save, continue_experiment, save_images):
"""
Recorder constructors
Args:
name_to_save: Name of the log
continue_experiment: If you want to continue a previous experiment with the same names
save_images: If you want to save images to the disk.
"""
self._dict_summary = {'exp_id': -1,
'rep': -1,
'weather': -1,
'start_point': -1,
'end_point': -1,
'result': -1,
'initial_distance': -1,
'final_distance': -1,
'final_time': -1,
'time_out': -1
}
self._dict_measurements = {'exp_id': -1,
'rep': -1,
'weather': -1,
'start_point': -1,
'end_point': -1,
'collision_other': -1,
'collision_pedestrians': -1,
'collision_vehicles': -1,
'intersection_otherlane': -1,
'intersection_offroad': -1,
'pos_x': -1,
'pos_y': -1,
'steer': -1,
'throttle': -1,
'brake': -1
}
# Just in the case is the first time and there is no benchmark results folder
if not os.path.exists('_benchmarks_results'):
os.mkdir('_benchmarks_results')
# Generate the full path for the log files
self._path = os.path.join('_benchmarks_results', name_to_save)
# Check for continuation of experiment, also returns the last line, used for test purposes
# If you don't want to continue it will create a new path name with a number.
# Also returns the fieldnames for both measurements and summary, so you can keep the
# previous order
self._path, _, self._summary_fieldnames, self._measurements_fieldnames \
= self._continue_experiment(continue_experiment)
self._create_log_files()
# A log with a date file: to show when was the last access and log what was tested,
now = datetime.datetime.now()
self._internal_log_name = os.path.join(self._path, 'log_' + now.strftime("%Y%m%d%H%M"))
open(self._internal_log_name, 'w').close()
# store the save images flag, and already store the format for image saving
self._save_images = save_images
self._image_filename_format = os.path.join(
self._path, '_images/episode_{:s}/{:s}/image_{:0>5d}.jpg')
@property
def path(self):
return self._path
def log_poses(self, start_index, end_index, weather_id):
"""
Log tested poses by the benchmark
"""
with open(self._internal_log_name, 'a+') as log:
log.write(' Start Poses (%d %d ) on weather %d \n ' %
(start_index, end_index, weather_id))
def log_poses_finish(self):
"""
Log when a set of poses (task) is finished by the benchmark
"""
with open(self._internal_log_name, 'a+') as log:
log.write('Finished Task')
def log_start(self, id_experiment):
"""
Log when a set of poses (task) is started by the benchmark
"""
with open(self._internal_log_name, 'a+') as log:
log.write('Start Task %d \n' % id_experiment)
def log_end(self):
"""
Log when the benchmark is finished
"""
with open(self._internal_log_name, 'a+') as log:
log.write('====== Finished Entire Benchmark ======')
def write_summary_results(self, experiment, pose, rep,
path_distance, remaining_distance,
final_time, time_out, result):
"""
Method to record the summary of an episode(pose) execution
"""
self._dict_summary['exp_id'] = experiment.task
self._dict_summary['rep'] = rep
self._dict_summary['weather'] = experiment.Conditions.WeatherId
self._dict_summary['start_point'] = pose[0]
self._dict_summary['end_point'] = pose[1]
self._dict_summary['result'] = result
self._dict_summary['initial_distance'] = path_distance
self._dict_summary['final_distance'] = remaining_distance
self._dict_summary['final_time'] = final_time
self._dict_summary['time_out'] = time_out
with open(os.path.join(self._path, 'summary.csv'), 'a+') as ofd:
w = csv.DictWriter(ofd, self._dict_summary.keys())
w.fieldnames = self._summary_fieldnames
w.writerow(self._dict_summary)
def write_measurements_results(self, experiment, rep, pose, reward_vec, control_vec):
"""
Method to record the measurements, sensors,
controls and status of the entire benchmark.
"""
with open(os.path.join(self._path, 'measurements.csv'), 'a+') as rfd:
mw = csv.DictWriter(rfd, self._dict_measurements.keys())
mw.fieldnames = self._measurements_fieldnames
for i in range(len(reward_vec)):
self._dict_measurements['exp_id'] = experiment.task
self._dict_measurements['rep'] = rep
self._dict_measurements['start_point'] = pose[0]
self._dict_measurements['end_point'] = pose[1]
self._dict_measurements['weather'] = experiment.Conditions.WeatherId
self._dict_measurements['collision_other'] = reward_vec[
i].collision_other
self._dict_measurements['collision_pedestrians'] = reward_vec[
i].collision_pedestrians
self._dict_measurements['collision_vehicles'] = reward_vec[
i].collision_vehicles
self._dict_measurements['intersection_otherlane'] = reward_vec[
i].intersection_otherlane
self._dict_measurements['intersection_offroad'] = reward_vec[
i].intersection_offroad
self._dict_measurements['pos_x'] = reward_vec[
i].transform.location.x
self._dict_measurements['pos_y'] = reward_vec[
i].transform.location.y
self._dict_measurements['steer'] = control_vec[
i].steer
self._dict_measurements['throttle'] = control_vec[
i].throttle
self._dict_measurements['brake'] = control_vec[
i].brake
mw.writerow(self._dict_measurements)
def _create_log_files(self):
"""
Just create the log files and add the necessary header for it.
"""
if not self._experiment_exist():
os.mkdir(self._path)
with open(os.path.join(self._path, 'summary.csv'), 'w') as ofd:
sw = csv.DictWriter(ofd, self._dict_summary.keys())
sw.writeheader()
if self._summary_fieldnames is None:
self._summary_fieldnames = sw.fieldnames
with open(os.path.join(self._path, 'measurements.csv'), 'w') as rfd:
mw = csv.DictWriter(rfd, self._dict_measurements.keys())
mw.writeheader()
if self._measurements_fieldnames is None:
self._measurements_fieldnames = mw.fieldnames
def _continue_experiment(self, continue_experiment):
"""
Get the line on the file for the experiment.
If continue_experiment is false and experiment exist, generates a new file path
"""
def get_non_existent_path(f_name_path):
"""
Get the path to a filename which does not exist by incrementing path.
"""
if not os.path.exists(f_name_path):
return f_name_path
filename, file_extension = os.path.splitext(f_name_path)
i = 1
new_f_name = "{}-{}{}".format(filename, i, file_extension)
while os.path.exists(new_f_name):
i += 1
new_f_name = "{}-{}{}".format(filename, i, file_extension)
return new_f_name
# start the new path as the same one as before
new_path = self._path
summary_fieldnames = None
measurements_fieldnames = None
# if the experiment exist
if self._experiment_exist():
# If you want to continue just get the last position
if continue_experiment:
line_on_file = self._get_last_position()
# Get the previously used fileorder
with open(os.path.join(self._path, 'summary.csv'), 'r') as ofd:
summary_reader = csv.DictReader(ofd)
summary_fieldnames = summary_reader.fieldnames
with open(os.path.join(self._path, 'measurements.csv'), 'r') as ofd:
measurements_reader = csv.DictReader(ofd)
measurements_fieldnames = measurements_reader.fieldnames
else:
# Get a new non_conflicting path name
new_path = get_non_existent_path(new_path)
line_on_file = 1
else:
line_on_file = 1
return new_path, line_on_file, summary_fieldnames, measurements_fieldnames
def save_images(self, sensor_data, episode_name, frame):
"""
Save a image during the experiment
"""
if self._save_images:
for name, image in sensor_data.items():
image.save_to_disk(self._image_filename_format.format(
episode_name, name, frame))
def get_pose_and_experiment(self, number_poses_task):
"""
Based on the line in log file, return the current pose and experiment.
If the line is zero, create new log files.
"""
# Warning: assumes that all tasks have the same size
line_on_file = self._get_last_position() - 1
if line_on_file == 0:
return 0, 0
return line_on_file % number_poses_task, line_on_file // number_poses_task
def _experiment_exist(self):
""" Check if the experiment exists"""
return os.path.exists(self._path)
def _get_last_position(self):
"""
Get the last position on the summary experiment file
With this you are able to continue from there
Returns:
int, position:
"""
# Try to open, if the file is not found
try:
with open(os.path.join(self._path, 'summary.csv')) as f:
return sum(1 for _ in f)
except IOError:
return 0

View File

@ -1,124 +0,0 @@
import os
import numpy as np
import json
def print_summary(metrics_summary, weathers, path):
"""
We plot the summary of the testing for the set selected weathers.
We take the raw data and print the way it was described on CORL 2017 paper
"""
# Improve readability by adding a weather dictionary
weather_name_dict = {1: 'Clear Noon', 3: 'After Rain Noon',
6: 'Heavy Rain Noon', 8: 'Clear Sunset',
4: 'Cloudy After Rain', 14: 'Soft Rain Sunset'}
# First we write the entire dictionary on the benchmark folder.
with open(os.path.join(path, 'metrics.json'), 'w') as fo:
fo.write(json.dumps(metrics_summary))
# Second we plot the metrics that are already ready by averaging
metrics_to_average = [
'episodes_fully_completed',
'episodes_completion'
]
# We compute the number of episodes based on size of average completion
number_of_episodes = len(list(metrics_summary['episodes_fully_completed'].items())[0][1])
for metric in metrics_to_average:
if metric == 'episodes_completion':
print ("Average Percentage of Distance to Goal Travelled ")
else:
print ("Percentage of Successful Episodes")
print ("")
values = metrics_summary[metric]
metric_sum_values = np.zeros(number_of_episodes)
for weather, tasks in values.items():
if weather in set(weathers):
print(' Weather: ', weather_name_dict[weather])
count = 0
for t in tasks:
# if isinstance(t, np.ndarray) or isinstance(t, list):
if t == []:
print(' Metric Not Computed')
else:
print(' Task:', count, ' -> ', float(sum(t)) / float(len(t)))
metric_sum_values[count] += (float(sum(t)) / float(len(t))) * 1.0 / float(
len(weathers))
count += 1
print (' Average Between Weathers')
for i in range(len(metric_sum_values)):
print(' Task ', i, ' -> ', metric_sum_values[i])
print ("")
infraction_metrics = [
'collision_pedestrians',
'collision_vehicles',
'collision_other',
'intersection_offroad',
'intersection_otherlane'
]
# We need to collect the total number of kilometers for each task
for metric in infraction_metrics:
values_driven = metrics_summary['driven_kilometers']
values = metrics_summary[metric]
metric_sum_values = np.zeros(number_of_episodes)
summed_driven_kilometers = np.zeros(number_of_episodes)
if metric == 'collision_pedestrians':
print ('Avg. Kilometers driven before a collision to a PEDESTRIAN')
elif metric == 'collision_vehicles':
print('Avg. Kilometers driven before a collision to a VEHICLE')
elif metric == 'collision_other':
print('Avg. Kilometers driven before a collision to a STATIC OBSTACLE')
elif metric == 'intersection_offroad':
print('Avg. Kilometers driven before going OUTSIDE OF THE ROAD')
else:
print('Avg. Kilometers driven before invading the OPPOSITE LANE')
# print (zip(values.items(), values_driven.items()))
for items_metric, items_driven in zip(values.items(), values_driven.items()):
weather = items_metric[0]
tasks = items_metric[1]
tasks_driven = items_driven[1]
if weather in set(weathers):
print(' Weather: ', weather_name_dict[weather])
count = 0
for t, t_driven in zip(tasks, tasks_driven):
# if isinstance(t, np.ndarray) or isinstance(t, list):
if t == []:
print('Metric Not Computed')
else:
if sum(t) > 0:
print(' Task ', count, ' -> ', t_driven / float(sum(t)))
else:
print(' Task ', count, ' -> more than', t_driven)
metric_sum_values[count] += float(sum(t))
summed_driven_kilometers[count] += t_driven
count += 1
print (' Average Between Weathers')
for i in range(len(metric_sum_values)):
if metric_sum_values[i] == 0:
print(' Task ', i, ' -> more than ', summed_driven_kilometers[i])
else:
print(' Task ', i, ' -> ', summed_driven_kilometers[i] / metric_sum_values[i])
print ("")
print("")
print("")

View File

@ -1,162 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""
Handy conversions for CARLA images.
The functions here are provided for real-time display, if you want to save the
converted images, save the images from Python without conversion and convert
them afterwards with the C++ implementation at "Util/ImageConverter" as it
provides considerably better performance.
"""
import math
try:
import numpy
from numpy.matlib import repmat
except ImportError:
raise RuntimeError('cannot import numpy, make sure numpy package is installed')
from . import sensor
def to_bgra_array(image):
"""Convert a CARLA raw image to a BGRA numpy array."""
if not isinstance(image, sensor.Image):
raise ValueError("Argument must be a carla.sensor.Image")
array = numpy.frombuffer(image.raw_data, dtype=numpy.dtype("uint8"))
array = numpy.reshape(array, (image.height, image.width, 4))
return array
def to_rgb_array(image):
"""Convert a CARLA raw image to a RGB numpy array."""
array = to_bgra_array(image)
# Convert BGRA to RGB.
array = array[:, :, :3]
array = array[:, :, ::-1]
return array
def labels_to_array(image):
"""
Convert an image containing CARLA semantic segmentation labels to a 2D array
containing the label of each pixel.
"""
return to_bgra_array(image)[:, :, 2]
def labels_to_cityscapes_palette(image):
"""
Convert an image containing CARLA semantic segmentation labels to
Cityscapes palette.
"""
classes = {
0: [0, 0, 0], # None
1: [70, 70, 70], # Buildings
2: [190, 153, 153], # Fences
3: [72, 0, 90], # Other
4: [220, 20, 60], # Pedestrians
5: [153, 153, 153], # Poles
6: [157, 234, 50], # RoadLines
7: [128, 64, 128], # Roads
8: [244, 35, 232], # Sidewalks
9: [107, 142, 35], # Vegetation
10: [0, 0, 255], # Vehicles
11: [102, 102, 156], # Walls
12: [220, 220, 0] # TrafficSigns
}
array = labels_to_array(image)
result = numpy.zeros((array.shape[0], array.shape[1], 3))
for key, value in classes.items():
result[numpy.where(array == key)] = value
return result
def depth_to_array(image):
"""
Convert an image containing CARLA encoded depth-map to a 2D array containing
the depth value of each pixel normalized between [0.0, 1.0].
"""
array = to_bgra_array(image)
array = array.astype(numpy.float32)
# Apply (R + G * 256 + B * 256 * 256) / (256 * 256 * 256 - 1).
normalized_depth = numpy.dot(array[:, :, :3], [65536.0, 256.0, 1.0])
normalized_depth /= 16777215.0 # (256.0 * 256.0 * 256.0 - 1.0)
return normalized_depth
def depth_to_logarithmic_grayscale(image):
"""
Convert an image containing CARLA encoded depth-map to a logarithmic
grayscale image array.
"max_depth" is used to omit the points that are far enough.
"""
normalized_depth = depth_to_array(image)
# Convert to logarithmic depth.
logdepth = numpy.ones(normalized_depth.shape) + \
(numpy.log(normalized_depth) / 5.70378)
logdepth = numpy.clip(logdepth, 0.0, 1.0)
logdepth *= 255.0
# Expand to three colors.
return numpy.repeat(logdepth[:, :, numpy.newaxis], 3, axis=2)
def depth_to_local_point_cloud(image, color=None, max_depth=0.9):
"""
Convert an image containing CARLA encoded depth-map to a 2D array containing
the 3D position (relative to the camera) of each pixel and its corresponding
RGB color of an array.
"max_depth" is used to omit the points that are far enough.
"""
far = 1000.0 # max depth in meters.
normalized_depth = depth_to_array(image)
# (Intrinsic) K Matrix
k = numpy.identity(3)
k[0, 2] = image.width / 2.0
k[1, 2] = image.height / 2.0
k[0, 0] = k[1, 1] = image.width / \
(2.0 * math.tan(image.fov * math.pi / 360.0))
# 2d pixel coordinates
pixel_length = image.width * image.height
u_coord = repmat(numpy.r_[image.width-1:-1:-1],
image.height, 1).reshape(pixel_length)
v_coord = repmat(numpy.c_[image.height-1:-1:-1],
1, image.width).reshape(pixel_length)
if color is not None:
color = color.reshape(pixel_length, 3)
normalized_depth = numpy.reshape(normalized_depth, pixel_length)
# Search for pixels where the depth is greater than max_depth to
# delete them
max_depth_indexes = numpy.where(normalized_depth > max_depth)
normalized_depth = numpy.delete(normalized_depth, max_depth_indexes)
u_coord = numpy.delete(u_coord, max_depth_indexes)
v_coord = numpy.delete(v_coord, max_depth_indexes)
if color is not None:
color = numpy.delete(color, max_depth_indexes, axis=0)
# pd2 = [u,v,1]
p2d = numpy.array([u_coord, v_coord, numpy.ones_like(u_coord)])
# P = [X,Y,Z]
p3d = numpy.dot(numpy.linalg.inv(k), p2d)
p3d *= normalized_depth * far
# Formating the output to:
# [[X1,Y1,Z1,R1,G1,B1],[X2,Y2,Z2,R2,G2,B2], ... [Xn,Yn,Zn,Rn,Gn,Bn]]
if color is not None:
# numpy.concatenate((numpy.transpose(p3d), color), axis=1)
return sensor.PointCloud(
image.frame_number,
numpy.transpose(p3d),
color_array=color)
# [[X1,Y1,Z1],[X2,Y2,Z2], ... [Xn,Yn,Zn]]
return sensor.PointCloud(image.frame_number, numpy.transpose(p3d))

Binary file not shown.

Before

Width:  |  Height:  |  Size: 534 KiB

View File

@ -1,49 +0,0 @@
0.0,0.0,-0.3811000000
0.000000,0.000000,0.0
1.000000,1.000000,1.000000
-16.43022,-16.43022,0.000
49, 41
0,0 0,40 40
0,40 0,0 40
48,40 41,40 7
41,40 48,40 7
48,0 48,40 40
48,40 48,0 40
0,0 11,0 11
11,0 0,0 11
41,0 48,0 7
48,0 41,0 7
41,40 11,40 30
11,40 41,40 30
41,0 41,7 7
41,7 41,0 7
11,40 0,40 11
0,40 11,40 11
11,0 19,0 8
19,0 11,0 8
11,40 11,24 16
11,24 11,40 16
41,24 41,40 16
41,40 41,24 16
11,24 11,16 8
11,16 11,24 8
41,24 11,24 30
11,24 41,24 30
41,16 41,24 8
41,24 41,16 8
11,16 11,7 9
11,7 11,16 9
41,16 11,16 30
11,16 41,16 30
41,7 41,16 9
41,16 41,7 9
11,7 11,0 7
11,0 11,7 7
41,7 19,7 22
19,7 41,7 22
19,0 41,0 22
41,0 19,0 22
19,7 11,7 8
11,7 19,7 8
19,0 19,7 7
19,7 19,0 7

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 175 KiB

View File

@ -1,37 +0,0 @@
5.4400,-107.48000,-0.22000000
0.000000,0.000000,0.000000
1.000000,1.000000,1.000000
-16.43022,-16.43022,0.000
25, 25
0,10 0,24 14
0,24 0,10 14
24,24 6,24 18
6,24 24,24 18
24,0 24,10 10
24,10 24,0 10
0,0 24,0 24
24,0 0,0 24
0,10 0,0 10
0,0 0,10 10
24,10 24,16 6
24,16 24,10 6
0,10 6,10 6
6,10 0,10 6
6,24 0,24 6
0,24 6,24 6
6,10 17,10 11
17,10 6,10 11
6,24 6,16 8
6,16 6,24 8
24,16 24,24 8
24,24 24,16 8
6,16 6,10 6
6,10 6,16 6
24,16 17,16 7
17,16 24,16 7
17,16 6,16 11
6,16 17,16 11
17,10 24,10 7
24,10 17,10 7
17,16 17,10 6
17,10 17,16 6

Binary file not shown.

Before

Width:  |  Height:  |  Size: 400 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

View File

@ -1,156 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import heapq
class Cell(object):
def __init__(self, x, y, reachable):
"""Initialize new cell.
@param reachable is cell reachable? not a wall?
@param x cell x coordinate
@param y cell y coordinate
@param g cost to move from the starting cell to this cell.
@param h estimation of the cost to move from this cell
to the ending cell.
@param f f = g + h
"""
self.reachable = reachable
self.x = x
self.y = y
self.parent = None
self.g = 0
self.h = 0
self.f = 0
def __lt__(self, other):
return self.g < other.g
class AStar(object):
def __init__(self):
# open list
self.opened = []
heapq.heapify(self.opened)
# visited cells list
self.closed = set()
# grid cells
self.cells = []
self.grid_height = None
self.grid_width = None
self.start = None
self.end = None
def init_grid(self, width, height, walls, start, end):
"""Prepare grid cells, walls.
@param width grid's width.
@param height grid's height.
@param walls list of wall x,y tuples.
@param start grid starting point x,y tuple.
@param end grid ending point x,y tuple.
"""
self.grid_height = height
self.grid_width = width
for x in range(self.grid_width):
for y in range(self.grid_height):
if (x, y) in walls:
reachable = False
else:
reachable = True
self.cells.append(Cell(x, y, reachable))
self.start = self.get_cell(*start)
self.end = self.get_cell(*end)
def get_heuristic(self, cell):
"""Compute the heuristic value H for a cell.
Distance between this cell and the ending cell multiply by 10.
@returns heuristic value H
"""
return 10 * (abs(cell.x - self.end.x) + abs(cell.y - self.end.y))
def get_cell(self, x, y):
"""Returns a cell from the cells list.
@param x cell x coordinate
@param y cell y coordinate
@returns cell
"""
return self.cells[x * self.grid_height + y]
def get_adjacent_cells(self, cell):
"""Returns adjacent cells to a cell.
Clockwise starting from the one on the right.
@param cell get adjacent cells for this cell
@returns adjacent cells list.
"""
cells = []
if cell.x < self.grid_width - 1:
cells.append(self.get_cell(cell.x + 1, cell.y))
if cell.y > 0:
cells.append(self.get_cell(cell.x, cell.y - 1))
if cell.x > 0:
cells.append(self.get_cell(cell.x - 1, cell.y))
if cell.y < self.grid_height - 1:
cells.append(self.get_cell(cell.x, cell.y + 1))
return cells
def get_path(self):
cell = self.end
path = [(cell.x, cell.y)]
while cell.parent is not self.start:
cell = cell.parent
path.append((cell.x, cell.y))
path.append((self.start.x, self.start.y))
path.reverse()
return path
def update_cell(self, adj, cell):
"""Update adjacent cell.
@param adj adjacent cell to current cell
@param cell current cell being processed
"""
adj.g = cell.g + 10
adj.h = self.get_heuristic(adj)
adj.parent = cell
adj.f = adj.h + adj.g
def solve(self):
"""Solve maze, find path to ending cell.
@returns path or None if not found.
"""
# add starting cell to open heap queue
heapq.heappush(self.opened, (self.start.f, self.start))
while len(self.opened):
# pop cell from heap queue
_, cell = heapq.heappop(self.opened)
# add cell to closed list so we don't process it twice
self.closed.add(cell)
# if ending cell, return found path
if cell is self.end:
return self.get_path()
# get adjacent cells for cell
adj_cells = self.get_adjacent_cells(cell)
for adj_cell in adj_cells:
if adj_cell.reachable and adj_cell not in self.closed:
if (adj_cell.f, adj_cell) in self.opened:
# if adj cell in open list, check if current path is
# better than the one previously found
# for this adj cell.
if adj_cell.g > cell.g + 10:
self.update_cell(adj_cell, cell)
else:
self.update_cell(adj_cell, cell)
# add adj cell to open list
heapq.heappush(self.opened, (adj_cell.f, adj_cell))

View File

@ -1,131 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
from carla.planner.graph import sldist
from carla.planner.astar import AStar
from carla.planner.map import CarlaMap
class CityTrack(object):
def __init__(self, city_name):
self._map = CarlaMap(city_name)
self._astar = AStar()
# Refers to the start position of the previous route computation
self._previous_node = []
# The current computed route
self._route = None
def project_node(self, position):
"""
Projecting the graph node into the city road
"""
node = self._map.convert_to_node(position)
# To change the orientation with respect to the map standards
node = tuple([int(x) for x in node])
# Set to zero if it is less than zero.
node = (max(0, node[0]), max(0, node[1]))
node = (min(self._map.get_graph_resolution()[0] - 1, node[0]),
min(self._map.get_graph_resolution()[1] - 1, node[1]))
node = self._map.search_on_grid(node)
return node
def get_intersection_nodes(self):
return self._map.get_intersection_nodes()
def get_pixel_density(self):
return self._map.get_map_resolution()
def get_node_density(self):
return self._map.get_graph_resolution()
def is_at_goal(self, source, target):
return source == target
def is_at_new_node(self, current_node):
return current_node != self._previous_node
def is_away_from_intersection(self, current_node):
return self._closest_intersection_position(current_node) > 1
def is_far_away_from_route_intersection(self, current_node):
# CHECK FOR THE EMPTY CASE
if self._route is None:
raise RuntimeError('Impossible to find route'
+ ' Current planner is limited'
+ ' Try to select start points away from intersections')
return self._closest_intersection_route_position(current_node,
self._route) > 4
def compute_route(self, node_source, source_ori, node_target, target_ori):
self._previous_node = node_source
a_star = AStar()
a_star.init_grid(self._map.get_graph_resolution()[0],
self._map.get_graph_resolution()[1],
self._map.get_walls_directed(node_source, source_ori,
node_target, target_ori), node_source,
node_target)
route = a_star.solve()
# JuSt a Corner Case
# Clean this to avoid having to use this function
if route is None:
a_star = AStar()
a_star.init_grid(self._map.get_graph_resolution()[0],
self._map.get_graph_resolution()[1], self._map.get_walls(),
node_source, node_target)
route = a_star.solve()
self._route = route
return route
def get_distance_closest_node_route(self, pos, route):
distance = []
for node_iter in route:
if node_iter in self._map.get_intersection_nodes():
distance.append(sldist(node_iter, pos))
if not distance:
return sldist(route[-1], pos)
return sorted(distance)[0]
def _closest_intersection_position(self, current_node):
distance_vector = []
for node_iterator in self._map.get_intersection_nodes():
distance_vector.append(sldist(node_iterator, current_node))
return sorted(distance_vector)[0]
def _closest_intersection_route_position(self, current_node, route):
distance_vector = []
for _ in route:
for node_iterator in self._map.get_intersection_nodes():
distance_vector.append(sldist(node_iterator, current_node))
return sorted(distance_vector)[0]

View File

@ -1,169 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import math
import numpy as np
from carla.planner.graph import string_to_floats
# Constant definition enumeration
PIXEL = 0
WORLD = 1
NODE = 2
class Converter(object):
def __init__(self, city_file, pixel_density, node_density):
self._node_density = node_density
self._pixel_density = pixel_density
with open(city_file, 'r') as f:
# The offset of the world from the zero coordinates ( The
# coordinate we consider zero)
self._worldoffset = string_to_floats(f.readline())
angles = string_to_floats(f.readline())
# If there is an rotation between the world and map coordinates.
self._worldrotation = np.array([
[math.cos(math.radians(angles[2])), -math.sin(math.radians(angles[2])), 0.0],
[math.sin(math.radians(angles[2])), math.cos(math.radians(angles[2])), 0.0],
[0.0, 0.0, 1.0]])
# Ignore for now, these are offsets for map coordinates and scale
# (not used).
_ = f.readline()
# The offset of the map zero coordinate.
self._mapoffset = string_to_floats(f.readline())
def convert_to_node(self, input_data):
"""
Receives a data type (Can Be Pixel or World )
:param input_data: position in some coordinate
:return: A vector representing a node
"""
input_type = self._check_input_type(input_data)
if input_type == PIXEL:
return self._pixel_to_node(input_data)
elif input_type == WORLD:
return self._world_to_node(input_data)
else:
raise ValueError('Invalid node to be converted')
def convert_to_pixel(self, input_data):
"""
Receives a data type (Can Be Node or World )
:param input_data: position in some coordinate
:return: A vector with pixel coordinates
"""
input_type = self._check_input_type(input_data)
if input_type == NODE:
return self._node_to_pixel(input_data)
elif input_type == WORLD:
return self._world_to_pixel(input_data)
else:
raise ValueError('Invalid node to be converted')
def convert_to_world(self, input_data):
"""
Receives a data type (Can Be Pixel or Node )
:param input_data: position in some coordinate
:return: vector with world coordinates
"""
input_type = self._check_input_type(input_data)
if input_type == NODE:
return self._node_to_world(input_data)
elif input_type == PIXEL:
return self._pixel_to_world(input_data)
else:
raise ValueError('Invalid node to be converted')
def get_map_resolution(self):
return self._pixel_density
def _node_to_pixel(self, node):
"""
Conversion from node format (graph) to pixel (image)
:param node:
:return: pixel
"""
pixel = [((node[0] + 2) * self._node_density)
, ((node[1] + 2) * self._node_density)]
return pixel
def _pixel_to_node(self, pixel):
"""
Conversion from pixel format (image) to node (graph)
:param node:
:return: pixel
"""
node = [int(((pixel[0]) / self._node_density) - 2)
, int(((pixel[1]) / self._node_density) - 2)]
return tuple(node)
def _pixel_to_world(self, pixel):
"""
Conversion from pixel format (image) to world (3D)
:param pixel:
:return: world
"""
relative_location = [pixel[0] * self._pixel_density,
pixel[1] * self._pixel_density]
world = [
relative_location[0] + self._mapoffset[0] - self._worldoffset[0],
relative_location[1] + self._mapoffset[1] - self._worldoffset[1],
self._mapoffset[2] - self._worldoffset[2]
]
return world
def _world_to_pixel(self, world):
"""
Conversion from world format (3D) to pixel
:param world:
:return: pixel
"""
rotation = np.array([world[0], world[1], world[2]])
rotation = rotation.dot(self._worldrotation)
relative_location = [rotation[0] + self._worldoffset[0] - self._mapoffset[0],
rotation[1] + self._worldoffset[1] - self._mapoffset[1],
rotation[2] + self._worldoffset[2] - self._mapoffset[2]]
pixel = [math.floor(relative_location[0] / float(self._pixel_density)),
math.floor(relative_location[1] / float(self._pixel_density))]
return pixel
def _world_to_node(self, world):
return self._pixel_to_node(self._world_to_pixel(world))
def _node_to_world(self, node):
return self._pixel_to_world(self._node_to_pixel(node))
def _check_input_type(self, input_data):
if len(input_data) > 2:
return WORLD
elif type(input_data[0]) is int:
return NODE
else:
return PIXEL

View File

@ -1,141 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import math
import numpy as np
def string_to_node(string):
vec = string.split(',')
return (int(vec[0]), int(vec[1]))
def string_to_floats(string):
vec = string.split(',')
return (float(vec[0]), float(vec[1]), float(vec[2]))
def sldist(c1, c2):
return math.sqrt((c2[0] - c1[0]) ** 2 + (c2[1] - c1[1]) ** 2)
def sldist3(c1, c2):
return math.sqrt((c2[0] - c1[0]) ** 2 + (c2[1] - c1[1])
** 2 + (c2[2] - c1[2]) ** 2)
class Graph(object):
"""
A simple directed, weighted graph
"""
def __init__(self, graph_file=None, node_density=50):
self._nodes = set()
self._angles = {}
self._edges = {}
self._distances = {}
self._node_density = node_density
if graph_file is not None:
with open(graph_file, 'r') as f:
# Skipe the first four lines that
lines_after_4 = f.readlines()[4:]
# the graph resolution.
linegraphres = lines_after_4[0]
self._resolution = string_to_node(linegraphres)
for line in lines_after_4[1:]:
from_node, to_node, d = line.split()
from_node = string_to_node(from_node)
to_node = string_to_node(to_node)
if from_node not in self._nodes:
self.add_node(from_node)
if to_node not in self._nodes:
self.add_node(to_node)
self._edges.setdefault(from_node, [])
self._edges[from_node].append(to_node)
self._distances[(from_node, to_node)] = float(d)
def add_node(self, value):
self._nodes.add(value)
def make_orientations(self, node, heading):
import collections
distance_dic = {}
for node_iter in self._nodes:
if node_iter != node:
distance_dic[sldist(node, node_iter)] = node_iter
distance_dic = collections.OrderedDict(
sorted(distance_dic.items()))
self._angles[node] = heading
for _, v in distance_dic.items():
start_to_goal = np.array([node[0] - v[0], node[1] - v[1]])
print(start_to_goal)
self._angles[v] = start_to_goal / np.linalg.norm(start_to_goal)
def add_edge(self, from_node, to_node, distance):
self._add_edge(from_node, to_node, distance)
def _add_edge(self, from_node, to_node, distance):
self._edges.setdefault(from_node, [])
self._edges[from_node].append(to_node)
self._distances[(from_node, to_node)] = distance
def get_resolution(self):
return self._resolution
def get_edges(self):
return self._edges
def intersection_nodes(self):
intersect_nodes = []
for node in self._nodes:
if len(self._edges[node]) > 2:
intersect_nodes.append(node)
return intersect_nodes
# This contains also the non-intersection turns...
def turn_nodes(self):
return self._nodes
def plot_ori(self, c):
from matplotlib import collections as mc
import matplotlib.pyplot as plt
line_len = 1
lines = [[(p[0], p[1]), (p[0] + line_len * self._angles[p][0],
p[1] + line_len * self._angles[p][1])] for p in self._nodes]
lc = mc.LineCollection(lines, linewidth=2, color='green')
_, ax = plt.subplots()
ax.add_collection(lc)
ax.autoscale()
ax.margins(0.1)
xs = [p[0] for p in self._nodes]
ys = [p[1] for p in self._nodes]
plt.scatter(xs, ys, color=c)
def plot(self, c):
import matplotlib.pyplot as plt
xs = [p[0] for p in self._nodes]
ys = [p[1] for p in self._nodes]
plt.scatter(xs, ys, color=c)

View File

@ -1,135 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import copy
import numpy as np
def angle_between(v1, v2):
return np.arccos(np.dot(v1, v2) / np.linalg.norm(v1) / np.linalg.norm(v2))
class Grid(object):
def __init__(self, graph):
self._graph = graph
self._structure = self._make_structure()
self._walls = self._make_walls()
def search_on_grid(self, x, y):
visit = [[0, 1], [0, -1], [1, 0], [1, 1],
[1, -1], [-1, 0], [-1, 1], [-1, -1]]
c_x, c_y = x, y
scale = 1
while self._structure[c_x, c_y] != 0:
for offset in visit:
c_x, c_y = x + offset[0] * scale, y + offset[1] * scale
if c_x >= 0 and c_x < self._graph.get_resolution()[
0] and c_y >= 0 and c_y < self._graph.get_resolution()[1]:
if self._structure[c_x, c_y] == 0:
break
else:
c_x, c_y = x, y
scale += 1
return c_x, c_y
def get_walls(self):
return self._walls
def get_wall_source(self, pos, pos_ori, target):
free_nodes = self._get_adjacent_free_nodes(pos)
# print self._walls
final_walls = copy.copy(self._walls)
# print final_walls
heading_start = np.array([pos_ori[0], pos_ori[1]])
for adj in free_nodes:
start_to_goal = np.array([adj[0] - pos[0], adj[1] - pos[1]])
angle = angle_between(heading_start, start_to_goal)
if (angle > 1.6 and adj != target):
final_walls.add((adj[0], adj[1]))
return final_walls
def get_wall_target(self, pos, pos_ori, source):
free_nodes = self._get_adjacent_free_nodes(pos)
final_walls = copy.copy(self._walls)
heading_start = np.array([pos_ori[0], pos_ori[1]])
for adj in free_nodes:
start_to_goal = np.array([adj[0] - pos[0], adj[1] - pos[1]])
angle = angle_between(heading_start, start_to_goal)
if (angle < 1.0 and adj != source):
final_walls.add((adj[0], adj[1]))
return final_walls
def _draw_line(self, grid, xi, yi, xf, yf):
if xf < xi:
aux = xi
xi = xf
xf = aux
if yf < yi:
aux = yi
yi = yf
yf = aux
for i in range(xi, xf + 1):
for j in range(yi, yf + 1):
grid[i, j] = 0.0
return grid
def _make_structure(self):
structure = np.ones(
(self._graph.get_resolution()[0],
self._graph.get_resolution()[1]))
for key, connections in self._graph.get_edges().items():
# draw a line
for con in connections:
# print key[0],key[1],con[0],con[1]
structure = self._draw_line(
structure, key[0], key[1], con[0], con[1])
# print grid
return structure
def _make_walls(self):
walls = set()
for i in range(self._structure.shape[0]):
for j in range(self._structure.shape[1]):
if self._structure[i, j] == 1.0:
walls.add((i, j))
return walls
def _get_adjacent_free_nodes(self, pos):
""" Eight nodes in total """
visit = [[0, 1], [0, -1], [1, 0], [1, 1],
[1, -1], [-1, 0], [-1, 1], [-1, -1]]
adjacent = set()
for offset in visit:
node = (pos[0] + offset[0], pos[1] + offset[1])
if (node[0] >= 0 and node[0] < self._graph.get_resolution()[0]
and node[1] >= 0 and node[1] < self._graph.get_resolution()[1]):
if self._structure[node[0], node[1]] == 0.0:
adjacent.add(node)
return adjacent

View File

@ -1,154 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""Class used for operating the city map."""
import math
import os
try:
import numpy as np
except ImportError:
raise RuntimeError('cannot import numpy, make sure numpy package is installed')
try:
from PIL import Image
except ImportError:
raise RuntimeError('cannot import PIL, make sure pillow package is installed')
from carla.planner.graph import Graph
from carla.planner.graph import sldist
from carla.planner.grid import Grid
from carla.planner.converter import Converter
def color_to_angle(color):
return (float(color) / 255.0) * 2 * math.pi
class CarlaMap(object):
def __init__(self, city, pixel_density=0.1643, node_density=50):
dir_path = os.path.dirname(__file__)
city_file = os.path.join(dir_path, city + '.txt')
city_map_file = os.path.join(dir_path, city + '.png')
city_map_file_lanes = os.path.join(dir_path, city + 'Lanes.png')
city_map_file_center = os.path.join(dir_path, city + 'Central.png')
# The built graph. This is the exact same graph that unreal builds. This
# is a generic structure used for many cases
self._graph = Graph(city_file, node_density)
self._pixel_density = pixel_density
self._grid = Grid(self._graph)
# The number of game units per pixel. For now this is fixed.
self._converter = Converter(city_file, pixel_density, node_density)
# Load the lanes image
self.map_image_lanes = Image.open(city_map_file_lanes)
self.map_image_lanes.load()
self.map_image_lanes = np.asarray(self.map_image_lanes, dtype="int32")
# Load the image
self.map_image = Image.open(city_map_file)
self.map_image.load()
self.map_image = np.asarray(self.map_image, dtype="int32")
# Load the lanes image
self.map_image_center = Image.open(city_map_file_center)
self.map_image_center.load()
self.map_image_center = np.asarray(self.map_image_center, dtype="int32")
def get_graph_resolution(self):
return self._graph.get_resolution()
def get_map_resolution(self):
return self._converter.get_map_resolution()
def get_map(self, height=None):
if height is not None:
img = Image.fromarray(self.map_image.astype(np.uint8))
aspect_ratio = height / float(self.map_image.shape[0])
img = img.resize((int(aspect_ratio * self.map_image.shape[1]), height), Image.ANTIALIAS)
img.load()
return np.asarray(img, dtype="int32")
return np.fliplr(self.map_image)
def get_map_lanes(self, size=None):
if size is not None:
img = Image.fromarray(self.map_image_lanes.astype(np.uint8))
img = img.resize((size[1], size[0]), Image.ANTIALIAS)
img.load()
return np.fliplr(np.asarray(img, dtype="int32"))
return np.fliplr(self.map_image_lanes)
def get_lane_orientation(self, world):
"""Get the lane orientation of a certain world position."""
pixel = self.convert_to_pixel(world)
ori = self.map_image_lanes[int(pixel[1]), int(pixel[0]), 2]
ori = color_to_angle(ori)
return (-math.cos(ori), -math.sin(ori))
def convert_to_node(self, input_data):
"""
Receives a data type (Can Be Pixel or World )
:param input_data: position in some coordinate
:return: A node object
"""
return self._converter.convert_to_node(input_data)
def convert_to_pixel(self, input_data):
"""
Receives a data type (Can Be Node or World )
:param input_data: position in some coordinate
:return: A node object
"""
return self._converter.convert_to_pixel(input_data)
def convert_to_world(self, input_data):
"""
Receives a data type (Can Be Pixel or Node )
:param input_data: position in some coordinate
:return: A node object
"""
return self._converter.convert_to_world(input_data)
def get_walls_directed(self, node_source, source_ori, node_target, target_ori):
"""
This is the most hacky function. Instead of planning on two ways,
we basically use a one way road and interrupt the other road by adding
an artificial wall.
"""
final_walls = self._grid.get_wall_source(node_source, source_ori, node_target)
final_walls = final_walls.union(self._grid.get_wall_target(
node_target, target_ori, node_source))
return final_walls
def get_walls(self):
return self._grid.get_walls()
def get_distance_closest_node(self, pos):
distance = []
for node_iter in self._graph.intersection_nodes():
distance.append(sldist(node_iter, pos))
return sorted(distance)[0]
def get_intersection_nodes(self):
return self._graph.intersection_nodes()
def search_on_grid(self,node):
return self._grid.search_on_grid(node[0], node[1])

View File

@ -1,175 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import collections
import math
import numpy as np
from . import city_track
def compare(x, y):
return collections.Counter(x) == collections.Counter(y)
# Constants Used for the high level commands
REACH_GOAL = 0.0
GO_STRAIGHT = 5.0
TURN_RIGHT = 4.0
TURN_LEFT = 3.0
LANE_FOLLOW = 2.0
# Auxiliary algebra function
def angle_between(v1, v2):
return np.arccos(np.dot(v1, v2) / np.linalg.norm(v1) / np.linalg.norm(v2))
def sldist(c1, c2): return math.sqrt((c2[0] - c1[0]) ** 2 + (c2[1] - c1[1]) ** 2)
def signal(v1, v2):
return np.cross(v1, v2) / np.linalg.norm(v1) / np.linalg.norm(v2)
class Planner(object):
def __init__(self, city_name):
self._city_track = city_track.CityTrack(city_name)
self._commands = []
def get_next_command(self, source, source_ori, target, target_ori):
"""
Computes the full plan and returns the next command,
Args
source: source position
source_ori: source orientation
target: target position
target_ori: target orientation
Returns
a command ( Straight,Lane Follow, Left or Right)
"""
track_source = self._city_track.project_node(source)
track_target = self._city_track.project_node(target)
# reach the goal
if self._city_track.is_at_goal(track_source, track_target):
return REACH_GOAL
if (self._city_track.is_at_new_node(track_source)
and self._city_track.is_away_from_intersection(track_source)):
route = self._city_track.compute_route(track_source, source_ori,
track_target, target_ori)
if route is None:
raise RuntimeError('Impossible to find route')
self._commands = self._route_to_commands(route)
if self._city_track.is_far_away_from_route_intersection(
track_source):
return LANE_FOLLOW
else:
if self._commands:
return self._commands[0]
else:
return LANE_FOLLOW
else:
if self._city_track.is_far_away_from_route_intersection(
track_source):
return LANE_FOLLOW
# If there is computed commands
if self._commands:
return self._commands[0]
else:
return LANE_FOLLOW
def get_shortest_path_distance(
self,
source,
source_ori,
target,
target_ori):
distance = 0
track_source = self._city_track.project_node(source)
track_target = self._city_track.project_node(target)
current_pos = track_source
route = self._city_track.compute_route(track_source, source_ori,
track_target, target_ori)
# No Route, distance is zero
if route is None:
return 0.0
for node_iter in route:
distance += sldist(node_iter, current_pos)
current_pos = node_iter
# We multiply by these values to convert distance to world coordinates
return distance * self._city_track.get_pixel_density() \
* self._city_track.get_node_density()
def is_there_posible_route(self, source, source_ori, target, target_ori):
track_source = self._city_track.project_node(source)
track_target = self._city_track.project_node(target)
return not self._city_track.compute_route(
track_source, source_ori, track_target, target_ori) is None
def test_position(self, source):
node_source = self._city_track.project_node(source)
return self._city_track.is_away_from_intersection(node_source)
def _route_to_commands(self, route):
"""
from the shortest path graph, transform it into a list of commands
:param route: the sub graph containing the shortest path
:return: list of commands encoded from 0-5
"""
commands_list = []
for i in range(0, len(route)):
if route[i] not in self._city_track.get_intersection_nodes():
continue
current = route[i]
past = route[i - 1]
future = route[i + 1]
past_to_current = np.array(
[current[0] - past[0], current[1] - past[1]])
current_to_future = np.array(
[future[0] - current[0], future[1] - current[1]])
angle = signal(current_to_future, past_to_current)
if angle < -0.1:
command = TURN_RIGHT
elif angle > 0.1:
command = TURN_LEFT
else:
command = GO_STRAIGHT
commands_list.append(command)
return commands_list

View File

@ -1,334 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""CARLA sensors."""
import os
from collections import namedtuple
try:
import numpy
except ImportError:
raise RuntimeError('cannot import numpy, make sure numpy package is installed.')
from .transform import Transform, Translation, Rotation, Scale
# ==============================================================================
# -- Helpers -------------------------------------------------------------------
# ==============================================================================
Color = namedtuple('Color', 'r g b')
Color.__new__.__defaults__ = (0, 0, 0)
Point = namedtuple('Point', 'x y z color')
Point.__new__.__defaults__ = (0.0, 0.0, 0.0, None)
def _append_extension(filename, ext):
return filename if filename.lower().endswith(ext.lower()) else filename + ext
# ==============================================================================
# -- Sensor --------------------------------------------------------------------
# ==============================================================================
class Sensor(object):
"""
Base class for sensor descriptions. Used to add sensors to CarlaSettings.
"""
def __init__(self, name, sensor_type):
self.SensorName = name
self.SensorType = sensor_type
self.PositionX = 0.2
self.PositionY = 0.0
self.PositionZ = 1.3
self.RotationPitch = 0.0
self.RotationRoll = 0.0
self.RotationYaw = 0.0
def set(self, **kwargs):
for key, value in kwargs.items():
if not hasattr(self, key):
raise ValueError('sensor.Sensor: no key named %r' % key)
setattr(self, key, value)
def set_position(self, x, y, z):
self.PositionX = x
self.PositionY = y
self.PositionZ = z
def set_rotation(self, pitch, yaw, roll):
self.RotationPitch = pitch
self.RotationYaw = yaw
self.RotationRoll = roll
def get_transform(self):
'''
Returns the camera to [whatever the camera is attached to]
transformation.
'''
return Transform(
Translation(self.PositionX, self.PositionY, self.PositionZ),
Rotation(self.RotationPitch, self.RotationYaw, self.RotationRoll))
def get_unreal_transform(self):
'''
Returns the camera to [whatever the camera is attached to]
transformation with the Unreal necessary corrections applied.
@todo Do we need to expose this?
'''
to_unreal_transform = Transform(Rotation(roll=-90, yaw=90), Scale(x=-1))
return self.get_transform() * to_unreal_transform
class Camera(Sensor):
"""
Camera description. This class can be added to a CarlaSettings object to add
a camera to the player vehicle.
"""
def __init__(self, name, **kwargs):
super(Camera, self).__init__(name, sensor_type="CAMERA")
self.PostProcessing = 'SceneFinal'
self.ImageSizeX = 720
self.ImageSizeY = 512
self.FOV = 90.0
self.set(**kwargs)
def set_image_size(self, pixels_x, pixels_y):
'''Sets the image size in pixels'''
self.ImageSizeX = pixels_x
self.ImageSizeY = pixels_y
class Lidar(Sensor):
"""
Lidar description. This class can be added to a CarlaSettings object to add
a Lidar to the player vehicle.
"""
def __init__(self, name, **kwargs):
super(Lidar, self).__init__(name, sensor_type="LIDAR_RAY_CAST")
self.Channels = 32
self.Range = 50.0
self.PointsPerSecond = 56000
self.RotationFrequency = 10.0
self.UpperFovLimit = 10.0
self.LowerFovLimit = -30.0
self.ShowDebugPoints = False
self.set(**kwargs)
# ==============================================================================
# -- SensorData ----------------------------------------------------------------
# ==============================================================================
class SensorData(object):
"""Base class for sensor data returned from the server."""
def __init__(self, frame_number):
self.frame_number = frame_number
class Image(SensorData):
"""Data generated by a Camera."""
def __init__(self, frame_number, width, height, image_type, fov, raw_data):
super(Image, self).__init__(frame_number=frame_number)
assert len(raw_data) == 4 * width * height
self.width = width
self.height = height
self.type = image_type
self.fov = fov
self.raw_data = raw_data
self._converted_data = None
@property
def data(self):
"""
Lazy initialization for data property, stores converted data in its
default format.
"""
if self._converted_data is None:
from . import image_converter
if self.type == 'Depth':
self._converted_data = image_converter.depth_to_array(self)
elif self.type == 'SemanticSegmentation':
self._converted_data = image_converter.labels_to_array(self)
else:
self._converted_data = image_converter.to_rgb_array(self)
return self._converted_data
def save_to_disk(self, filename):
"""Save this image to disk (requires PIL installed)."""
filename = _append_extension(filename, '.png')
try:
from PIL import Image as PImage
except ImportError:
raise RuntimeError(
'cannot import PIL, make sure pillow package is installed')
image = PImage.frombytes(
mode='RGBA',
size=(self.width, self.height),
data=self.raw_data,
decoder_name='raw')
color = image.split()
image = PImage.merge("RGB", color[2::-1])
folder = os.path.dirname(filename)
if not os.path.isdir(folder):
os.makedirs(folder)
image.save(filename)
class PointCloud(SensorData):
"""A list of points."""
def __init__(self, frame_number, array, color_array=None):
super(PointCloud, self).__init__(frame_number=frame_number)
self._array = array
self._color_array = color_array
self._has_colors = color_array is not None
@property
def array(self):
"""The numpy array holding the point-cloud.
3D points format for n elements:
[ [X0,Y0,Z0],
...,
[Xn,Yn,Zn] ]
"""
return self._array
@property
def color_array(self):
"""The numpy array holding the colors corresponding to each point.
It is None if there are no colors.
Colors format for n elements:
[ [R0,G0,B0],
...,
[Rn,Gn,Bn] ]
"""
return self._color_array
def has_colors(self):
"""Return whether the points have color."""
return self._has_colors
def apply_transform(self, transformation):
"""Modify the PointCloud instance transforming its points"""
self._array = transformation.transform_points(self._array)
def save_to_disk(self, filename):
"""Save this point-cloud to disk as PLY format."""
filename = _append_extension(filename, '.ply')
def construct_ply_header():
"""Generates a PLY header given a total number of 3D points and
coloring property if specified
"""
points = len(self) # Total point number
header = ['ply',
'format ascii 1.0',
'element vertex {}',
'property float32 x',
'property float32 y',
'property float32 z',
'property uchar diffuse_red',
'property uchar diffuse_green',
'property uchar diffuse_blue',
'end_header']
if not self._has_colors:
return '\n'.join(header[0:6] + [header[-1]]).format(points)
return '\n'.join(header).format(points)
if not self._has_colors:
ply = '\n'.join(['{:.2f} {:.2f} {:.2f}'.format(
*p) for p in self._array.tolist()])
else:
points_3d = numpy.concatenate(
(self._array, self._color_array), axis=1)
ply = '\n'.join(['{:.2f} {:.2f} {:.2f} {:.0f} {:.0f} {:.0f}'
.format(*p) for p in points_3d.tolist()])
# Create folder to save if does not exist.
folder = os.path.dirname(filename)
if not os.path.isdir(folder):
os.makedirs(folder)
# Open the file and save with the specific PLY format.
with open(filename, 'w+') as ply_file:
ply_file.write('\n'.join([construct_ply_header(), ply, '']))
def __len__(self):
return len(self.array)
def __getitem__(self, key):
color = None if self._color_array is None else Color(
*self._color_array[key])
return Point(*self._array[key], color=color)
def __iter__(self):
class PointIterator(object):
"""Iterator class for PointCloud"""
def __init__(self, point_cloud):
self.point_cloud = point_cloud
self.index = -1
def __next__(self):
self.index += 1
if self.index >= len(self.point_cloud):
raise StopIteration
return self.point_cloud[self.index]
def next(self):
return self.__next__()
return PointIterator(self)
def __str__(self):
return str(self.array)
class LidarMeasurement(SensorData):
"""Data generated by a Lidar."""
def __init__(self, frame_number, horizontal_angle, channels, point_count_by_channel, point_cloud):
super(LidarMeasurement, self).__init__(frame_number=frame_number)
assert numpy.sum(point_count_by_channel) == len(point_cloud.array)
self.horizontal_angle = horizontal_angle
self.channels = channels
self.point_count_by_channel = point_count_by_channel
self.point_cloud = point_cloud
@property
def data(self):
"""The numpy array holding the point-cloud.
3D points format for n elements:
[ [X0,Y0,Z0],
...,
[Xn,Yn,Zn] ]
"""
return self.point_cloud.array
def save_to_disk(self, filename):
"""Save point-cloud to disk as PLY format."""
self.point_cloud.save_to_disk(filename)

View File

@ -1,123 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""CARLA Settings"""
import io
import random
import sys
if sys.version_info >= (3, 0):
from configparser import ConfigParser
else:
from ConfigParser import RawConfigParser as ConfigParser
from . import sensor as carla_sensor
MAX_NUMBER_OF_WEATHER_IDS = 14
class CarlaSettings(object):
"""
The CarlaSettings object controls the settings of an episode. The __str__
method retrieves an str with a CarlaSettings.ini file contents.
"""
def __init__(self, **kwargs):
# [CARLA/Server]
self.SynchronousMode = True
self.SendNonPlayerAgentsInfo = False
self.DisableRendering = False
# [CARLA/QualitySettings]
self.QualityLevel = 'Epic'
# [CARLA/LevelSettings]
self.PlayerVehicle = None
self.NumberOfVehicles = 20
self.NumberOfPedestrians = 30
self.WeatherId = 1
self.SeedVehicles = None
self.SeedPedestrians = None
self.DisableTwoWheeledVehicles = False
self.set(**kwargs)
self._sensors = []
def set(self, **kwargs):
for key, value in kwargs.items():
if not hasattr(self, key):
raise ValueError('CarlaSettings: no key named %r' % key)
setattr(self, key, value)
def randomize_seeds(self):
"""
Randomize the seeds of the new episode's pseudo-random number
generators.
"""
self.SeedVehicles = random.getrandbits(16)
self.SeedPedestrians = random.getrandbits(16)
def randomize_weather(self):
"""Randomized the WeatherId."""
self.WeatherId = random.randint(0, MAX_NUMBER_OF_WEATHER_IDS)
def add_sensor(self, sensor):
"""Add a sensor to the player vehicle (see sensor.py)."""
if not isinstance(sensor, carla_sensor.Sensor):
raise ValueError('Sensor not supported')
self._sensors.append(sensor)
def __str__(self):
"""Converts this object to an INI formatted string."""
ini = ConfigParser()
ini.optionxform = str
S_SERVER = 'CARLA/Server'
S_QUALITY = 'CARLA/QualitySettings'
S_LEVEL = 'CARLA/LevelSettings'
S_SENSOR = 'CARLA/Sensor'
def get_attribs(obj):
return [a for a in dir(obj) if not a.startswith('_') and not callable(getattr(obj, a))]
def add_section(section, obj, keys):
for key in keys:
if hasattr(obj, key) and getattr(obj, key) is not None:
if not ini.has_section(section):
ini.add_section(section)
ini.set(section, key, str(getattr(obj, key)))
add_section(S_SERVER, self, [
'SynchronousMode',
'SendNonPlayerAgentsInfo',
'DisableRendering'])
add_section(S_QUALITY, self, [
'QualityLevel'])
add_section(S_LEVEL, self, [
'NumberOfVehicles',
'NumberOfPedestrians',
'WeatherId',
'SeedVehicles',
'SeedPedestrians',
'DisableTwoWheeledVehicles'])
ini.add_section(S_SENSOR)
ini.set(S_SENSOR, 'Sensors', ','.join(s.SensorName for s in self._sensors))
for sensor_def in self._sensors:
section = S_SENSOR + '/' + sensor_def.SensorName
add_section(section, sensor_def, get_attribs(sensor_def))
if sys.version_info >= (3, 0):
text = io.StringIO()
else:
text = io.BytesIO()
ini.write(text)
return text.getvalue().replace(' = ', '=')

View File

@ -1,97 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""Basic TCP client."""
import logging
import socket
import struct
import time
class TCPConnectionError(Exception):
pass
class TCPClient(object):
"""
Basic networking client for TCP connections. Errors occurred during
networking operations are raised as TCPConnectionError.
Received messages are expected to be prepended by a int32 defining the
message size. Messages are sent following this convention.
"""
def __init__(self, host, port, timeout):
self._host = host
self._port = port
self._timeout = timeout
self._socket = None
self._logprefix = '(%s:%s) ' % (self._host, self._port)
def connect(self, connection_attempts=10):
"""Try to establish a connection to the given host:port."""
connection_attempts = max(1, connection_attempts)
error = None
for attempt in range(1, connection_attempts + 1):
try:
self._socket = socket.create_connection(address=(self._host, self._port), timeout=self._timeout)
self._socket.settimeout(self._timeout)
logging.debug('%sconnected', self._logprefix)
return
except socket.error as exception:
error = exception
logging.debug('%sconnection attempt %d: %s', self._logprefix, attempt, error)
time.sleep(1)
self._reraise_exception_as_tcp_error('failed to connect', error)
def disconnect(self):
"""Disconnect any active connection."""
if self._socket is not None:
logging.debug('%sdisconnecting', self._logprefix)
self._socket.close()
self._socket = None
def connected(self):
"""Return whether there is an active connection."""
return self._socket is not None
def write(self, message):
"""Send message to the server."""
if self._socket is None:
raise TCPConnectionError(self._logprefix + 'not connected')
header = struct.pack('<L', len(message))
try:
self._socket.sendall(header + message)
except socket.error as exception:
self._reraise_exception_as_tcp_error('failed to write data', exception)
def read(self):
"""Read a message from the server."""
header = self._read_n(4)
if not header:
raise TCPConnectionError(self._logprefix + 'connection closed')
length = struct.unpack('<L', header)[0]
data = self._read_n(length)
return data
def _read_n(self, length):
"""Read n bytes from the socket."""
if self._socket is None:
raise TCPConnectionError(self._logprefix + 'not connected')
buf = bytes()
while length > 0:
try:
data = self._socket.recv(length)
except socket.error as exception:
self._reraise_exception_as_tcp_error('failed to read data', exception)
if not data:
raise TCPConnectionError(self._logprefix + 'connection closed')
buf += data
length -= len(data)
return buf
def _reraise_exception_as_tcp_error(self, message, exception):
raise TCPConnectionError('%s%s: %s' % (self._logprefix, message, exception))

View File

@ -1,137 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import math
from collections import namedtuple
try:
import numpy
except ImportError:
raise RuntimeError(
'cannot import numpy, make sure numpy package is installed.')
try:
from . import carla_server_pb2 as carla_protocol
except ImportError:
raise RuntimeError('cannot import "carla_server_pb2.py", run '
'the protobuf compiler to generate this file')
Translation = namedtuple('Translation', 'x y z')
Translation.__new__.__defaults__ = (0.0, 0.0, 0.0)
Rotation = namedtuple('Rotation', 'pitch yaw roll')
Rotation.__new__.__defaults__ = (0.0, 0.0, 0.0)
Scale = namedtuple('Scale', 'x y z')
Scale.__new__.__defaults__ = (1.0, 1.0, 1.0)
class Transform(object):
"""A 3D transformation.
The transformation is applied in the order: scale, rotation, translation.
"""
def __init__(self, *args, **kwargs):
if 'matrix' in kwargs:
self.matrix = kwargs['matrix']
return
if isinstance(args[0], carla_protocol.Transform):
args = [
Translation(
args[0].location.x,
args[0].location.y,
args[0].location.z),
Rotation(
args[0].rotation.pitch,
args[0].rotation.yaw,
args[0].rotation.roll)
]
self.matrix = numpy.matrix(numpy.identity(4))
self.set(*args, **kwargs)
def set(self, *args):
"""Builds the transform matrix given a Translate, Rotation
and Scale.
"""
translation = Translation()
rotation = Rotation()
scale = Scale()
if len(args) > 3:
raise ValueError("'Transform' accepts 3 values as maximum.")
def get_single_obj_type(obj_type):
"""Returns the unique object contained in the
arguments lists that is instance of 'obj_type'.
"""
obj = [x for x in args if isinstance(x, obj_type)]
if len(obj) > 1:
raise ValueError("Transform only accepts one instances of " +
str(obj_type) + " as a parameter")
elif not obj:
# Create an instance of the type that is 'obj_type'
return obj_type()
return obj[0]
translation = get_single_obj_type(Translation)
rotation = get_single_obj_type(Rotation)
scale = get_single_obj_type(Scale)
for param in args:
if not isinstance(param, Translation) and \
not isinstance(param, Rotation) and \
not isinstance(param, Scale):
raise TypeError(
"'" + str(type(param)) + "' type not match with \
'Translation', 'Rotation' or 'Scale'")
# Transformation matrix
cy = math.cos(numpy.radians(rotation.yaw))
sy = math.sin(numpy.radians(rotation.yaw))
cr = math.cos(numpy.radians(rotation.roll))
sr = math.sin(numpy.radians(rotation.roll))
cp = math.cos(numpy.radians(rotation.pitch))
sp = math.sin(numpy.radians(rotation.pitch))
self.matrix[0, 3] = translation.x
self.matrix[1, 3] = translation.y
self.matrix[2, 3] = translation.z
self.matrix[0, 0] = scale.x * (cp * cy)
self.matrix[0, 1] = scale.y * (cy * sp * sr - sy * cr)
self.matrix[0, 2] = -scale.z * (cy * sp * cr + sy * sr)
self.matrix[1, 0] = scale.x * (sy * cp)
self.matrix[1, 1] = scale.y * (sy * sp * sr + cy * cr)
self.matrix[1, 2] = scale.z * (cy * sr - sy * sp * cr)
self.matrix[2, 0] = scale.x * (sp)
self.matrix[2, 1] = -scale.y * (cp * sr)
self.matrix[2, 2] = scale.z * (cp * cr)
def inverse(self):
"""Return the inverse transform."""
return Transform(matrix=numpy.linalg.inv(self.matrix))
def transform_points(self, points):
"""
Given a 4x4 transformation matrix, transform an array of 3D points.
Expected point foramt: [[X0,Y0,Z0],..[Xn,Yn,Zn]]
"""
# Needed foramt: [[X0,..Xn],[Z0,..Zn],[Z0,..Zn]]. So let's transpose
# the point matrix.
points = points.transpose()
# Add 1s row: [[X0..,Xn],[Y0..,Yn],[Z0..,Zn],[1,..1]]
points = numpy.append(points, numpy.ones((1, points.shape[1])), axis=0)
# Point transformation
points = self.matrix * points
# Return all but last row
return points[0:3].transpose()
def __mul__(self, other):
return Transform(matrix=numpy.dot(self.matrix, other.matrix))
def __str__(self):
return str(self.matrix)

View File

@ -1,68 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import datetime
import sys
from contextlib import contextmanager
@contextmanager
def make_connection(client_type, *args, **kwargs):
"""Context manager to create and connect a networking client object."""
client = None
try:
client = client_type(*args, **kwargs)
client.connect()
yield client
finally:
if client is not None:
client.disconnect()
class StopWatch(object):
def __init__(self):
self.start = datetime.datetime.now()
self.end = None
def restart(self):
self.start = datetime.datetime.now()
self.end = None
def stop(self):
self.end = datetime.datetime.now()
def seconds(self):
return (self.end - self.start).total_seconds()
def milliseconds(self):
return 1000.0 * self.seconds()
def to_hex_str(header):
return ':'.join('{:02x}'.format(ord(c)) for c in header)
if sys.version_info >= (3, 3):
import shutil
def print_over_same_line(text):
terminal_width = shutil.get_terminal_size((80, 20)).columns
empty_space = max(0, terminal_width - len(text))
sys.stdout.write('\r' + text + empty_space * ' ')
sys.stdout.flush()
else:
# Workaround for older Python versions.
def print_over_same_line(text):
line_length = max(print_over_same_line.last_line_length, len(text))
empty_space = max(0, line_length - len(text))
sys.stdout.write('\r' + text + empty_space * ' ')
sys.stdout.flush()
print_over_same_line.last_line_length = line_length
print_over_same_line.last_line_length = 0

View File

@ -1,250 +0,0 @@
#!/usr/bin/env python3
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""Basic CARLA client example."""
from __future__ import print_function
import argparse
import logging
import random
import time
from carla.client import make_carla_client
from carla.sensor import Camera, Lidar
from carla.settings import CarlaSettings
from carla.tcp import TCPConnectionError
from carla.util import print_over_same_line
def run_carla_client(args):
# Here we will run 3 episodes with 300 frames each.
number_of_episodes = 3
frames_per_episode = 300
# We assume the CARLA server is already waiting for a client to connect at
# host:port. To create a connection we can use the `make_carla_client`
# context manager, it creates a CARLA client object and starts the
# connection. It will throw an exception if something goes wrong. The
# context manager makes sure the connection is always cleaned up on exit.
with make_carla_client(args.host, args.port) as client:
print('CarlaClient connected')
for episode in range(0, number_of_episodes):
# Start a new episode.
if args.settings_filepath is None:
# Create a CarlaSettings object. This object is a wrapper around
# the CarlaSettings.ini file. Here we set the configuration we
# want for the new episode.
settings = CarlaSettings()
settings.set(
SynchronousMode=True,
SendNonPlayerAgentsInfo=True,
NumberOfVehicles=20,
NumberOfPedestrians=40,
WeatherId=random.choice([1, 3, 7, 8, 14]),
QualityLevel=args.quality_level)
settings.randomize_seeds()
# Now we want to add a couple of cameras to the player vehicle.
# We will collect the images produced by these cameras every
# frame.
# The default camera captures RGB images of the scene.
camera0 = Camera('CameraRGB')
# Set image resolution in pixels.
camera0.set_image_size(800, 600)
# Set its position relative to the car in meters.
camera0.set_position(0.30, 0, 1.30)
settings.add_sensor(camera0)
# Let's add another camera producing ground-truth depth.
camera1 = Camera('CameraDepth', PostProcessing='Depth')
camera1.set_image_size(800, 600)
camera1.set_position(0.30, 0, 1.30)
settings.add_sensor(camera1)
if args.lidar:
lidar = Lidar('Lidar32')
lidar.set_position(0, 0, 2.50)
lidar.set_rotation(0, 0, 0)
lidar.set(
Channels=32,
Range=50,
PointsPerSecond=100000,
RotationFrequency=10,
UpperFovLimit=10,
LowerFovLimit=-30)
settings.add_sensor(lidar)
else:
# Alternatively, we can load these settings from a file.
with open(args.settings_filepath, 'r') as fp:
settings = fp.read()
# Now we load these settings into the server. The server replies
# with a scene description containing the available start spots for
# the player. Here we can provide a CarlaSettings object or a
# CarlaSettings.ini file as string.
scene = client.load_settings(settings)
# Choose one player start at random.
number_of_player_starts = len(scene.player_start_spots)
player_start = random.randint(0, max(0, number_of_player_starts - 1))
# Notify the server that we want to start the episode at the
# player_start index. This function blocks until the server is ready
# to start the episode.
print('Starting new episode at %r...' % scene.map_name)
client.start_episode(player_start)
# Iterate every frame in the episode.
for frame in range(0, frames_per_episode):
# Read the data produced by the server this frame.
measurements, sensor_data = client.read_data()
# Print some of the measurements.
print_measurements(measurements)
# Save the images to disk if requested.
if args.save_images_to_disk:
for name, measurement in sensor_data.items():
filename = args.out_filename_format.format(episode, name, frame)
measurement.save_to_disk(filename)
# We can access the encoded data of a given image as numpy
# array using its "data" property. For instance, to get the
# depth value (normalized) at pixel X, Y
#
# depth_array = sensor_data['CameraDepth'].data
# value_at_pixel = depth_array[Y, X]
#
# Now we have to send the instructions to control the vehicle.
# If we are in synchronous mode the server will pause the
# simulation until we send this control.
if not args.autopilot:
client.send_control(
steer=random.uniform(-1.0, 1.0),
throttle=0.5,
brake=0.0,
hand_brake=False,
reverse=False)
else:
# Together with the measurements, the server has sent the
# control that the in-game autopilot would do this frame. We
# can enable autopilot by sending back this control to the
# server. We can modify it if wanted, here for instance we
# will add some noise to the steer.
control = measurements.player_measurements.autopilot_control
control.steer += random.uniform(-0.1, 0.1)
client.send_control(control)
def print_measurements(measurements):
number_of_agents = len(measurements.non_player_agents)
player_measurements = measurements.player_measurements
message = 'Vehicle at ({pos_x:.1f}, {pos_y:.1f}), '
message += '{speed:.0f} km/h, '
message += 'Collision: {{vehicles={col_cars:.0f}, pedestrians={col_ped:.0f}, other={col_other:.0f}}}, '
message += '{other_lane:.0f}% other lane, {offroad:.0f}% off-road, '
message += '({agents_num:d} non-player agents in the scene)'
message = message.format(
pos_x=player_measurements.transform.location.x,
pos_y=player_measurements.transform.location.y,
speed=player_measurements.forward_speed * 3.6, # m/s -> km/h
col_cars=player_measurements.collision_vehicles,
col_ped=player_measurements.collision_pedestrians,
col_other=player_measurements.collision_other,
other_lane=100 * player_measurements.intersection_otherlane,
offroad=100 * player_measurements.intersection_offroad,
agents_num=number_of_agents)
print_over_same_line(message)
def main():
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host server (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-a', '--autopilot',
action='store_true',
help='enable autopilot')
argparser.add_argument(
'-l', '--lidar',
action='store_true',
help='enable Lidar')
argparser.add_argument(
'-q', '--quality-level',
choices=['Low', 'Epic'],
type=lambda s: s.title(),
default='Epic',
help='graphics quality level, a lower level makes the simulation run considerably faster.')
argparser.add_argument(
'-i', '--images-to-disk',
action='store_true',
dest='save_images_to_disk',
help='save images (and Lidar data if active) to disk')
argparser.add_argument(
'-c', '--carla-settings',
metavar='PATH',
dest='settings_filepath',
default=None,
help='Path to a "CarlaSettings.ini" file')
args = argparser.parse_args()
log_level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
args.out_filename_format = '_out/episode_{:0>4d}/{:s}/{:0>6d}'
while True:
try:
run_carla_client(args)
print('Done.')
return
except TCPConnectionError as error:
logging.error(error)
time.sleep(1)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')

View File

@ -1,92 +0,0 @@
#!/usr/bin/env python3
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import argparse
import logging
from carla.driving_benchmark import run_driving_benchmark
from carla.driving_benchmark.experiment_suites import CoRL2017
from carla.driving_benchmark.experiment_suites import BasicExperimentSuite
from carla.agent import ForwardAgent
if __name__ == '__main__':
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='verbose',
help='print some extra status information')
argparser.add_argument(
'-db', '--debug',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host server (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-c', '--city-name',
metavar='C',
default='Town01',
help='The town that is going to be used on benchmark'
+ '(needs to match active town in server, options: Town01 or Town02)')
argparser.add_argument(
'-n', '--log_name',
metavar='T',
default='test',
help='The name of the log file to be created by the benchmark'
)
argparser.add_argument(
'--corl-2017',
action='store_true',
help='If you want to benchmark the corl-2017 instead of the Basic one'
)
argparser.add_argument(
'--continue-experiment',
action='store_true',
help='If you want to continue the experiment with the same name'
)
args = argparser.parse_args()
if args.debug:
log_level = logging.DEBUG
elif args.verbose:
log_level = logging.INFO
else:
log_level = logging.WARNING
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
# We instantiate a forward agent, a simple policy that just set
# acceleration as 0.9 and steering as zero
agent = ForwardAgent()
# We instantiate an experiment suite. Basically a set of experiments
# that are going to be evaluated on this benchmark.
if args.corl_2017:
experiment_suite = CoRL2017(args.city_name)
else:
print (' WARNING: running the basic driving benchmark, to run for CoRL 2017'
' experiment suites, you should run'
' python driving_benchmark_example.py --corl-2017')
experiment_suite = BasicExperimentSuite(args.city_name)
# Now actually run the driving_benchmark
run_driving_benchmark(agent, experiment_suite, args.city_name,
args.log_name, args.continue_experiment,
args.host, args.port)

View File

@ -1,441 +0,0 @@
#!/usr/bin/env python3
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
# Keyboard controlling for CARLA. Please refer to client_example.py for a simpler
# and more documented example.
"""
Welcome to CARLA manual control.
Use ARROWS or WASD keys for control.
W : throttle
S : brake
AD : steer
Q : toggle reverse
Space : hand-brake
P : toggle autopilot
R : restart level
STARTING in a moment...
"""
from __future__ import print_function
import argparse
import logging
import random
import time
try:
import pygame
from pygame.locals import K_DOWN
from pygame.locals import K_LEFT
from pygame.locals import K_RIGHT
from pygame.locals import K_SPACE
from pygame.locals import K_UP
from pygame.locals import K_a
from pygame.locals import K_d
from pygame.locals import K_p
from pygame.locals import K_q
from pygame.locals import K_r
from pygame.locals import K_s
from pygame.locals import K_w
except ImportError:
raise RuntimeError('cannot import pygame, make sure pygame package is installed')
try:
import numpy as np
except ImportError:
raise RuntimeError('cannot import numpy, make sure numpy package is installed')
from carla import image_converter
from carla import sensor
from carla.client import make_carla_client, VehicleControl
from carla.planner.map import CarlaMap
from carla.settings import CarlaSettings
from carla.tcp import TCPConnectionError
from carla.util import print_over_same_line
WINDOW_WIDTH = 800
WINDOW_HEIGHT = 600
MINI_WINDOW_WIDTH = 320
MINI_WINDOW_HEIGHT = 180
def make_carla_settings(args):
"""Make a CarlaSettings object with the settings we need."""
settings = CarlaSettings()
settings.set(
SynchronousMode=False,
SendNonPlayerAgentsInfo=True,
NumberOfVehicles=15,
NumberOfPedestrians=30,
WeatherId=random.choice([1, 3, 7, 8, 14]),
QualityLevel=args.quality_level)
settings.randomize_seeds()
camera0 = sensor.Camera('CameraRGB')
camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
camera0.set_position(2.0, 0.0, 1.4)
camera0.set_rotation(0.0, 0.0, 0.0)
settings.add_sensor(camera0)
camera1 = sensor.Camera('CameraDepth', PostProcessing='Depth')
camera1.set_image_size(MINI_WINDOW_WIDTH, MINI_WINDOW_HEIGHT)
camera1.set_position(2.0, 0.0, 1.4)
camera1.set_rotation(0.0, 0.0, 0.0)
settings.add_sensor(camera1)
camera2 = sensor.Camera('CameraSemSeg', PostProcessing='SemanticSegmentation')
camera2.set_image_size(MINI_WINDOW_WIDTH, MINI_WINDOW_HEIGHT)
camera2.set_position(2.0, 0.0, 1.4)
camera2.set_rotation(0.0, 0.0, 0.0)
settings.add_sensor(camera2)
if args.lidar:
lidar = sensor.Lidar('Lidar32')
lidar.set_position(0, 0, 2.5)
lidar.set_rotation(0, 0, 0)
lidar.set(
Channels=32,
Range=50,
PointsPerSecond=100000,
RotationFrequency=10,
UpperFovLimit=10,
LowerFovLimit=-30)
settings.add_sensor(lidar)
return settings
class Timer(object):
def __init__(self):
self.step = 0
self._lap_step = 0
self._lap_time = time.time()
def tick(self):
self.step += 1
def lap(self):
self._lap_step = self.step
self._lap_time = time.time()
def ticks_per_second(self):
return float(self.step - self._lap_step) / self.elapsed_seconds_since_lap()
def elapsed_seconds_since_lap(self):
return time.time() - self._lap_time
class CarlaGame(object):
def __init__(self, carla_client, args):
self.client = carla_client
self._carla_settings = make_carla_settings(args)
self._timer = None
self._display = None
self._main_image = None
self._mini_view_image1 = None
self._mini_view_image2 = None
self._enable_autopilot = args.autopilot
self._lidar_measurement = None
self._map_view = None
self._is_on_reverse = False
self._display_map = args.map
self._city_name = None
self._map = None
self._map_shape = None
self._map_view = None
self._position = None
self._agent_positions = None
def execute(self):
"""Launch the PyGame."""
pygame.init()
self._initialize_game()
try:
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
return
self._on_loop()
self._on_render()
finally:
pygame.quit()
def _initialize_game(self):
self._on_new_episode()
if self._city_name is not None:
self._map = CarlaMap(self._city_name)
self._map_shape = self._map.map_image.shape
self._map_view = self._map.get_map(WINDOW_HEIGHT)
extra_width = int((WINDOW_HEIGHT/float(self._map_shape[0]))*self._map_shape[1])
self._display = pygame.display.set_mode(
(WINDOW_WIDTH + extra_width, WINDOW_HEIGHT),
pygame.HWSURFACE | pygame.DOUBLEBUF)
else:
self._display = pygame.display.set_mode(
(WINDOW_WIDTH, WINDOW_HEIGHT),
pygame.HWSURFACE | pygame.DOUBLEBUF)
logging.debug('pygame started')
def _on_new_episode(self):
self._carla_settings.randomize_seeds()
self._carla_settings.randomize_weather()
scene = self.client.load_settings(self._carla_settings)
if self._display_map:
self._city_name = scene.map_name
number_of_player_starts = len(scene.player_start_spots)
player_start = np.random.randint(number_of_player_starts)
print('Starting new episode...')
self.client.start_episode(player_start)
self._timer = Timer()
self._is_on_reverse = False
def _on_loop(self):
self._timer.tick()
measurements, sensor_data = self.client.read_data()
self._main_image = sensor_data.get('CameraRGB', None)
self._mini_view_image1 = sensor_data.get('CameraDepth', None)
self._mini_view_image2 = sensor_data.get('CameraSemSeg', None)
self._lidar_measurement = sensor_data.get('Lidar32', None)
# Print measurements every second.
if self._timer.elapsed_seconds_since_lap() > 1.0:
if self._city_name is not None:
# Function to get car position on map.
map_position = self._map.convert_to_pixel([
measurements.player_measurements.transform.location.x,
measurements.player_measurements.transform.location.y,
measurements.player_measurements.transform.location.z])
# Function to get orientation of the road car is in.
lane_orientation = self._map.get_lane_orientation([
measurements.player_measurements.transform.location.x,
measurements.player_measurements.transform.location.y,
measurements.player_measurements.transform.location.z])
self._print_player_measurements_map(
measurements.player_measurements,
map_position,
lane_orientation)
else:
self._print_player_measurements(measurements.player_measurements)
# Plot position on the map as well.
self._timer.lap()
control = self._get_keyboard_control(pygame.key.get_pressed())
# Set the player position
if self._city_name is not None:
self._position = self._map.convert_to_pixel([
measurements.player_measurements.transform.location.x,
measurements.player_measurements.transform.location.y,
measurements.player_measurements.transform.location.z])
self._agent_positions = measurements.non_player_agents
if control is None:
self._on_new_episode()
elif self._enable_autopilot:
self.client.send_control(measurements.player_measurements.autopilot_control)
else:
self.client.send_control(control)
def _get_keyboard_control(self, keys):
"""
Return a VehicleControl message based on the pressed keys. Return None
if a new episode was requested.
"""
if keys[K_r]:
return None
control = VehicleControl()
if keys[K_LEFT] or keys[K_a]:
control.steer = -1.0
if keys[K_RIGHT] or keys[K_d]:
control.steer = 1.0
if keys[K_UP] or keys[K_w]:
control.throttle = 1.0
if keys[K_DOWN] or keys[K_s]:
control.brake = 1.0
if keys[K_SPACE]:
control.hand_brake = True
if keys[K_q]:
self._is_on_reverse = not self._is_on_reverse
if keys[K_p]:
self._enable_autopilot = not self._enable_autopilot
control.reverse = self._is_on_reverse
return control
def _print_player_measurements_map(
self,
player_measurements,
map_position,
lane_orientation):
message = 'Step {step} ({fps:.1f} FPS): '
message += 'Map Position ({map_x:.1f},{map_y:.1f}) '
message += 'Lane Orientation ({ori_x:.1f},{ori_y:.1f}) '
message += '{speed:.2f} km/h, '
message += '{other_lane:.0f}% other lane, {offroad:.0f}% off-road'
message = message.format(
map_x=map_position[0],
map_y=map_position[1],
ori_x=lane_orientation[0],
ori_y=lane_orientation[1],
step=self._timer.step,
fps=self._timer.ticks_per_second(),
speed=player_measurements.forward_speed * 3.6,
other_lane=100 * player_measurements.intersection_otherlane,
offroad=100 * player_measurements.intersection_offroad)
print_over_same_line(message)
def _print_player_measurements(self, player_measurements):
message = 'Step {step} ({fps:.1f} FPS): '
message += '{speed:.2f} km/h, '
message += '{other_lane:.0f}% other lane, {offroad:.0f}% off-road'
message = message.format(
step=self._timer.step,
fps=self._timer.ticks_per_second(),
speed=player_measurements.forward_speed * 3.6,
other_lane=100 * player_measurements.intersection_otherlane,
offroad=100 * player_measurements.intersection_offroad)
print_over_same_line(message)
def _on_render(self):
gap_x = (WINDOW_WIDTH - 2 * MINI_WINDOW_WIDTH) / 3
mini_image_y = WINDOW_HEIGHT - MINI_WINDOW_HEIGHT - gap_x
if self._main_image is not None:
array = image_converter.to_rgb_array(self._main_image)
surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))
self._display.blit(surface, (0, 0))
if self._mini_view_image1 is not None:
array = image_converter.depth_to_logarithmic_grayscale(self._mini_view_image1)
surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))
self._display.blit(surface, (gap_x, mini_image_y))
if self._mini_view_image2 is not None:
array = image_converter.labels_to_cityscapes_palette(
self._mini_view_image2)
surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))
self._display.blit(
surface, (2 * gap_x + MINI_WINDOW_WIDTH, mini_image_y))
if self._lidar_measurement is not None:
lidar_data = np.array(self._lidar_measurement.data[:, :2])
lidar_data *= 2.0
lidar_data += 100.0
lidar_data = np.fabs(lidar_data)
lidar_data = lidar_data.astype(np.int32)
lidar_data = np.reshape(lidar_data, (-1, 2))
#draw lidar
lidar_img_size = (200, 200, 3)
lidar_img = np.zeros(lidar_img_size)
lidar_img[tuple(lidar_data.T)] = (255, 255, 255)
surface = pygame.surfarray.make_surface(lidar_img)
self._display.blit(surface, (10, 10))
if self._map_view is not None:
array = self._map_view
array = array[:, :, :3]
new_window_width = \
(float(WINDOW_HEIGHT) / float(self._map_shape[0])) * \
float(self._map_shape[1])
surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))
w_pos = int(self._position[0]*(float(WINDOW_HEIGHT)/float(self._map_shape[0])))
h_pos = int(self._position[1] *(new_window_width/float(self._map_shape[1])))
pygame.draw.circle(surface, [255, 0, 0, 255], (w_pos, h_pos), 6, 0)
for agent in self._agent_positions:
if agent.HasField('vehicle'):
agent_position = self._map.convert_to_pixel([
agent.vehicle.transform.location.x,
agent.vehicle.transform.location.y,
agent.vehicle.transform.location.z])
w_pos = int(agent_position[0]*(float(WINDOW_HEIGHT)/float(self._map_shape[0])))
h_pos = int(agent_position[1] *(new_window_width/float(self._map_shape[1])))
pygame.draw.circle(surface, [255, 0, 255, 255], (w_pos, h_pos), 4, 0)
self._display.blit(surface, (WINDOW_WIDTH, 0))
pygame.display.flip()
def main():
argparser = argparse.ArgumentParser(
description='CARLA Manual Control Client')
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host server (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-a', '--autopilot',
action='store_true',
help='enable autopilot')
argparser.add_argument(
'-l', '--lidar',
action='store_true',
help='enable Lidar')
argparser.add_argument(
'-q', '--quality-level',
choices=['Low', 'Epic'],
type=lambda s: s.title(),
default='Epic',
help='graphics quality level, a lower level makes the simulation run considerably faster')
argparser.add_argument(
'-m', '--map',
action='store_true',
help='plot the map of the current city')
args = argparser.parse_args()
log_level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
print(__doc__)
while True:
try:
with make_carla_client(args.host, args.port) as client:
game = CarlaGame(client, args)
game.execute()
break
except TCPConnectionError as error:
logging.error(error)
time.sleep(1)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')

View File

@ -1,191 +0,0 @@
#!/usr/bin/env python3
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB), and the INTEL Visual Computing Lab.
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""Basic CARLA client to generate point cloud in PLY format that you
can visualize with MeshLab (meshlab.net) for instance. Please
refer to client_example.py for a simpler and more documented example."""
from __future__ import print_function
import argparse
import logging
import os
import random
import time
from carla.client import make_carla_client
from carla.sensor import Camera
from carla.settings import CarlaSettings
from carla.tcp import TCPConnectionError
from carla.util import print_over_same_line, StopWatch
from carla.image_converter import depth_to_local_point_cloud, to_rgb_array
from carla.transform import Transform
def run_carla_client(host, port, far):
# Here we will run a single episode with 300 frames.
number_of_frames = 3000
frame_step = 100 # Save one image every 100 frames
output_folder = '_out'
image_size = [800, 600]
camera_local_pos = [0.3, 0.0, 1.3] # [X, Y, Z]
camera_local_rotation = [0, 0, 0] # [pitch(Y), yaw(Z), roll(X)]
fov = 70
# Connect with the server
with make_carla_client(host, port) as client:
print('CarlaClient connected')
# Here we load the settings.
settings = CarlaSettings()
settings.set(
SynchronousMode=True,
SendNonPlayerAgentsInfo=False,
NumberOfVehicles=20,
NumberOfPedestrians=40,
WeatherId=random.choice([1, 3, 7, 8, 14]))
settings.randomize_seeds()
camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov)
camera1.set_image_size(*image_size)
camera1.set_position(*camera_local_pos)
camera1.set_rotation(*camera_local_rotation)
settings.add_sensor(camera1)
camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov)
camera2.set_image_size(*image_size)
camera2.set_position(*camera_local_pos)
camera2.set_rotation(*camera_local_rotation)
settings.add_sensor(camera2)
client.load_settings(settings)
# Start at location index id '0'
client.start_episode(0)
# Compute the camera transform matrix
camera_to_car_transform = camera2.get_unreal_transform()
# Iterate every frame in the episode except for the first one.
for frame in range(1, number_of_frames):
# Read the data produced by the server this frame.
measurements, sensor_data = client.read_data()
# Save one image every 'frame_step' frames
if not frame % frame_step:
# Start transformations time mesure.
timer = StopWatch()
# RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]]
image_RGB = to_rgb_array(sensor_data['CameraRGB'])
# 2d to (camera) local 3d
# We use the image_RGB to colorize each 3D point, this is optional.
# "max_depth" is used to keep only the points that are near to the
# camera, meaning 1.0 the farest points (sky)
point_cloud = depth_to_local_point_cloud(
sensor_data['CameraDepth'],
image_RGB,
max_depth=far
)
# (Camera) local 3d to world 3d.
# Get the transform from the player protobuf transformation.
world_transform = Transform(
measurements.player_measurements.transform
)
# Compute the final transformation matrix.
car_to_world_transform = world_transform * camera_to_car_transform
# Car to World transformation given the 3D points and the
# transformation matrix.
point_cloud.apply_transform(car_to_world_transform)
# End transformations time mesure.
timer.stop()
# Save PLY to disk
# This generates the PLY string with the 3D points and the RGB colors
# for each row of the file.
point_cloud.save_to_disk(os.path.join(
output_folder, '{:0>5}.ply'.format(frame))
)
print_message(timer.milliseconds(), len(point_cloud), frame)
client.send_control(
measurements.player_measurements.autopilot_control
)
def print_message(elapsed_time, point_n, frame):
message = ' '.join([
'Transformations took {:>3.0f} ms.',
'Saved {:>6} points to "{:0>5}.ply".'
]).format(elapsed_time, point_n, frame)
print_over_same_line(message)
def check_far(value):
fvalue = float(value)
if fvalue < 0.0 or fvalue > 1.0:
raise argparse.ArgumentTypeError(
"{} must be a float between 0.0 and 1.0")
return fvalue
def main():
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host server (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-f', '--far',
default=0.2,
type=check_far,
help='The maximum save distance of camera-point '
'[0.0 (near), 1.0 (far)] (default: 0.2)')
args = argparser.parse_args()
log_level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
while True:
try:
run_carla_client(host=args.host, port=args.port, far=args.far)
print('\nDone!')
return
except TCPConnectionError as error:
logging.error(error)
time.sleep(1)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('\nClient stoped by user.')

View File

@ -1,6 +0,0 @@
Pillow
numpy
protobuf
pygame
matplotlib
future

View File

@ -1,16 +0,0 @@
from setuptools import setup
# @todo Dependencies are missing.
setup(
name='carla_client',
version='0.8.4',
packages=['carla', 'carla.driving_benchmark', 'carla.agent',
'carla.driving_benchmark.experiment_suites', 'carla.planner'],
license='MIT License',
description='Python API for communicating with the CARLA server.',
url='https://github.com/carla-simulator/carla',
author='The CARLA team',
author_email='carla.simulator@gmail.com',
include_package_data=True
)

View File

@ -1,242 +0,0 @@
#!/usr/bin/env python3
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""A client for benchmarking the CARLA server."""
import argparse
import logging
import os
import random
import sys
import time
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
import carla
from carla import sensor
from carla.client import make_carla_client
from carla.sensor import Camera
from carla.settings import CarlaSettings
from carla.util import StopWatch
TEXT = \
"""===========================
Annotated {count:d} frames.
---------------------------
average = {avg:.2f} FPS
maximum = {max:.2f} FPS
minimum = {min:.2f} FPS
===========================
"""
def make_base_settings():
return CarlaSettings(
WeatherId=1,
SendNonPlayerAgentsInfo=False,
SynchronousMode=False,
NumberOfVehicles=20,
NumberOfPedestrians=30,
SeedVehicles=123456789,
SeedPedestrians=123456789,
QualityLevel='Epic')
def generate_settings_scenario_001():
logging.info('Scenario 001: no sensors')
return make_base_settings()
def generate_settings_scenario_002():
logging.info('Scenario 002: no sensors, no agents at all')
settings = make_base_settings()
settings.set(NumberOfVehicles=0, NumberOfPedestrians=0)
return settings
def generate_settings_scenario_003():
logging.info('Scenario 003: no sensors, no pedestrians')
settings = make_base_settings()
settings.set(NumberOfPedestrians=0)
return settings
def generate_settings_scenario_004():
logging.info('Scenario 004: no sensors, no vehicles')
settings = make_base_settings()
settings.set(NumberOfVehicles=0)
return settings
def generate_settings_scenario_005():
logging.info('Scenario 005: no sensors, hard rain')
settings = make_base_settings()
settings.set(WeatherId=13)
return settings
def generate_settings_scenario_006():
logging.info('Scenario 006: no sensors, sending agents info')
settings = make_base_settings()
settings.set(SendNonPlayerAgentsInfo=True)
return settings
def generate_settings_scenario_007():
logging.info('Scenario 007: single camera RGB')
settings = make_base_settings()
settings.add_sensor(Camera('DefaultRGBCamera'))
return settings
def generate_settings_scenario_008():
logging.info('Scenario 008: single camera Depth')
settings = make_base_settings()
settings.add_sensor(Camera('DefaultDepthCamera', PostProcessing='Depth'))
return settings
def generate_settings_scenario_009():
logging.info('Scenario 009: single camera SemanticSegmentation')
settings = make_base_settings()
settings.add_sensor(Camera('DefaultSemSegCamera', PostProcessing='SemanticSegmentation'))
return settings
def generate_settings_scenario_010():
logging.info('Scenario 010: 3 cameras')
settings = make_base_settings()
settings.add_sensor(Camera('DefaultRGBCamera'))
settings.add_sensor(Camera('DefaultDepthCamera', PostProcessing='Depth'))
settings.add_sensor(Camera('DefaultSemSegCamera', PostProcessing='SemanticSegmentation'))
return settings
class FPSWatch(object):
def __init__(self):
self.stop_watch = StopWatch()
self.sum = 0.0
self.count = 0
self.max = 0.0
self.min = float("inf")
def annotate(self):
self.stop_watch.stop()
fps = 1.0 / self.stop_watch.seconds()
self.sum += fps
self.count += 1
self.max = max(self.max, fps)
self.min = min(self.min, fps)
self.stop_watch.restart()
def __str__(self):
return TEXT.format(
count=self.count,
avg=self.sum/self.count,
max=self.max,
min=self.min)
def run_carla_client(args, settings_generators):
with make_carla_client(args.host, args.port, timeout=25) as client:
for settings_generator in settings_generators:
scene = client.load_settings(settings_generator())
client.start_episode(0)
watch = FPSWatch()
for frame in range(0, 3000):
measurements, sensor_data = client.read_data()
client.send_control(measurements.player_measurements.autopilot_control)
watch.annotate()
print(str(watch))
print('done.')
def main():
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--log',
metavar='LOG_FILE',
default=None,
help='print output to file')
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host server (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-s', '--scenario',
metavar='N',
default=-1,
type=int,
help='benchmark scenario to use')
argparser.add_argument(
'-l', '--list',
action='store_true',
help='list available benchmark scenarios')
args = argparser.parse_args()
logging_config = {
'format': '%(levelname)s: %(message)s',
'level': logging.DEBUG if args.debug else logging.INFO
}
if args.log:
logging_config['filename'] = args.log
logging_config['filemode'] = 'w+'
logging.basicConfig(**logging_config)
self_module = sys.modules[__name__]
generators = sorted(x for x in dir(self_module) if x.startswith('generate_settings_scenario_'))
if args.list:
for generator_name in generators:
getattr(self_module, generator_name)()
return
if args.scenario == -1:
generators_to_use = generators
elif args.scenario < 1 or args.scenario > len(generators):
logging.error('invalid scenario %d', args.scenario)
sys.exit(1)
else:
generators_to_use = [generators[args.scenario - 1]]
settings_generators = [getattr(self_module, x) for x in generators_to_use]
logging.info('listening to server %s:%s', args.host, args.port)
while True:
try:
run_carla_client(args, settings_generators)
return
except AssertionError as assertion:
raise assertion
except Exception as exception:
logging.error('exception: %s', exception)
time.sleep(1)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')

View File

@ -1,180 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""CARLA client console"""
import cmd
import logging
import subprocess
import tempfile
import threading
import time
from carla.client import CarlaClient
from carla.sensor import Camera, Image
from carla.settings import CarlaSettings
class _Control(object):
def __init__(self):
self.c_throttle = 0.0
self.c_steer = 0.0
self.c_brake = 0.0
self.c_hand_brake = False
self.c_reverse = False
def action_list(self):
return [x[2:] for x in dir(self) if x.startswith('c_')]
def kwargs(self):
return dict((x[2:], getattr(self, x)) for x in dir(self) if x.startswith('c_'))
def set(self, line):
control, value = line.split(' ')
control = 'c_' + control
if not hasattr(self, control):
raise ValueError('invalid control: %r' % control[2:])
setattr(self, control, self._parse(type(getattr(self, control)), value))
@staticmethod
def _parse(atype, value):
if atype == bool:
false_keys = ['f', 'false', '0', 'n', 'no', 'disable', 'off']
return value not in false_keys
return atype(value)
def get_default_carla_settings(args):
settings = CarlaSettings(
SynchronousMode=args.synchronous,
SendNonPlayerAgentsInfo=False,
NumberOfVehicles=20,
NumberOfPedestrians=40,
WeatherId=1)
settings.add_sensor(Camera('Camera1'))
return str(settings)
def edit_text(text):
editor = 'vim'
with tempfile.NamedTemporaryFile('w+', suffix='.ini') as fp:
fp.write(text)
fp.flush()
try:
if 0 != subprocess.run([editor, fp.name]).returncode:
print('Cancelled.')
return None
except FileNotFoundError:
logging.error('error opening text editor, is %r installed?', editor)
return None
fp.seek(0)
return fp.read()
class CarlaClientConsole(cmd.Cmd):
def __init__(self, args):
cmd.Cmd.__init__(self)
self.args = args
self.prompt = '\x1b[1;34m%s\x1b[0m ' % '(carla)'
self.client = CarlaClient(args.host, args.port)
self.settings = get_default_carla_settings(args)
self.print_measurements = False
self.control = _Control()
self.thread = threading.Thread(target=self._agent_thread_worker)
self.done = False
self.thread.start()
def cleanup(self):
self.do_disconnect()
self.done = True
if self.thread.is_alive():
self.thread.join()
def default(self, line):
logging.error('unknown command \'%s\'!', line)
def emptyline(self):
pass
def precmd(self, line):
return line.strip().lower()
def can_exit(self):
return True
def do_exit(self, line=None):
"""Exit the console."""
return True
def do_eof(self, line=None):
"""Exit the console."""
print('exit')
return self.do_exit(line)
def help_help(self):
print('usage: help [topic]')
def do_disconnect(self, line=None):
"""Disconnect from the server."""
self.client.disconnect()
def do_new_episode(self, line=None):
"""Request a new episode. Connect to the server if not connected."""
try:
self.control = _Control()
if not self.client.connected():
self.client.connect()
self.client.load_settings(self.settings)
self.client.start_episode(0)
logging.info('new episode started')
except Exception as exception:
logging.error(exception)
def do_control(self, line=None):
"""Set control message:\nusage: control [reset|<param> <value>]\n(e.g., control throttle 0.5)"""
try:
if line == 'reset':
self.control = _Control()
else:
self.control.set(line)
logging.debug('control: %s', self.control.kwargs())
except Exception as exception:
logging.error(exception)
def complete_control(self, text, *args, **kwargs):
options = self.control.action_list()
options.append('reset')
return [x + ' ' for x in options if x.startswith(text)]
def do_settings(self, line=None):
"""Open a text editor to edit CARLA settings."""
result = edit_text(self.settings)
if result is not None:
self.settings = result
def do_print_measurements(self, line):
"""Print received measurements to console.\nusage: print_measurements [t/f]"""
self.print_measurements = True if not line else _Control._parse(bool, line)
def _agent_thread_worker(self):
filename = '_images/console/camera_{:0>3d}/image_{:0>8d}.png'
while not self.done:
try:
measurements, sensor_data = self.client.read_data()
if self.print_measurements:
print(measurements)
if self.args.images_to_disk:
images = [x for x in sensor_data.values() if isinstance(x, Image)]
for n, image in enumerate(images):
path = filename.format(n, measurements.game_timestamp)
image.save_to_disk(path)
self.client.send_control(**self.control.kwargs())
except Exception as exception:
# logging.exception(exception)
time.sleep(1)

View File

@ -1,130 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import logging
import random
import suite
import carla
from carla.client import CarlaClient
from carla.sensor import Camera, Image
from carla.sensor import Lidar, LidarMeasurement
from carla.settings import CarlaSettings
from carla.util import make_connection
class _BasicTestBase(suite.CarlaServerTest):
def run_carla_client(self, carla_settings, number_of_episodes, number_of_frames, use_autopilot_control=None):
with make_connection(CarlaClient, self.args.host, self.args.port, timeout=15) as client:
logging.info('CarlaClient connected, running %d episodes', number_of_episodes)
for _ in range(0, number_of_episodes):
carla_settings.randomize_seeds()
carla_settings.randomize_weather()
logging.debug('sending CarlaSettings:\n%s', carla_settings)
logging.info('new episode requested')
scene = client.load_settings(carla_settings)
number_of_player_starts = len(scene.player_start_spots)
player_start = random.randint(0, max(0, number_of_player_starts - 1))
logging.info(
'start episode at %d/%d player start (%d frames)',
player_start,
number_of_player_starts,
number_of_frames)
client.start_episode(player_start)
if use_autopilot_control is None:
use_autopilot_control = (random.random() < 0.5)
reverse = (random.random() < 0.2)
for _ in range(0, number_of_frames):
logging.debug('reading measurements...')
measurements, sensor_data = client.read_data()
images = [x for x in sensor_data.values() if isinstance(x, Image)]
number_of_agents = len(measurements.non_player_agents)
logging.debug('received data of %d agents', number_of_agents)
logging.debug('received %d images', len(images))
if len(sensor_data) != len(carla_settings._sensors):
raise RuntimeError('received %d, expected %d' % (len(sensor_data), len(carla_settings._sensors)))
logging.debug('sending control...')
control = measurements.player_measurements.autopilot_control
if not use_autopilot_control:
control.steer = random.uniform(-1.0, 1.0)
control.throttle = 0.3
control.hand_brake = False
control.reverse = reverse
client.send_control(
steer=control.steer,
throttle=control.throttle,
brake=control.brake,
hand_brake=control.hand_brake,
reverse=control.reverse)
class UseCase(_BasicTestBase):
def run(self):
settings = CarlaSettings()
settings.add_sensor(Camera('DefaultCamera'))
self.run_carla_client(settings, 5, 200)
class NoCamera(_BasicTestBase):
def run(self):
settings = CarlaSettings()
self.run_carla_client(settings, 3, 200)
class TwoCameras(_BasicTestBase):
def run(self):
settings = CarlaSettings()
settings.add_sensor(Camera('DefaultCamera'))
camera2 = Camera('Camera2')
camera2.set(PostProcessing='Depth', FOV=120)
camera2.set_image_size(1924, 1028)
settings.add_sensor(camera2)
self.run_carla_client(settings, 3, 100)
class SynchronousMode(_BasicTestBase):
def run(self):
settings = CarlaSettings(SynchronousMode=True)
settings.add_sensor(Camera('DefaultCamera'))
self.run_carla_client(settings, 3, 200)
class GetAgentsInfo(_BasicTestBase):
def run(self):
settings = CarlaSettings()
settings.set(
SynchronousMode=True,
SendNonPlayerAgentsInfo=True,
NumberOfVehicles=60,
NumberOfPedestrians=90)
settings.add_sensor(Camera('DefaultCamera'))
self.run_carla_client(settings, 3, 100)
class LongEpisode(_BasicTestBase):
def run(self):
settings = CarlaSettings()
settings.add_sensor(Camera('DefaultCamera'))
self.run_carla_client(settings, 1, 2000, use_autopilot_control=True)
class LidarTest(_BasicTestBase):
def run(self):
settings = CarlaSettings()
settings.add_sensor(Lidar('DefaultLidar'))
self.run_carla_client(settings, 3, 100)
class SpeedLowQuality(_BasicTestBase):
def run(self):
settings = CarlaSettings(QualityLevel='Low')
settings.add_sensor(Lidar('DefaultLidar'))
settings.add_sensor(Camera('DefaultCamera'))
settings.add_sensor(Camera('DefaultDepth', PostProcessing='Depth'))
settings.add_sensor(Camera('DefaultSemSeg', PostProcessing='SemanticSegmentation'))
self.run_carla_client(settings, 3, 200)

View File

@ -1,10 +0,0 @@
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
class CarlaServerTest(object):
def __init__(self, args):
self.args = args

View File

@ -1,186 +0,0 @@
#!/usr/bin/env python3
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""A CARLA client for testing."""
import argparse
import logging
import os
import random
import sys
import time
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
import carla
from carla import sensor
from carla.client import CarlaClient
from carla.settings import CarlaSettings
from carla.tcp import TCPClient
from carla.util import make_connection
import console
def run_carla_client(args):
with make_connection(CarlaClient, args.host, args.port, timeout=15) as client:
logging.info('CarlaClient connected')
filename = '_out/test_episode_{:0>4d}/{:s}/{:0>6d}'
frames_per_episode = 300
episode = 0
while True:
episode += 1
settings = CarlaSettings()
settings.set(SendNonPlayerAgentsInfo=True, SynchronousMode=args.synchronous)
settings.randomize_seeds()
camera = sensor.Camera('DefaultCamera')
camera.set_image_size(300, 200) # Do not change this, hard-coded in test.
settings.add_sensor(camera)
lidar = sensor.Lidar('DefaultLidar')
settings.add_sensor(lidar)
logging.debug('sending CarlaSettings:\n%s', settings)
logging.info('new episode requested')
scene = client.load_settings(settings)
number_of_player_starts = len(scene.player_start_spots)
player_start = random.randint(0, max(0, number_of_player_starts - 1))
logging.info(
'start episode at %d/%d player start (%d frames)',
player_start,
number_of_player_starts,
frames_per_episode)
client.start_episode(player_start)
use_autopilot_control = (random.random() < 0.5)
reverse = (random.random() < 0.2)
for frame in range(0, frames_per_episode):
logging.debug('reading measurements...')
measurements, sensor_data = client.read_data()
images = [x for x in sensor_data.values() if isinstance(x, sensor.Image)]
logging.debug('received data of %d agents', len(measurements.non_player_agents))
if len(images) > 0:
assert (images[0].width, images[0].height) == (camera.ImageSizeX, camera.ImageSizeY)
if args.images_to_disk:
for name, data in sensor_data.items():
data.save_to_disk(filename.format(episode, name, frame))
logging.debug('sending control...')
control = measurements.player_measurements.autopilot_control
if not use_autopilot_control:
control.steer = random.uniform(-1.0, 1.0)
control.throttle = 0.3
control.hand_brake = False
control.reverse = reverse
client.send_control(
steer=control.steer,
throttle=control.throttle,
brake=control.brake,
hand_brake=control.hand_brake,
reverse=control.reverse)
def main():
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--log',
metavar='LOG_FILE',
default=None,
help='print output to file')
argparser.add_argument(
'--host',
metavar='H',
default='127.0.0.1',
help='IP of the host server (default: 127.0.0.1)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-s', '--synchronous',
action='store_true',
help='enable synchronous mode')
argparser.add_argument(
'-i', '--images-to-disk',
action='store_true',
help='save images to disk')
argparser.add_argument(
'--echo',
action='store_true',
help='start a client that just echoes what the server sends')
argparser.add_argument(
'-c', '--console',
action='store_true',
help='start the client console')
args = argparser.parse_args()
name = 'echo_client: ' if args.echo else 'carla_client: '
logging_config = {
'format': name + '%(levelname)s: %(message)s',
'level': logging.DEBUG if args.debug else logging.INFO
}
if args.log:
logging_config['filename'] = args.log
logging_config['filemode'] = 'w+'
logging.basicConfig(**logging_config)
logging.info('listening to server %s:%s', args.host, args.port)
if args.console:
cmd = console.CarlaClientConsole(args)
try:
cmd.cmdloop()
finally:
cmd.cleanup()
return
while True:
try:
if args.echo:
with make_connection(TCPClient, args.host, args.port, timeout=15) as client:
while True:
logging.info('reading...')
data = client.read()
if not data:
raise RuntimeError('failed to read data from server')
logging.info('writing...')
client.write(data)
else:
run_carla_client(args)
except AssertionError as assertion:
raise assertion
except Exception as exception:
logging.error('exception: %s', exception)
time.sleep(1)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')

View File

@ -1,168 +0,0 @@
#!/usr/bin/env python3
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB), and the INTEL Visual Computing Lab.
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""Client that runs two servers simultaneously to test repeatability."""
import argparse
import logging
import os
import random
import sys
import time
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from carla.client import make_carla_client
from carla.sensor import Camera, Image
from carla.settings import CarlaSettings
from carla.tcp import TCPConnectionError
def run_carla_clients(args):
filename = '_images_repeatability/server{:d}/{:0>6d}.png'
with make_carla_client(args.host1, args.port1) as client1:
logging.info('1st client connected')
with make_carla_client(args.host2, args.port2) as client2:
logging.info('2nd client connected')
settings = CarlaSettings()
settings.set(
SynchronousMode=True,
SendNonPlayerAgentsInfo=True,
NumberOfVehicles=50,
NumberOfPedestrians=50,
WeatherId=random.choice([1, 3, 7, 8, 14]))
settings.randomize_seeds()
if args.images_to_disk:
camera = Camera('DefaultCamera')
camera.set_image_size(800, 600)
settings.add_sensor(camera)
scene1 = client1.load_settings(settings)
scene2 = client2.load_settings(settings)
number_of_player_starts = len(scene1.player_start_spots)
assert number_of_player_starts == len(scene2.player_start_spots)
player_start = random.randint(0, max(0, number_of_player_starts - 1))
logging.info(
'start episode at %d/%d player start (run forever, press ctrl+c to cancel)',
player_start,
number_of_player_starts)
client1.start_episode(player_start)
client2.start_episode(player_start)
frame = 0
while True:
frame += 1
meas1, sensor_data1 = client1.read_data()
meas2, sensor_data2 = client2.read_data()
player1 = meas1.player_measurements
player2 = meas2.player_measurements
images1 = [x for x in sensor_data1.values() if isinstance(x, Image)]
images2 = [x for x in sensor_data2.values() if isinstance(x, Image)]
control1 = player1.autopilot_control
control2 = player2.autopilot_control
try:
assert len(images1) == len(images2)
assert len(meas1.non_player_agents) == len(meas2.non_player_agents)
assert player1.transform.location.x == player2.transform.location.x
assert player1.transform.location.y == player2.transform.location.y
assert player1.transform.location.z == player2.transform.location.z
assert control1.steer == control2.steer
assert control1.throttle == control2.throttle
assert control1.brake == control2.brake
assert control1.hand_brake == control2.hand_brake
assert control1.reverse == control2.reverse
except AssertionError:
logging.exception('assertion failed')
if args.images_to_disk:
assert len(images1) == 1
images1[0].save_to_disk(filename.format(1, frame))
images2[0].save_to_disk(filename.format(2, frame))
client1.send_control(control1)
client2.send_control(control2)
def main():
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--log',
metavar='LOG_FILE',
default=None,
help='print output to file')
argparser.add_argument(
'--host1',
metavar='H',
default='127.0.0.1',
help='IP of the first host server (default: 127.0.0.1)')
argparser.add_argument(
'-p1', '--port1',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to the first server (default: 2000)')
argparser.add_argument(
'--host2',
metavar='H',
default='127.0.0.1',
help='IP of the second host server (default: 127.0.0.1)')
argparser.add_argument(
'-p2', '--port2',
metavar='P',
default=3000,
type=int,
help='TCP port to listen to the second server (default: 3000)')
argparser.add_argument(
'-i', '--images-to-disk',
action='store_true',
help='save images to disk')
args = argparser.parse_args()
logging_config = {
'format': '%(levelname)s: %(message)s',
'level': logging.DEBUG if args.debug else logging.INFO
}
if args.log:
logging_config['filename'] = args.log
logging_config['filemode'] = 'w+'
logging.basicConfig(**logging_config)
logging.info('listening to 1st server at %s:%s', args.host1, args.port1)
logging.info('listening to 2nd server at %s:%s', args.host2, args.port2)
while True:
try:
run_carla_clients(args)
except TCPConnectionError as error:
logging.error(error)
time.sleep(1)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')

View File

@ -1,191 +0,0 @@
#!/usr/bin/env python3
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""Test suite for testing CARLAUE4."""
import argparse
import glob
import imp
import inspect
import logging
import os
import random
import sys
import time
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
sys.path.append(os.path.join(os.path.dirname(__file__), '.'))
import carla
from carla.tcp import TCPConnectionError
from carla.util import StopWatch
from suite import CarlaServerTest
# Modified by command-line args.
LOGGING_TO_FILE = False
# Output.
GREEN = '\x1b[0;32m%s\x1b[0m'
YELLOW = '\x1b[0;33m%s\x1b[0m'
RED = '\x1b[0;31m%s\x1b[0m'
SEP0 = GREEN % '[==========]'
SEP1 = GREEN % '[----------]'
RUN = GREEN % '[ RUN ]'
OK = GREEN % '[ OK ]'
PASSED = GREEN % '[ PASSED ]'
FAILED = RED % '[EXCEPTION ]'
FAILED = RED % '[ FAILED ]'
def log_test(prep, message, *args):
message = prep + ' ' + message % args
print(message)
if LOGGING_TO_FILE:
logging.info(message)
class TestProxy(object):
def __init__(self, name, declaration, module_name):
self.name = module_name + '.' + name
self.declaration = declaration
self.instance = None
def instantiate(self, *args, **kwargs):
self.instance = self.declaration(*args, **kwargs)
def run(self, *args, **kwargs):
if not hasattr(self.instance, 'run'):
logging.error('%s: "run" method should be implemented in derived class', self.name)
return False
result = self.instance.run(*args, **kwargs)
return True if result is None else result
def iterate_tests():
interface = CarlaServerTest
strip_ext = lambda f: os.path.splitext(os.path.basename(f))[0]
is_valid = lambda obj: inspect.isclass(obj) and issubclass(obj, interface)
folder = os.path.join(os.path.dirname(__file__), 'suite')
modules = glob.glob(os.path.join(folder, "*.py"))
for module_name in set(strip_ext(m) for m in modules if not m.startswith('_')):
logging.debug('parsing module %r', module_name)
try:
module_info = imp.find_module(module_name, [folder])
# This do a reload if already imported.
module = imp.load_module(module_name, *module_info)
for name, declaration in inspect.getmembers(module, is_valid):
if not name.startswith('_'):
yield TestProxy(name, declaration, module_name)
except Exception as exception:
logging.error('failed to load module %r: %s', module_name, exception)
finally:
module_info[0].close()
def run_test(test, args):
log_test(SEP1, 'Instantiating %s', test.name)
try:
test.instantiate(args)
except Exception as exception:
logging.error('exception instantiating %r: %s', test.name, exception)
return False
log_test(RUN, test.name)
while True:
try:
timer = StopWatch()
result = test.run()
timer.stop()
break
except TCPConnectionError as error:
logging.error(error)
time.sleep(1)
except Exception as exception:
timer.stop()
logging.exception('exception: %s', exception)
result = False
break
log_test(OK if result else FAILED, '%s (%d ms)', test.name, timer.milliseconds())
return result
def do_the_tests(args):
tests = [t for t in iterate_tests()]
random.shuffle(tests)
succeeded = []
failed = []
log_test(SEP0, 'Running %d tests.', len(tests))
for test in tests:
if run_test(test, args):
succeeded.append(test)
else:
failed.append(test)
log_test(SEP0, '%d tests ran.', len(tests))
if succeeded:
log_test(PASSED, '%d tests.', len(succeeded))
if failed:
log_test(FAILED, '%d tests.', len(failed))
for test in failed:
log_test(FAILED, test.name)
return True
def main():
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--log',
metavar='LOG_FILE',
default=None,
help='print output to file')
argparser.add_argument(
'--host',
metavar='H',
default='127.0.0.1',
help='IP of the host server (default: 127.0.0.1)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
args = argparser.parse_args()
global LOGGING_TO_FILE
LOGGING_TO_FILE = args.log is not None
logging_config = {
'format': '%(levelname)s: %(message)s',
'level': logging.DEBUG if args.debug else logging.INFO
}
if args.log:
logging_config['filename'] = args.log
logging_config['filemode'] = 'w+'
logging.basicConfig(**logging_config)
logging.info('listening to server %s:%s', args.host, args.port)
print('Running the CARLAUE4 test suite (looks like GTest but it\'s not).')
do_the_tests(args)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')

View File

@ -1,3 +0,0 @@
weather,time_out,result,final_time,end_point,final_distance,exp_id,rep,start_point,initial_distance
3,335314,0,335314,29,171.3219381575824,3,0,105,280.44944447968976
3,243.6346,0,243.6346,130,215.56398248559435,3,0,27,174.94691018267446
1 weather time_out result final_time end_point final_distance exp_id rep start_point initial_distance
2 3 335314 0 335314 29 171.3219381575824 3 0 105 280.44944447968976
3 3 243.6346 0 243.6346 130 215.56398248559435 3 0 27 174.94691018267446

View File

@ -1,26 +0,0 @@
import unittest
from carla.driving_benchmark.experiment_suites.experiment_suite import ExperimentSuite
from carla.driving_benchmark.experiment_suites.basic_experiment_suite import BasicExperimentSuite
from carla.driving_benchmark.experiment_suites.corl_2017 import CoRL2017
class testExperimentSuite(unittest.TestCase):
def test_init(self):
base_class = ExperimentSuite('Town01')
subclasses_instanciate = [obj('Town01') for obj in ExperimentSuite.__subclasses__()]
def test_properties(self):
all_classes = [obj('Town01') for obj in ExperimentSuite.__subclasses__()]
print (all_classes)
for exp_suite in all_classes:
print(exp_suite.__class__)
print(exp_suite.dynamic_tasks)
print(exp_suite.weathers)

View File

@ -1,190 +0,0 @@
import os
import numpy as np
import unittest
from carla.driving_benchmark.metrics import Metrics
from carla.driving_benchmark.recording import Recording
def sum_matrix(matrix):
# Line trick to reduce sum a matrix in one line
return sum(sum(matrix, []))
class testMetrics(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(testMetrics, self).__init__(*args, **kwargs)
self._metrics_parameters = {
'intersection_offroad': {'frames_skip': 10, # Check intersection always with 10 frames tolerance
'frames_recount': 20,
'threshold': 0.3
},
'intersection_otherlane': {'frames_skip': 10, # Check intersection always with 10 frames tolerance
'frames_recount': 20,
'threshold': 0.4
},
'collision_other': {'frames_skip': 10,
'frames_recount': 20,
'threshold': 400
},
'collision_vehicles': {'frames_skip': 10,
'frames_recount': 30,
'threshold': 400
},
'collision_pedestrians': {'frames_skip': 5,
'frames_recount': 100,
'threshold': 300
},
'dynamic_episodes': [3]
}
def _generate_test_case(self, poses_to_test):
recording = Recording(name_to_save='TestMetric'
, continue_experiment=False, save_images=True
)
from carla.driving_benchmark.experiment import Experiment
from carla.carla_server_pb2 import Measurements
from carla.carla_server_pb2 import Control
for pose in poses_to_test:
experiment = Experiment()
recording.write_summary_results(experiment=experiment, pose=pose, rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
reward_vec = [Measurements().player_measurements for x in range(25)]
control_vec = [Control() for x in range(25)]
recording.write_measurements_results(experiment=experiment,
rep=1, pose=pose, reward_vec=reward_vec,
control_vec=control_vec)
return recording._path
def test_init(self):
# Metric should instantiate with parameters
Metrics(self._metrics_parameters,[3])
def test_divide_by_episodes(self):
metrics_obj = Metrics(self._metrics_parameters,[3])
poses_to_test = [[24, 32], [34, 36], [54, 67]]
path = self._generate_test_case(poses_to_test)
# We start by reading the summary header file and the measurements header file.
with open(os.path.join(path, 'summary.csv'), "r") as f:
header = f.readline()
header = header.split(',')
header[-1] = header[-1][:-2]
with open(os.path.join(path,'measurements.csv'), "r") as f:
header_metrics = f.readline()
header_metrics = header_metrics.split(',')
header_metrics[-1] = header_metrics[-1][:-2]
result_matrix = np.loadtxt(os.path.join(path, 'summary.csv'), delimiter=",", skiprows=1)
# Corner Case: The presented test just had one episode
if result_matrix.ndim == 1:
result_matrix = np.expand_dims(result_matrix, axis=0)
tasks = np.unique(result_matrix[:, header.index('exp_id')])
all_weathers = np.unique(result_matrix[:, header.index('weather')])
measurements_matrix = np.loadtxt(os.path.join(path, 'measurements.csv'), delimiter=",", skiprows=1)
episodes = metrics_obj._divide_by_episodes(measurements_matrix,header_metrics)
self.assertEqual(len(episodes),3)
def test_compute(self):
# This is is the last one, generate many cases, corner cases, to be tested.
metrics_obj = Metrics(self._metrics_parameters,[3])
# Lets start testing a general file, not from a real run
# The case is basically an empty case
poses_to_test = [[24, 32], [34, 36], [54, 67]]
path = self._generate_test_case(poses_to_test)
summary_dict = metrics_obj.compute(path)
number_of_colisions_vehicles = sum_matrix(summary_dict['collision_vehicles'][1.0])
number_of_colisions_general = sum_matrix(summary_dict['collision_other'][1.0])
number_of_colisions_pedestrians = sum_matrix(summary_dict['collision_pedestrians'][1.0])
number_of_intersection_offroad = sum_matrix(summary_dict['intersection_offroad'][1.0])
number_of_intersection_otherlane = sum_matrix(summary_dict['intersection_otherlane'][1.0])
self.assertEqual(number_of_colisions_vehicles, 0)
self.assertEqual(number_of_colisions_general, 0)
self.assertEqual(number_of_colisions_pedestrians, 0)
self.assertEqual(number_of_intersection_offroad, 0)
self.assertEqual(number_of_intersection_otherlane, 0)
# Now lets make a collision test on a premade file
path = 'test/unit_tests/test_data/testfile_collisions'
summary_dict = metrics_obj.compute(path)
number_of_colisions_vehicles = sum_matrix(summary_dict['collision_vehicles'][3.0])
number_of_colisions_general = sum_matrix(summary_dict['collision_other'][3.0])
number_of_colisions_pedestrians = sum_matrix(summary_dict['collision_pedestrians'][3.0])
number_of_intersection_offroad = sum_matrix(summary_dict['intersection_offroad'][3.0])
number_of_intersection_otherlane = sum_matrix(summary_dict['intersection_otherlane'][3.0])
self.assertEqual(number_of_colisions_vehicles, 2)
self.assertEqual(number_of_colisions_general, 9)
self.assertEqual(number_of_colisions_pedestrians, 0)
self.assertEqual(number_of_intersection_offroad, 1)
self.assertEqual(number_of_intersection_otherlane, 3)

View File

@ -1,254 +0,0 @@
import os
import unittest
from carla.driving_benchmark.recording import Recording
class testRecording(unittest.TestCase):
def test_init(self):
"""
The recording should have a reasonable full name
"""
recording = Recording(name_to_save='Test1',
continue_experiment=False, save_images=True)
_ = open(os.path.join(recording._path, 'summary.csv'), 'r')
_ = open(os.path.join(recording._path, 'measurements.csv'), 'r')
# There should be three files in any newly created case
self.assertEqual(len(os.listdir(recording._path)), 3)
def test_write_summary_results(self):
"""
Test writting summary results.
"""
from carla.driving_benchmark.experiment import Experiment
recording = Recording(name_to_save='Test1',
continue_experiment=False, save_images=True)
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
with open(os.path.join(recording._path, 'summary.csv'), 'r') as f:
header = f.readline().split(',')
# Assert if header is header
self.assertIn('exp_id', header)
self.assertEqual(len(header), len(recording._dict_summary))
# Assert if there is something writen in the row
written_row = f.readline().split(',')
# Assert if the number of collums is correct
self.assertEqual(len(written_row), len(recording._dict_summary))
def test_write_summary_results_good_order(self):
"""
Test if the summary results are writen in the same order on a new process
"""
from carla.driving_benchmark.experiment import Experiment
recording = Recording(name_to_save='Test_good_order',
continue_experiment=False, save_images=True)
for _ in range(0, 10):
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
recording = Recording(name_to_save='Test_good_order',
continue_experiment=True, save_images=True)
for _ in range(0, 10):
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
recording = Recording(name_to_save='Test_good_order',
continue_experiment=True, save_images=True)
for _ in range(0, 10):
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
recording = Recording(name_to_save='Test_good_order',
continue_experiment=True, save_images=True)
for _ in range(0, 10):
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
# Check if the the test_good_order summaries have all the same files.
def test_write_measurements_results(self):
"""
Test writing a few measurements into the log
"""
import os
from carla.driving_benchmark.experiment import Experiment
from carla.carla_server_pb2 import Measurements
from carla.carla_server_pb2 import Control
recording = Recording(name_to_save='Test1',
continue_experiment=False, save_images=True)
reward_vec = [Measurements().player_measurements for _ in range(20)]
control_vec = [Control() for _ in range(25)]
recording.write_measurements_results(experiment=Experiment(),
rep=1, pose=[24, 32], reward_vec=reward_vec,
control_vec=control_vec)
with open(os.path.join(recording._path, 'measurements.csv'), 'r') as f:
header = f.readline().split(',')
# Assert if header is header
self.assertIn('exp_id', header)
self.assertEqual(len(header), len(recording._dict_measurements))
# Assert if there is something writen in the row
written_row = f.readline().split(',')
# Assert if the number of collums is correct
self.assertEqual(len(written_row), len(recording._dict_measurements))
def test_continue_experiment(self):
"""
Test if you are able to continue an experiment after restarting the process
"""
recording = Recording(name_to_save='Test1',
continue_experiment=False, save_images=True)
# A just started case should return the continue experiment case
self.assertEqual(recording._continue_experiment(True)[1], 1)
# If you don't want to continue, should return also one
self.assertEqual(recording._continue_experiment(False)[1], 1)
from carla.driving_benchmark.experiment import Experiment
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
# After writing two experiments it should return 2, so you could start writing os pos 3
self.assertEqual(recording._continue_experiment(True)[1], 3)
# If you dont want to continue, should return also one
self.assertEqual(recording._continue_experiment(False)[1], 1)
def test_get_pose_and_experiment(self):
"""
Test getting the pose and the experiment from a previous executed benchmark
"""
recording = Recording(name_to_save='Test1',
continue_experiment=False, save_images=True)
from carla.driving_benchmark.experiment import Experiment
pose, experiment = recording.get_pose_and_experiment(25)
# An starting experiment should return zero zero
self.assertEqual(pose, 0)
self.assertEqual(experiment, 0)
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
pose, experiment = recording.get_pose_and_experiment(25)
self.assertEqual(pose, 2)
self.assertEqual(experiment, 0)
for _ in range(23):
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
pose, experiment = recording.get_pose_and_experiment(25)
self.assertEqual(pose, 0)
self.assertEqual(experiment, 1)
for _ in range(23):
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
pose, experiment = recording.get_pose_and_experiment(25)
self.assertEqual(pose, 23)
self.assertEqual(experiment, 1)
def test_get_pose_and_experiment_corner(self):
"""
Test getting the pose from multiple cases.
"""
from carla.driving_benchmark.experiment import Experiment
recording = Recording(name_to_save='Test1',
continue_experiment=False, save_images=True)
pose, experiment = recording.get_pose_and_experiment(1)
# An starting experiment should return one
self.assertEqual(pose, 0)
self.assertEqual(experiment, 0)
pose, experiment = recording.get_pose_and_experiment(2)
self.assertEqual(pose, 0)
self.assertEqual(experiment, 0)
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
pose, experiment = recording.get_pose_and_experiment(1)
print(pose, experiment)
self.assertEqual(pose, 0)
self.assertEqual(experiment, 1)
pose, experiment = recording.get_pose_and_experiment(2)
print(pose, experiment)
# An starting experiment should return one
self.assertEqual(pose, 1)
self.assertEqual(experiment, 0)
pose, experiment = recording.get_pose_and_experiment(3)
print(pose, experiment)
# An starting experiment should return one
self.assertEqual(pose, 1)
self.assertEqual(experiment, 0)
recording.write_summary_results(experiment=Experiment(), pose=[24, 32], rep=1,
path_distance=200, remaining_distance=0,
final_time=0.2, time_out=49, result=1)
pose, experiment = recording.get_pose_and_experiment(2)
self.assertEqual(pose, 0)
self.assertEqual(experiment, 1)
pose, experiment = recording.get_pose_and_experiment(3)
self.assertEqual(pose, 2)
self.assertEqual(experiment, 0)
if __name__ == '__main__':
unittest.main()

View File

@ -1,135 +0,0 @@
#!/usr/bin/env python3
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""Connects with a CARLA simulator and displays the available start positions
for the current map."""
from __future__ import print_function
import argparse
import logging
import sys
import time
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
from carla.client import make_carla_client
from carla.planner.map import CarlaMap
from carla.settings import CarlaSettings
from carla.tcp import TCPConnectionError
def view_start_positions(args):
# We assume the CARLA server is already waiting for a client to connect at
# host:port. The same way as in the client example.
with make_carla_client(args.host, args.port) as client:
print('CarlaClient connected')
# We load the default settings to the client.
scene = client.load_settings(CarlaSettings())
print("Received the start positions")
try:
image = mpimg.imread('carla/planner/%s.png' % scene.map_name)
carla_map = CarlaMap(scene.map_name)
except IOError as exception:
logging.error(exception)
logging.error('Cannot find map "%s"', scene.map_name)
sys.exit(1)
fig, ax = plt.subplots(1)
ax.imshow(image)
if args.positions == 'all':
positions_to_plot = range(len(scene.player_start_spots))
else:
positions_to_plot = map(int, args.positions.split(','))
for position in positions_to_plot:
# Check if position is valid
if position >= len(scene.player_start_spots):
raise RuntimeError('Selected position is invalid')
# Convert world to pixel coordinates
pixel = carla_map.convert_to_pixel([scene.player_start_spots[position].location.x,
scene.player_start_spots[position].location.y,
scene.player_start_spots[position].location.z])
circle = Circle((pixel[0], pixel[1]), 12, color='r', label='A point')
ax.add_patch(circle)
if not args.no_labels:
plt.text(pixel[0], pixel[1], str(position), size='x-small')
plt.axis('off')
plt.show()
fig.savefig('town_positions.pdf', orientation='landscape', bbox_inches='tight')
def main():
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host server (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-pos', '--positions',
metavar='P',
default='all',
help='Indices of the positions that you want to plot on the map. '
'The indices must be separated by commas (default = all positions)')
argparser.add_argument(
'--no-labels',
action='store_true',
help='do not display position indices')
args = argparser.parse_args()
log_level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
while True:
try:
view_start_positions(args)
print('Done.')
return
except TCPConnectionError as error:
logging.error(error)
time.sleep(1)
except RuntimeError as error:
logging.error(error)
break
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')

View File

@ -11,7 +11,7 @@ process.
![modules](img/modules.png)
In Linux, we compile CARLA and all the dependencies with clang-6.0 and C++14
In Linux, we compile CARLA and all the dependencies with clang-7.0 and C++14
standard. We however link against different runtime C++ libraries depending on
where the code going to be used, since all the code that is going to be linked
with Unreal Engine needs to be compiled using `libc++`.
@ -26,10 +26,10 @@ make setup
Get and compile dependencies
* llvm-6.0 (libc++ and libc++abi)
* llvm-7.1 (libc++ and libc++abi)
* rpclib-2.2.1 (twice, with libstdc++ and libc++)
* boost-1.69 (headers only)
* googletest-1.8.0 (with libc++)
* googletest-1.8.1 (with libc++)
#### LibCarla
@ -53,8 +53,8 @@ Two configurations:
#### CarlaUE4 and Carla plugin
Both compiled at the same step with Unreal Engine 4.21 build tool. They require
the `UE4_ROOT` environment variable set.
Both compiled at the same step with Unreal Engine build tool. They require the
`UE4_ROOT` environment variable set.
Command

View File

@ -27,7 +27,7 @@ C++
* Comments should not exceed 80 columns, code may exceed this limit a bit in
rare occasions if it results in clearer code.
* Compilation should not give any error or warning
(`clang++-6.0 -Wall -Wextra -std=C++14 -Wno-missing-braces`).
(`clang++-7 -Wall -Wextra -std=C++14 -Wno-missing-braces`).
* The use of `throw` is forbidden, use `carla::throw_exception` instead.
* Unreal C++ code (CarlaUE4 and Carla plugin) follow the
[Unreal Engine's Coding Standard][ue4link] with the exception of using

View File

@ -7,8 +7,10 @@ Install the build tools and dependencies
```
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
wget -O - https://apt.llvm.org/llvm-snapshot.gpg.key|sudo apt-key add -
sudo apt-add-repository "deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-7 main"
sudo apt-get update
sudo apt-get install build-essential clang-6.0 lld-6.0 g++-7 cmake ninja-build python python-pip python-dev python3-dev python3-pip libpng16-dev libtiff5-dev libjpeg-dev tzdata sed curl wget unzip autoconf libtool
sudo apt-get install build-essential clang-7 lld-7 g++-7 cmake ninja-build python python-pip python-dev python3-dev python3-pip libpng16-dev libtiff5-dev libjpeg-dev tzdata sed curl wget unzip autoconf libtool
pip2 install --user setuptools
pip3 install --user setuptools
```
@ -20,8 +22,8 @@ change your default clang version to compile Unreal Engine and the CARLA
dependencies
```sh
sudo update-alternatives --install /usr/bin/clang++ clang++ /usr/lib/llvm-6.0/bin/clang++ 102
sudo update-alternatives --install /usr/bin/clang clang /usr/lib/llvm-6.0/bin/clang 102
sudo update-alternatives --install /usr/bin/clang++ clang++ /usr/lib/llvm-7/bin/clang++ 170
sudo update-alternatives --install /usr/bin/clang clang /usr/lib/llvm-7/bin/clang 170
```
Build Unreal Engine
@ -32,13 +34,13 @@ Build Unreal Engine
need to add your GitHub username when you sign up at
[www.unrealengine.com](https://www.unrealengine.com).
Download and compile Unreal Engine 4.21. Here we will assume you install it at
`~/UnrealEngine_4.21", but you can install it anywhere, just replace the path
Download and compile Unreal Engine 4.22. Here we will assume you install it at
`~/UnrealEngine_4.22", but you can install it anywhere, just replace the path
where necessary.
```sh
git clone --depth=1 -b 4.21 https://github.com/EpicGames/UnrealEngine.git ~/UnrealEngine_4.21
cd ~/UnrealEngine_4.21
git clone --depth=1 -b 4.22 https://github.com/EpicGames/UnrealEngine.git ~/UnrealEngine_4.22
cd ~/UnrealEngine_4.22
./Setup.sh && ./GenerateProjectFiles.sh && make
```
@ -71,7 +73,7 @@ For CARLA to find your Unreal Engine's installation folder you need to set the
following environment variable
```sh
export UE4_ROOT=~/UnrealEngine_4.21
export UE4_ROOT=~/UnrealEngine_4.22
```
You can also add this variable to your `~/.bashrc` or `~/.profile`.

View File

@ -15,7 +15,7 @@
Also:
- [Unreal Engine](https://www.unrealengine.com/download) (v4.21.x)
- [Unreal Engine](https://www.unrealengine.com/download) (v4.22.x)
- [Visual Studio](https://www.visualstudio.com/downloads/) (2017)
<h3>Environment Setup</h3>

View File

@ -158,8 +158,8 @@ for the meshes the last one was referencing.
* Spawners must always be oriented as the road dictates. This must be done by
hand but we will make some form of automation in the future.
* Traffic lights must be placed in every crossing in whitch vehicles might
conflict. theese are the childs of "TrafficLightBase" and are stored inside
* Traffic lights must be placed in every crossing in which vehicles might
conflict. These are the childs of "TrafficLightBase" and are stored inside
Game/Carla/Static/TrafficSigns/Streetlights_01.
Again, remember this is just needed to use the server autopilot. We recommend to start using new the client driving stack provided from 0.9.2 version.

View File

@ -10,7 +10,6 @@
* [Getting started](getting_started.md)
* [Python API tutorial](python_api_tutorial.md)
* [Configuring the simulation](configuring_the_simulation.md)
<!-- * [Measurements](measurements.md) -->
* [Cameras and sensors](cameras_and_sensors.md)
* [F.A.Q.](faq.md)

1
Docs/requirements.txt Normal file
View File

@ -0,0 +1 @@
mkdocs >= 1.0

View File

@ -4,8 +4,8 @@ BINDIR=$(CURDIR)/bin
INSTALLDIR=$(CURDIR)/libcarla-install
TOOLCHAIN=$(CURDIR)/ToolChain.cmake
CC=/usr/bin/clang-6.0
CXX=/usr/bin/clang++-6.0
CC=/usr/bin/clang-7
CXX=/usr/bin/clang++-7
CXXFLAGS=-std=c++14 -pthread -fPIC -O3 -DNDEBUG -Werror -Wall -Wextra
define log

View File

@ -24,8 +24,8 @@ want
```cmake
# Example ToolChain.cmake
set(CMAKE_C_COMPILER /usr/bin/clang-6.0)
set(CMAKE_CXX_COMPILER /usr/bin/clang++-6.0)
set(CMAKE_C_COMPILER /usr/bin/clang-7)
set(CMAKE_CXX_COMPILER /usr/bin/clang++-7)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14 -O3 -DNDEBUG" CACHE STRING "" FORCE)
```

4
Jenkinsfile vendored
View File

@ -2,7 +2,7 @@ pipeline {
agent any
environment {
UE4_ROOT = '/var/lib/jenkins/UnrealEngine_4.21'
UE4_ROOT = '/var/lib/jenkins/UnrealEngine_4.22'
}
options {
@ -65,7 +65,7 @@ pipeline {
stage('Smoke Tests') {
steps {
sh 'DISPLAY= ./Dist/*/LinuxNoEditor/CarlaUE4.sh --carla-rpc-port=3654 --carla-streaming-port=0 > CarlaUE4.log &'
sh 'DISPLAY= ./Dist/*/LinuxNoEditor/CarlaUE4.sh --carla-rpc-port=3654 --carla-streaming-port=0 -nosound > CarlaUE4.log &'
sh 'make smoke_tests ARGS="--xml"'
sh 'make run-examples ARGS="localhost 3654"'
}

View File

@ -9,7 +9,7 @@ install(FILES ${libcarla_carla_rpclib} DESTINATION lib)
# Install boost headers (install in system folder to avoid extra warnings).
# @todo Remove boost from public interface of LibCarla.client.
install(DIRECTORY "${BOOST_INCLUDE_PATH}/boost" DESTINATION include/system)
file(GLOB boost_libraries "${BOOST_LIB_PATH}/*")
file(GLOB boost_libraries "${BOOST_LIB_PATH}/*.*")
install(FILES ${boost_libraries} DESTINATION lib)
# Windows need libpng alongside with zlib to be installed

View File

@ -10,6 +10,20 @@
#include <utility>
namespace carla {
namespace detail {
template <typename FunctorT>
struct MoveWrapper : FunctorT {
MoveWrapper(FunctorT &&f) : FunctorT(std::move(f)) {}
MoveWrapper(MoveWrapper &&) = default;
MoveWrapper& operator=(MoveWrapper &&) = default;
MoveWrapper(const MoveWrapper &);
MoveWrapper& operator=(const MoveWrapper &);
};
} // namespace detail
/// Hack to trick asio into accepting move-only handlers, if the handler were
/// actually copied it would result in a link error.
@ -18,14 +32,7 @@ namespace carla {
template <typename FunctorT>
auto MoveHandler(FunctorT &&func) {
using F = typename std::decay<FunctorT>::type;
struct MoveWrapper : F {
MoveWrapper(F&& f) : F(std::move(f)) {}
MoveWrapper(MoveWrapper&&) = default;
MoveWrapper& operator=(MoveWrapper&&) = default;
MoveWrapper(const MoveWrapper&);
MoveWrapper& operator=(const MoveWrapper&);
};
return MoveWrapper{std::move(func)};
return detail::MoveWrapper<F>{std::move(func)};
}
} // namespace carla

View File

@ -11,7 +11,7 @@
#include "carla/ThreadGroup.h"
#include "carla/Time.h"
#include <boost/asio/io_service.hpp>
#include <boost/asio/io_context.hpp>
#include <future>
#include <thread>
@ -19,20 +19,20 @@
namespace carla {
/// A thread pool based on Boost.Asio's io service.
/// A thread pool based on Boost.Asio's io context.
class ThreadPool : private NonCopyable {
public:
ThreadPool() : _work_to_do(_io_service) {}
ThreadPool() : _work_to_do(_io_context) {}
/// Stops the ThreadPool and joins all its threads.
~ThreadPool() {
Stop();
}
/// Return the underlying io service.
auto &service() {
return _io_service;
/// Return the underlying io_context.
auto &io_context() {
return _io_context;
}
/// Post a task to the pool.
@ -40,7 +40,7 @@ namespace carla {
std::future<ResultT> Post(FunctorT &&functor) {
auto task = std::packaged_task<ResultT()>(std::forward<FunctorT>(functor));
auto future = task.get_future();
_io_service.post(carla::MoveHandler(task));
_io_context.post(carla::MoveHandler(task));
return future;
}
@ -60,7 +60,7 @@ namespace carla {
///
/// @warning This function blocks until the ThreadPool has been stopped.
void Run() {
_io_service.run();
_io_context.run();
}
/// Run tasks in this thread for an specific @a duration.
@ -68,20 +68,20 @@ namespace carla {
/// @warning This function blocks until the ThreadPool has been stopped, or
/// until the specified time duration has elapsed.
void RunFor(time_duration duration) {
_io_service.run_for(duration.to_chrono());
_io_context.run_for(duration.to_chrono());
}
/// Stop the ThreadPool and join all its threads.
void Stop() {
_io_service.stop();
_io_context.stop();
_workers.JoinAll();
}
private:
boost::asio::io_service _io_service;
boost::asio::io_context _io_context;
boost::asio::io_service::work _work_to_do;
boost::asio::io_context::work _work_to_do;
ThreadGroup _workers;
};

View File

@ -257,23 +257,23 @@ namespace road {
RELEASE_ASSERT(waypoint.lane_id >= lanes.begin()->first);
RELEASE_ASSERT(waypoint.lane_id <= lanes.rbegin()->first);
double lane_width = 0;
double lane_tangent = 0;
float lane_width = 0.0f;
float lane_tangent = 0.0f;
if (waypoint.lane_id < 0) {
// right lane
const auto side_lanes = MakeListView(
std::make_reverse_iterator(lanes.lower_bound(0)), lanes.rend());
const auto computed_width =
ComputeTotalLaneWidth(side_lanes, waypoint.s, waypoint.lane_id);
lane_width = computed_width.first;
lane_tangent = computed_width.second;
lane_width = static_cast<float>(computed_width.first);
lane_tangent = static_cast<float>(computed_width.second);
} else {
// left lane
const auto side_lanes = MakeListView(lanes.lower_bound(1), lanes.end());
const auto computed_width =
ComputeTotalLaneWidth(side_lanes, waypoint.s, waypoint.lane_id);
lane_width = computed_width.first;
lane_tangent = computed_width.second;
lane_width = static_cast<float>(computed_width.first);
lane_tangent = static_cast<float>(computed_width.second);
}
// get a directed point in s and apply the computed lateral offet
@ -281,7 +281,7 @@ namespace road {
// compute the tangent of the laneOffset
const auto lane_offset_info = road.GetInfo<RoadInfoLaneOffset>(waypoint.s);
const auto lane_offset_tangent = lane_offset_info->GetPolynomial().Tangent(waypoint.s);
const auto lane_offset_tangent = static_cast<float>(lane_offset_info->GetPolynomial().Tangent(waypoint.s));
lane_tangent -= lane_offset_tangent;

View File

@ -184,7 +184,7 @@ namespace road {
const auto geometry = _info.GetInfo<element::RoadInfoGeometry>(clamped_s);
const auto lane_offset = _info.GetInfo<element::RoadInfoLaneOffset>(clamped_s);
const auto offset = lane_offset->GetPolynomial().Evaluate(clamped_s);
const auto offset = static_cast<float>(lane_offset->GetPolynomial().Evaluate(clamped_s));
// Apply road's lane offset record
element::DirectedPoint p = geometry->GetGeometry().PosFromDist(clamped_s - geometry->GetDistance());
@ -244,7 +244,7 @@ namespace road {
DirectedPoint current_dp = dp_lane_zero;
for (const auto &lane : right_lanes) {
const auto lane_width_info = lane.second->GetInfo<RoadInfoLaneWidth>(s);
const auto half_width = lane_width_info->GetPolynomial().Evaluate(s) * 0.5;
const auto half_width = static_cast<float>(lane_width_info->GetPolynomial().Evaluate(s)) * 0.5f;
current_dp.ApplyLateralOffset(half_width);
const auto current_dist = geom::Math::Distance(current_dp.location, loc);
@ -267,7 +267,7 @@ namespace road {
current_dp = dp_lane_zero;
for (const auto &lane : left_lanes) {
const auto lane_width_info = lane.second->GetInfo<RoadInfoLaneWidth>(s);
const auto half_width = -lane_width_info->GetPolynomial().Evaluate(s) * 0.5;
const auto half_width = -static_cast<float>(lane_width_info->GetPolynomial().Evaluate(s)) * 0.5f;
current_dp.ApplyLateralOffset(half_width);
const auto current_dist = geom::Math::Distance(current_dp.location, loc);

View File

@ -41,10 +41,10 @@ namespace element {
double tangent = 0.0; // [radians]
double pitch = 0.0; // [radians]
void ApplyLateralOffset(double lateral_offset) {
void ApplyLateralOffset(float lateral_offset) {
/// @todo Z axis??
auto normal_x = std::sin(tangent);
auto normal_y = -std::cos(tangent);
auto normal_x = std::sin(static_cast<float>(tangent));
auto normal_y = -std::cos(static_cast<float>(tangent));
location.x += lateral_offset * normal_x;
location.y += lateral_offset * normal_y;
}
@ -117,11 +117,11 @@ namespace element {
: Geometry(GeometryType::LINE, start_offset, length, heading, start_pos) {}
DirectedPoint PosFromDist(double dist) const override {
dist = geom::Math::Clamp(dist, 0.0, _length);
DEBUG_ASSERT(_length > 0.0);
dist = geom::Math::Clamp(dist, 0.0, _length);
DirectedPoint p(_start_position, _heading);
p.location.x += dist * std::cos(p.tangent);
p.location.y += dist * std::sin(p.tangent);
p.location.x += static_cast<float>(dist * std::cos(p.tangent));
p.location.y += static_cast<float>(dist * std::sin(p.tangent));
return p;
}
@ -159,11 +159,11 @@ namespace element {
const double radius = 1.0 / _curvature;
constexpr double pi_half = geom::Math::Pi<double>() / 2.0;
DirectedPoint p(_start_position, _heading);
p.location.x += radius * std::cos(p.tangent + pi_half);
p.location.y += radius * std::sin(p.tangent + pi_half);
p.location.x += static_cast<float>(radius * std::cos(p.tangent + pi_half));
p.location.y += static_cast<float>(radius * std::sin(p.tangent + pi_half));
p.tangent += dist * _curvature;
p.location.x -= radius * std::cos(p.tangent + pi_half);
p.location.y -= radius * std::sin(p.tangent + pi_half);
p.location.x -= static_cast<float>(radius * std::cos(p.tangent + pi_half));
p.location.y -= static_cast<float>(radius * std::sin(p.tangent + pi_half));
return p;
}
@ -228,8 +228,8 @@ namespace element {
DirectedPoint p(_start_position, _heading);
const double cos_a = std::cos(p.tangent);
const double sin_a = std::sin(p.tangent);
p.location.x += C * cos_a - S * sin_a;
p.location.y += S * cos_a + C * sin_a;
p.location.x += static_cast<float>(C * cos_a - S * sin_a);
p.location.y += static_cast<float>(S * cos_a + C * sin_a);
p.tangent += length * length;
return p;

View File

@ -11,7 +11,7 @@
#include "carla/rpc/Metadata.h"
#include "carla/rpc/Response.h"
#include <boost/asio/io_service.hpp>
#include <boost/asio/io_context.hpp>
#include <rpc/server.h>
@ -50,8 +50,8 @@ namespace rpc {
}
void SyncRunFor(time_duration duration) {
_sync_io_service.reset();
_sync_io_service.run_for(duration.to_chrono());
_sync_io_context.reset();
_sync_io_context.run_for(duration.to_chrono());
}
/// @warning does not stop the game thread.
@ -61,7 +61,7 @@ namespace rpc {
private:
boost::asio::io_service _sync_io_service;
boost::asio::io_context _sync_io_context;
::rpc::server _server;
};
@ -92,15 +92,15 @@ namespace detail {
/// Wraps @a functor into a function type with equivalent signature. The
/// wrap function returned. When called, posts @a functor into the
/// io_service; if the client called this method synchronously, waits for
/// io_context; if the client called this method synchronously, waits for
/// the posted task to finish, otherwise returns immediately.
///
/// This way, no matter from which thread the wrap function is called, the
/// @a functor provided is always called from the context of the io_service.
/// I.e., we can use the io_service to run tasks on a specific thread (e.g.
/// @a functor provided is always called from the context of the io_context.
/// I.e., we can use the io_context to run tasks on a specific thread (e.g.
/// game thread).
template <typename FuncT>
static auto WrapSyncCall(boost::asio::io_service &io, FuncT &&functor) {
static auto WrapSyncCall(boost::asio::io_context &io, FuncT &&functor) {
return [&io, functor=std::forward<FuncT>(functor)](Metadata metadata, Args... args) -> R {
auto task = std::packaged_task<R()>([functor=std::move(functor), args...]() {
return functor(args...);
@ -147,7 +147,7 @@ namespace detail {
using Wrapper = detail::FunctionWrapper<FunctorT>;
_server.bind(
name,
Wrapper::WrapSyncCall(_sync_io_service, std::forward<FunctorT>(functor)));
Wrapper::WrapSyncCall(_sync_io_context, std::forward<FunctorT>(functor)));
}
template <typename FunctorT>

View File

@ -12,7 +12,7 @@
#include "carla/streaming/detail/tcp/Client.h"
#include "carla/streaming/low_level/Client.h"
#include <boost/asio/io_service.hpp>
#include <boost/asio/io_context.hpp>
namespace carla {
namespace streaming {
@ -37,7 +37,7 @@ namespace streaming {
/// MultiStream).
template <typename Functor>
void Subscribe(const Token &token, Functor &&callback) {
_client.Subscribe(_service.service(), token, std::forward<Functor>(callback));
_client.Subscribe(_service.io_context(), token, std::forward<Functor>(callback));
}
void UnSubscribe(const Token &token) {

View File

@ -6,7 +6,7 @@
#pragma once
#include <boost/asio/io_service.hpp>
#include <boost/asio/io_context.hpp>
#include <boost/asio/ip/address.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <boost/asio/ip/udp.hpp>
@ -73,8 +73,8 @@ namespace detail {
}
static inline auto make_address(const std::string &address) {
boost::asio::io_service io_service;
boost::asio::ip::tcp::resolver resolver(io_service);
boost::asio::io_context io_context;
boost::asio::ip::tcp::resolver resolver(io_context);
boost::asio::ip::tcp::resolver::query query(boost::asio::ip::tcp::v4(), address, "", boost::asio::ip::tcp::resolver::query::canonical_name);
boost::asio::ip::tcp::resolver::iterator iter = resolver.resolve(query);
boost::asio::ip::tcp::resolver::iterator end;

View File

@ -10,7 +10,7 @@
#include "carla/streaming/detail/tcp/Server.h"
#include "carla/streaming/low_level/Server.h"
#include <boost/asio/io_service.hpp>
#include <boost/asio/io_context.hpp>
namespace carla {
namespace streaming {
@ -23,21 +23,21 @@ namespace streaming {
public:
explicit Server(uint16_t port)
: _server(_service.service(), make_endpoint<protocol_type>(port)) {}
: _server(_pool.io_context(), make_endpoint<protocol_type>(port)) {}
explicit Server(const std::string &address, uint16_t port)
: _server(_service.service(), make_endpoint<protocol_type>(address, port)) {}
: _server(_pool.io_context(), make_endpoint<protocol_type>(address, port)) {}
explicit Server(
const std::string &address, uint16_t port,
const std::string &external_address, uint16_t external_port)
: _server(
_service.service(),
_pool.io_context(),
make_endpoint<protocol_type>(address, port),
make_endpoint<protocol_type>(external_address, external_port)) {}
~Server() {
_service.Stop();
_pool.Stop();
}
auto GetLocalEndpoint() const {
@ -57,18 +57,18 @@ namespace streaming {
}
void Run() {
_service.Run();
_pool.Run();
}
void AsyncRun(size_t worker_threads) {
_service.AsyncRun(worker_threads);
_pool.AsyncRun(worker_threads);
}
private:
// The order of these two arguments is very important.
ThreadPool _service;
ThreadPool _pool;
underlying_server _server;
};

View File

@ -29,7 +29,7 @@ namespace detail {
Dispatcher::~Dispatcher() {
// Disconnect all the sessions from their streams, this should kill any
// session remaining since at this point the io_service should be already
// session remaining since at this point the io_context should be already
// stopped.
for (auto &pair : _stream_map) {
#ifndef LIBCARLA_NO_EXCEPTIONS

View File

@ -64,16 +64,16 @@ namespace tcp {
// ===========================================================================
Client::Client(
boost::asio::io_service &io_service,
boost::asio::io_context &io_context,
const token_type &token,
callback_function_type callback)
: LIBCARLA_INITIALIZE_LIFETIME_PROFILER(
std::string("tcp client ") + std::to_string(token.get_stream_id())),
_token(token),
_callback(std::move(callback)),
_socket(io_service),
_strand(io_service),
_connection_timer(io_service),
_socket(io_context),
_strand(io_context),
_connection_timer(io_context),
_buffer_pool(std::make_shared<BufferPool>()) {
if (!_token.protocol_is_tcp()) {
throw_exception(std::invalid_argument("invalid token, only TCP tokens supported"));
@ -173,7 +173,7 @@ namespace tcp {
// Move the buffer to the callback function and start reading the next
// piece of data.
log_debug("streaming client: success reading data, calling the callback");
_socket.get_io_service().post([self, message]() { self->_callback(message->pop()); });
_strand.context().post([self, message]() { self->_callback(message->pop()); });
ReadData();
} else {
// As usual, if anything fails start over from the very top.

View File

@ -13,7 +13,7 @@
#include "carla/streaming/detail/Types.h"
#include <boost/asio/deadline_timer.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/io_context.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <boost/asio/strand.hpp>
@ -44,7 +44,7 @@ namespace tcp {
using callback_function_type = std::function<void (Buffer)>;
Client(
boost::asio::io_service &io_service,
boost::asio::io_context &io_context,
const token_type &token,
callback_function_type callback);
@ -70,7 +70,7 @@ namespace tcp {
boost::asio::ip::tcp::socket _socket;
boost::asio::io_service::strand _strand;
boost::asio::io_context::strand _strand;
boost::asio::deadline_timer _connection_timer;

View File

@ -15,8 +15,9 @@ namespace streaming {
namespace detail {
namespace tcp {
Server::Server(boost::asio::io_service &io_service, endpoint ep)
: _acceptor(io_service, std::move(ep)),
Server::Server(boost::asio::io_context &io_context, endpoint ep)
: _io_context(io_context),
_acceptor(_io_context, std::move(ep)),
_timeout(time_duration::seconds(10u)) {}
void Server::OpenSession(
@ -25,7 +26,7 @@ namespace tcp {
ServerSession::callback_function_type on_closed) {
using boost::system::error_code;
auto session = std::make_shared<ServerSession>(_acceptor.get_io_service(), timeout);
auto session = std::make_shared<ServerSession>(_io_context, timeout);
auto handle_query = [on_opened, on_closed, session](const error_code &ec) {
if (!ec) {
@ -37,7 +38,7 @@ namespace tcp {
_acceptor.async_accept(session->_socket, [=](error_code ec) {
// Handle query and open a new session immediately.
_acceptor.get_io_service().post([=]() { handle_query(ec); });
_io_context.post([=]() { handle_query(ec); });
OpenSession(timeout, on_opened, on_closed);
});
}

View File

@ -10,7 +10,7 @@
#include "carla/Time.h"
#include "carla/streaming/detail/tcp/ServerSession.h"
#include <boost/asio/io_service.hpp>
#include <boost/asio/io_context.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <atomic>
@ -20,7 +20,7 @@ namespace streaming {
namespace detail {
namespace tcp {
/// @warning This server cannot be destructed before its @a io_service is
/// @warning This server cannot be destructed before its @a io_context is
/// stopped.
class Server : private NonCopyable {
public:
@ -28,7 +28,7 @@ namespace tcp {
using endpoint = boost::asio::ip::tcp::endpoint;
using protocol_type = endpoint::protocol_type;
explicit Server(boost::asio::io_service &io_service, endpoint ep);
explicit Server(boost::asio::io_context &io_context, endpoint ep);
endpoint GetLocalEndpoint() const {
return _acceptor.local_endpoint();
@ -45,7 +45,7 @@ namespace tcp {
/// is closed.
template <typename FunctorT1, typename FunctorT2>
void Listen(FunctorT1 on_session_opened, FunctorT2 on_session_closed) {
_acceptor.get_io_service().post([=]() {
_io_context.post([=]() {
OpenSession(
_timeout,
std::move(on_session_opened),
@ -60,6 +60,8 @@ namespace tcp {
ServerSession::callback_function_type on_session_opened,
ServerSession::callback_function_type on_session_closed);
boost::asio::io_context &_io_context;
boost::asio::ip::tcp::acceptor _acceptor;
std::atomic<time_duration> _timeout;

View File

@ -22,15 +22,15 @@ namespace tcp {
static std::atomic_size_t SESSION_COUNTER{0u};
ServerSession::ServerSession(
boost::asio::io_service &io_service,
boost::asio::io_context &io_context,
const time_duration timeout)
: LIBCARLA_INITIALIZE_LIFETIME_PROFILER(
std::string("tcp server session ") + std::to_string(SESSION_COUNTER)),
_session_id(SESSION_COUNTER++),
_socket(io_service),
_socket(io_context),
_timeout(timeout),
_deadline(io_service),
_strand(io_service) {}
_deadline(io_context),
_strand(io_context) {}
void ServerSession::Open(
callback_function_type on_opened,
@ -47,7 +47,7 @@ namespace tcp {
if (!ec) {
DEBUG_ASSERT_EQ(bytes_received, sizeof(_stream_id));
log_debug("session", _session_id, "for stream", _stream_id, " started");
_socket.get_io_service().post([=]() { callback(self); });
_strand.context().post([=]() { callback(self); });
} else {
log_error("session", _session_id, ": error retrieving stream id :", ec.message());
CloseNow();
@ -123,7 +123,7 @@ namespace tcp {
if (_socket.is_open()) {
_socket.close();
}
_socket.get_io_service().post([self=shared_from_this()]() {
_strand.context().post([self=shared_from_this()]() {
DEBUG_ASSERT(self->_on_closed);
self->_on_closed(self);
});

View File

@ -14,7 +14,7 @@
#include "carla/streaming/detail/tcp/Message.h"
#include <boost/asio/deadline_timer.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/io_context.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <boost/asio/strand.hpp>
@ -38,7 +38,9 @@ namespace tcp {
using socket_type = boost::asio::ip::tcp::socket;
using callback_function_type = std::function<void(std::shared_ptr<ServerSession>)>;
explicit ServerSession(boost::asio::io_service &io_service, time_duration timeout);
explicit ServerSession(
boost::asio::io_context &io_context,
time_duration timeout);
/// Starts the session and calls @a on_opened after successfully reading the
/// stream id, and @a on_closed once the session is closed.
@ -90,7 +92,7 @@ namespace tcp {
boost::asio::deadline_timer _deadline;
boost::asio::io_service::strand _strand;
boost::asio::io_context::strand _strand;
callback_function_type _on_closed;

View File

@ -9,7 +9,7 @@
#include "carla/streaming/detail/Token.h"
#include "carla/streaming/detail/tcp/Client.h"
#include <boost/asio/io_service.hpp>
#include <boost/asio/io_context.hpp>
#include <memory>
#include <unordered_map>
@ -19,9 +19,9 @@ namespace streaming {
namespace low_level {
/// A client able to subscribe to multiple streams. Accepts an external
/// io_service.
/// io_context.
///
/// @warning The client should not be destroyed before the @a io_service is
/// @warning The client should not be destroyed before the @a io_context is
/// stopped.
template <typename T>
class Client {
@ -50,7 +50,7 @@ namespace low_level {
/// MultiStream).
template <typename Functor>
void Subscribe(
boost::asio::io_service &io_service,
boost::asio::io_context &io_context,
token_type token,
Functor &&callback) {
DEBUG_ASSERT_EQ(_clients.find(token.get_stream_id()), _clients.end());
@ -58,7 +58,7 @@ namespace low_level {
token.set_address(_fallback_address);
}
auto client = std::make_shared<underlying_client>(
io_service,
io_context,
token,
std::forward<Functor>(callback));
client->Connect();

View File

@ -9,7 +9,7 @@
#include "carla/streaming/detail/Dispatcher.h"
#include "carla/streaming/Stream.h"
#include <boost/asio/io_service.hpp>
#include <boost/asio/io_context.hpp>
namespace carla {
namespace streaming {
@ -17,9 +17,9 @@ namespace low_level {
/// A low-level streaming server. Each new stream has a token associated, this
/// token can be used by a client to subscribe to the stream. This server
/// requires an external io_service running.
/// requires an external io_context running.
///
/// @warning This server cannot be destructed before its @a io_service is
/// @warning This server cannot be destructed before its @a io_context is
/// stopped.
template <typename T>
class Server {
@ -31,26 +31,26 @@ namespace low_level {
template <typename InternalEPType, typename ExternalEPType>
explicit Server(
boost::asio::io_service &io_service,
boost::asio::io_context &io_context,
detail::EndPoint<protocol_type, InternalEPType> internal_ep,
detail::EndPoint<protocol_type, ExternalEPType> external_ep)
: _server(io_service, std::move(internal_ep)),
: _server(io_context, std::move(internal_ep)),
_dispatcher(std::move(external_ep)) {
StartServer();
}
template <typename InternalEPType>
explicit Server(
boost::asio::io_service &io_service,
boost::asio::io_context &io_context,
detail::EndPoint<protocol_type, InternalEPType> internal_ep)
: _server(io_service, std::move(internal_ep)),
: _server(io_context, std::move(internal_ep)),
_dispatcher(make_endpoint<protocol_type>(_server.GetLocalEndpoint().port())) {
StartServer();
}
template <typename... EPArgs>
explicit Server(boost::asio::io_service &io_service, EPArgs &&... args)
: Server(io_service, make_endpoint<protocol_type>(std::forward<EPArgs>(args)...)) {}
explicit Server(boost::asio::io_context &io_context, EPArgs &&... args)
: Server(io_context, make_endpoint<protocol_type>(std::forward<EPArgs>(args)...)) {}
typename underlying_server::endpoint GetLocalEndpoint() const {
return _server.GetLocalEndpoint();

View File

@ -6,16 +6,7 @@
#include "Buffer.h"
/// @todo This header uses deprecated functionality, please re-enable
/// pragma-messages after upgrading Boost 1.69 if possible.
#if defined(__clang__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-W#pragma-messages"
#endif
#include <boost/random/independent_bits.hpp>
#if defined(__clang__)
# pragma clang diagnostic pop
#endif
#include <climits>
#include <random>

View File

@ -21,23 +21,23 @@ using namespace std::chrono_literals;
// This is required for low level to properly stop the threads in case of
// exception/assert.
class io_service_running {
class io_context_running {
public:
boost::asio::io_service service;
boost::asio::io_context service;
explicit io_service_running(size_t threads = 2u)
explicit io_context_running(size_t threads = 2u)
: _work_to_do(service) {
_threads.CreateThreads(threads, [this]() { service.run(); });
}
~io_service_running() {
~io_context_running() {
service.stop();
}
private:
boost::asio::io_service::work _work_to_do;
boost::asio::io_context::work _work_to_do;
carla::ThreadGroup _threads;
};
@ -53,7 +53,7 @@ TEST(streaming, low_level_sending_strings) {
std::atomic_size_t message_count{0u};
io_service_running io;
io_context_running io;
Server<tcp::Server> srv(io.service, TESTING_PORT);
srv.SetTimeout(1s);
@ -86,7 +86,7 @@ TEST(streaming, low_level_unsubscribing) {
constexpr auto number_of_messages = 50u;
const std::string message_text = "Hello client!";
io_service_running io;
io_context_running io;
Server<tcp::Server> srv(io.service, TESTING_PORT);
srv.SetTimeout(1s);
@ -124,10 +124,10 @@ TEST(streaming, low_level_tcp_small_message) {
using namespace carla::streaming;
using namespace carla::streaming::detail;
boost::asio::io_service io_service;
boost::asio::io_context io_context;
tcp::Server::endpoint ep(boost::asio::ip::tcp::v4(), TESTING_PORT);
tcp::Server srv(io_service, ep);
tcp::Server srv(io_context, ep);
srv.SetTimeout(1s);
std::atomic_bool done{false};
std::atomic_size_t message_count{0u};
@ -145,7 +145,7 @@ TEST(streaming, low_level_tcp_small_message) {
Dispatcher dispatcher{make_endpoint<tcp::Client::protocol_type>(srv.GetLocalEndpoint())};
auto stream = dispatcher.MakeStream();
auto c = std::make_shared<tcp::Client>(io_service, stream.token(), [&](carla::Buffer message) {
auto c = std::make_shared<tcp::Client>(io_context, stream.token(), [&](carla::Buffer message) {
++message_count;
ASSERT_FALSE(message.empty());
ASSERT_EQ(message.size(), 5u);
@ -158,10 +158,10 @@ TEST(streaming, low_level_tcp_small_message) {
carla::ThreadGroup threads;
threads.CreateThreads(
std::max(2u, std::thread::hardware_concurrency()),
[&]() { io_service.run(); });
[&]() { io_context.run(); });
std::this_thread::sleep_for(2s);
io_service.stop();
io_context.stop();
done = true;
std::cout << "client received " << message_count << " messages\n";
ASSERT_GT(message_count, 10u);

View File

@ -111,9 +111,9 @@ private:
const carla::Buffer _message;
boost::asio::io_service _client_callback;
boost::asio::io_context _client_callback;
boost::asio::io_service::work _work_to_do;
boost::asio::io_context::work _work_to_do;
const double _success_ratio;

View File

@ -40,7 +40,7 @@ def get_libcarla_extensions():
os.path.join(pwd, 'dependencies/lib', pylib)]
extra_compile_args = [
'-isystem', 'dependencies/include/system', '-fPIC', '-std=c++14',
'-Werror', '-Wall', '-Wextra', '-Wpedantic',
'-Werror', '-Wall', '-Wextra', '-Wpedantic', '-Wno-self-assign-overloaded',
'-Wdeprecated', '-Wno-shadow', '-Wuninitialized', '-Wunreachable-code',
'-Wpessimizing-move', '-Wold-style-cast', '-Wnull-dereference',
'-Wduplicate-enum', '-Wnon-virtual-dtor', '-Wheader-hygiene',
@ -84,6 +84,7 @@ def get_libcarla_extensions():
# https://docs.microsoft.com/es-es/cpp/porting/modifying-winver-and-win32-winnt
extra_compile_args = [
'/experimental:external', '/external:I', 'dependencies/include/system',
'/DBOOST_ALL_NO_LIB', '/DBOOST_PYTHON_STATIC_LIB',
'/DBOOST_ERROR_CODE_HEADER_ONLY', '/D_WIN32_WINNT=0x0501',
'/DLIBCARLA_WITH_PYTHON_SUPPORT', '-DLIBCARLA_IMAGE_WITH_PNG_SUPPORT=true']

View File

@ -171,6 +171,8 @@ class World(object):
if blueprint.has_attribute('color'):
color = random.choice(blueprint.get_attribute('color').recommended_values)
blueprint.set_attribute('color', color)
if blueprint.has_attribute('is_invincible'):
blueprint.set_attribute('is_invincible', 'true')
# Spawn the player.
if self.player is not None:
spawn_point = self.player.get_transform()

View File

@ -30,6 +30,14 @@ class TestSynchronousMode(SmokeTest):
self.world = None
super(TestSynchronousMode, self).tearDown()
def test_reloading_map(self):
settings = carla.WorldSettings(
no_rendering_mode=False,
synchronous_mode=True)
for _ in range(0, 4):
self.world = self.client.reload_world()
self.world.apply_settings(settings)
def test_camera_on_synchronous_mode(self):
cam_bp = self.world.get_blueprint_library().find('sensor.camera.rgb')
t = carla.Transform(carla.Location(z=10))

Some files were not shown because too many files have changed in this diff Show More