Compiling Carla in Docker (#1841)

* Compiling Carla in a Docker

* Big improvement in Carla Docker build time

* Fixed Docker dependencies & added docker_importer

* Fixed Docker package exporting pipeline

* Fixed docs issues

* Fixed few issues from revision

* Merge branch 'master' into marcgpuig/docker
This commit is contained in:
Marc Garcia Puig 2019-07-08 16:43:45 +02:00 committed by germanros1987
parent bc6a2ed25f
commit f8d306b556
9 changed files with 407 additions and 2 deletions

View File

@ -70,9 +70,10 @@ matrix:
- pip3 install -q --user -r PythonAPI/examples/requirements.txt
- pip3 install -q --user -r PythonAPI/test/requirements.txt
- pip3 install -q --user -r PythonAPI/util/requirements.txt
- pip3 install -q --user -r Util/Docker/requirements.txt
script:
- shopt -s globstar
- pylint --disable=R,C --rcfile=PythonAPI/.pylintrc PythonAPI/**/*.py
- pylint --disable=R,C --rcfile=PythonAPI/.pylintrc PythonAPI/**/*.py Util/Docker/*.py
- env: TEST="MkDocs"
install:

View File

@ -6,11 +6,13 @@
Install the build tools and dependencies
```
sudo apt-get update
sudo apt-get install wget software-properties-common
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
wget -O - https://apt.llvm.org/llvm-snapshot.gpg.key|sudo apt-key add -
sudo apt-add-repository "deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-7 main"
sudo apt-get update
sudo apt-get install build-essential clang-7 lld-7 g++-7 cmake ninja-build libvulkan1 python python-pip python-dev python3-dev python3-pip libpng16-dev libtiff5-dev libjpeg-dev tzdata sed curl wget unzip autoconf libtool
sudo apt-get install build-essential clang-7 lld-7 g++-7 cmake ninja-build libvulkan1 python python-pip python-dev python3-dev python3-pip libpng16-dev libtiff5-dev libjpeg-dev tzdata sed curl unzip autoconf libtool rsync
pip2 install --user setuptools
pip3 install --user setuptools
```
@ -65,6 +67,10 @@ Now you need to download the assets package, to do so we provide a handy script
that downloads and extracts the latest version (note that this package is >3GB,
this step might take some time depending on your connection)
!!! Tip
Optionally you can download aria2 (with `sudo apt-get install aria2`) so
the following command will take advantage of it and will run quite faster.
```sh
./Update.sh
```

View File

@ -0,0 +1,16 @@
FROM carla-prerequisites:latest
ARG GIT_BRANCH
USER ue4
RUN cd /home/ue4 && \
if [ -z ${GIT_BRANCH+x} ]; then git clone --depth 1 https://github.com/carla-simulator/carla.git; \
else git clone --depth 1 --branch $GIT_BRANCH https://github.com/carla-simulator/carla.git; fi && \
cd /home/ue4/carla && \
./Update.sh && \
make CarlaUE4Editor && \
make package && \
rm -r /home/ue4/carla/Dist
WORKDIR /home/ue4/carla

View File

@ -0,0 +1,49 @@
ARG UE4_V=4.22.2
FROM adamrehn/ue4-source:${UE4_V}-opengl
USER root
ENV UE4_ROOT /home/ue4/UnrealEngine
RUN apt-get update ; \
apt-get install -y wget software-properties-common && \
add-apt-repository ppa:ubuntu-toolchain-r/test && \
wget -O - https://apt.llvm.org/llvm-snapshot.gpg.key|apt-key add - && \
apt-add-repository "deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-7 main" && \
apt-get update ; \
apt-get install -y build-essential \
clang-7 \
lld-7 \
g++-7 \
cmake \
ninja-build \
libvulkan1 \
python \
python-pip \
python-dev \
python3-dev \
python3-pip \
libpng-dev \
libtiff5-dev \
libjpeg-dev \
tzdata \
sed \
curl \
unzip \
autoconf \
libtool \
rsync \
aria2 && \
pip2 install setuptools && \
pip3 install setuptools && \
update-alternatives --install /usr/bin/clang++ clang++ /usr/lib/llvm-7/bin/clang++ 170 && \
update-alternatives --install /usr/bin/clang clang /usr/lib/llvm-7/bin/clang 170
USER ue4
RUN cd $UE4_ROOT && \
./Setup.sh && \
./GenerateProjectFiles.sh && \
make
WORKDIR /home/ue4

104
Util/Docker/README.md Normal file
View File

@ -0,0 +1,104 @@
# Building Carla in a Docker
_These instructions have been tested in **Ubuntu 16.04**._
This file is intended to explain how to build a Docker image that uses **Ubuntu 18.04** to compile Carla.
Since this building process is based on [**ue4-docker**](https://github.com/adamrehn/ue4-docker) project, it is recommended to take a look at their [documentation](https://adamrehn.com/docs/ue4-docker/read-these-first/introduction-to-ue4-docker).
## Important information
**Building these Docker images can be high time and disk space consuming (~4 hours and up to 300GB on Linux and 500GB on Windows in the build process).**
More information about large containers can be found [here](https://adamrehn.com/docs/ue4-docker/read-these-first/large-container-images-primer).
**The Docker images produced by the ue4-docker Python package contain the UE4 Engine Tools in both source code and object code form. As per Section 1A of the [Unreal Engine EULA](https://www.unrealengine.com/en-US/eula), Engine Licensees are prohibited from public distribution of the Engine Tools unless such distribution takes place via the Unreal Marketplace or a fork of the Epic Games UE4 GitHub repository. Public distribution of the built images via an openly accessible Docker Registry (e.g. Docker Hub) is a direct violation of the license terms. It is your responsibility to ensure that any private distribution to other Engine Licensees (such as via an organization's internal Docker Registry) complies with the terms of the Unreal Engine EULA.**
For more details, see the [Unreal Engine EULA Restrictions](https://unrealcontainers.com/docs/obtaining-images/eula-restrictions) page on the [Unreal Containers community hub](https://unrealcontainers.com/).
## Requirements
```
- 64-bit version of Docker in Ubuntu 16.04+.
- Minimum 8GB of RAM
- Minimum 300GB available disk space for building container images
```
---
## Prerequisites
You need Docker installed and configured so your Docker images can access to the Internet during the build process.
Make sure you have installed **Python 3.6 or newer**, check that is in the path, and is callable using `python3` in your terminal. One possible way to achieve so is by using [virtualenvwrapper](https://virtualenvwrapper.readthedocs.io/en/latest/).
## Dependencies
As mentioned before, in order to use Unreal Engine inside Docker we use [ue4-docker](https://github.com/adamrehn/ue4-docker). You can install it using `pip3`.
Further information on installing ue4-docker on Linux can be found [here](https://adamrehn.com/docs/ue4-docker/configuration/configuring-linux).
```
pip3 install ue4-docker
```
You can use ue4-docker to automatically configure your Linux firewall:
```
ue4-docker setup
```
## Building the Docker images
Navigate to `carla/Util/Docker` and use the following commands, each one will take a long time.
First, let's create a Docker image containing a compiled version of Unreal Engine 4 version `22.2`. Change the version if needed.
```
ue4-docker build 4.22.2 --no-engine --no-minimal
```
Next, this will build the image with all the necessary requisites to build Carla in a **Ubuntu 18.04**
```
docker build -t carla-prerequisites -f Prerequisites.Dockerfile .
```
Finally create the actual Carla image, it will search for `carla-prerequisites:latest`:
```
docker build -t carla -f Carla.Dockerfile .
```
---
## Other useful information
You can use a specific repository **branch** or **tag** from our repository, using:
```
docker build -t carla -f Carla.Dockerfile . --build-arg GIT_BRANCH=branch_name
```
Clean up the intermediate images from the build (keep the ue4-source image so you can use it for full rebuilds)
```
ue4-docker clean
```
## Using the Docker tools
The `docker_tools.py` (in `/carla/Util/Docker`) is an example of how you can take advantages of these Docker images. It uses [docker-py](https://github.com/docker/docker-py) whose documentation can be found [here](https://docker-py.readthedocs.io/en/stable/).
The code is really simple and can be easily expanded to interact with docker in other ways.
You can create a Carla package (distribution) from the Docker image using:
```
./docker_tools.py --output /output/path
```
Or you can use it to cook assets (like new maps and meshes), ready to be consumed by a Carla package (distribution):
```
./docker_tools.py --input /assets/to/import/path --output /output/path --packages PkgeName1,PkgeName2
```
The needed files and hierarchy to import assets is explained [here](https://carla.readthedocs.io/en/latest/export_import_dist/).

146
Util/Docker/docker_tools.py Executable file
View File

@ -0,0 +1,146 @@
#!/usr/bin/env python
# Copyright (c) 2019 Computer Vision Center (CVC) at the Universitat Autonoma
# de Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""
Helper script to generate consumables for Carla in Docker
"""
from __future__ import print_function
import argparse
import docker
import docker_utils
import os
def print_formated_dict(dic):
for k, v in dic.items():
print(' - "' + str(k) + '"' + ": " + str(v))
print()
def bold(text):
return ''.join([docker_utils.BOLD, text, docker_utils.ENDC])
def bold_underline(text):
return ''.join([docker_utils.UNDERLINE, bold(text)])
def parse_args():
argparser = argparse.ArgumentParser(
description=__doc__)
argparser.add_argument(
'-i', '--input',
type=str,
help='Path of all the assets to convert')
argparser.add_argument(
'-o', '--output',
type=str,
help='Path where all the assets will be after conversion. Default: current directory.')
argparser.add_argument(
'--packages',
type=str,
help='(Optional) Packages to generate. Usage: "--packages=PkgeName1,PkgeName2"')
argparser.add_argument(
'-v', '--verbose',
action='store_true',
default=False,
help='Prints extra information')
argparser.add_argument(
'--image',
type=str,
help='Use a specific Carla image. Default: "carla:latest"')
args = argparser.parse_args()
if not args.output:
args.output = os.getcwd()
if args.packages is not None and args.packages and not args.input:
print(
docker_utils.RED +
"[Error] The Input Path [-i|--input] must be specified "
"if you are processing individual packages." + docker_utils.ENDC)
exit(1)
print()
print(bold("- ") + bold_underline("Params:"))
print(" - Output path: " + str(args.output))
print(" - Packages: " + str(args.packages))
print(" - Input path: " + str(args.input))
print(" - Verbose: " + str(args.verbose))
print()
return args
def main():
args = parse_args()
carla_image_name = "carla:latest"
inbox_assets_path = '/home/ue4/carla/Import'
client = docker.from_env()
# All possible Docker arguments are here:
# https://docker-py.readthedocs.io/en/stable/containers.html
container_args = {
"image": carla_image_name,
"user": 'ue4',
"auto_remove": True,
"stdin_open": True,
"tty": True,
"detach": True}
if args.packages:
container_args["volumes"] = {
args.input: {'bind': inbox_assets_path, 'mode': 'ro'}}
print(bold("- ") + bold_underline("Docker arguments:"))
print_formated_dict(container_args)
try:
print("Runnig Docker...")
carla_container = client.containers.run(**container_args)
if args.packages:
# If there is packages, import them first and package them
docker_utils.exec_command(
carla_container,
'make import',
user='ue4', verbose=args.verbose, ignore_error=False)
docker_utils.exec_command(
carla_container,
'make package ARGS="--packages=' + str(args.packages) + '"',
user='ue4', verbose=args.verbose, ignore_error=False)
else:
# Just create a package of the whole project
docker_utils.exec_command(
carla_container,
'make package',
user='ue4', verbose=args.verbose, ignore_error=False)
# Get the files routes to export
files_to_copy = docker_utils.get_file_paths(
carla_container,
'/home/ue4/carla/Dist/*.tar.gz',
user='ue4', verbose=args.verbose)
# Copy these fles to the output folder
docker_utils.extract_files(carla_container, files_to_copy, args.output)
finally:
print("Closing container " + carla_image_name)
carla_container.stop()
if __name__ == '__main__':
main()

View File

@ -0,0 +1,82 @@
#!/usr/bin/env python
# Copyright (c) 2019 Computer Vision Center (CVC) at the Universitat Autonoma
# de Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import tarfile
BLUE = '\033[94m'
GREEN = '\033[92m'
RED = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
class ReadableStream():
def __init__(self, generator):
self._generator = generator
def read(self):
return next(self._generator)
def get_container_name(container):
return str(container.attrs['Config']['Image'])
def exec_command(container, command, user="root",
silent=False, verbose=False, ignore_error=True):
command_prefix = "bash -c '"
if not silent:
print(''.join([BOLD, BLUE,
user, '@', get_container_name(container),
ENDC, '$ ', str(command)]))
command_result = container.exec_run(
command_prefix + command + "'",
user=user)
if not silent and verbose and command_result.exit_code:
print(''.join([RED, 'Command: "', command,
'" exited with error: ', str(command_result.exit_code),
ENDC]))
print('Error:')
if not silent:
out = command_result.output.decode().strip()
if out:
print(out)
if not ignore_error and command_result.exit_code:
exit(1)
return command_result
def get_file_paths(container, path, user="root",
absolute_path=True, hidden_files=True, verbose=False):
# command = "bash -c 'ls -ad $PWD/* "
command = "ls "
if hidden_files:
command += "-a "
if absolute_path:
command += "-d "
result = exec_command(container, command + path, user=user, silent=True)
if result.exit_code:
if verbose:
print(RED + "No files found in " + path + ENDC)
return []
file_list = [x for x in result.output.decode('utf-8').split('\n') if x]
if verbose:
print("Found files: " + str(file_list))
return file_list
def extract_files(container, file_list, out_path):
for file in file_list:
print('Copying "' + file + '" to ' + out_path)
strm, _ = container.get_archive(file)
with tarfile.open(fileobj=ReadableStream(strm), mode='r|*') as tar:
tar.extractall(out_path)

View File

@ -0,0 +1 @@
docker