#!/usr/bin/env python # Copyright (c) 2020 Computer Vision Center (CVC) at the Universitat Autonoma de # Barcelona (UAB). # # This work is licensed under the terms of the MIT license. # For a copy, see . """Open3D Lidar visuialization example for CARLA""" import glob import os import sys import argparse import time from datetime import datetime import random import numpy as np from matplotlib import cm import open3d as o3d try: sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % ( sys.version_info.major, sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) except IndexError: pass import carla VIRIDIS = np.array(cm.get_cmap('plasma').colors) VID_RANGE = np.linspace(0.0, 1.0, VIRIDIS.shape[0]) LABEL_COLORS = np.array([ (255, 255, 255), # None (70, 70, 70), # Building (100, 40, 40), # Fences (55, 90, 80), # Other (220, 20, 60), # Pedestrian (153, 153, 153), # Pole (157, 234, 50), # RoadLines (128, 64, 128), # Road (244, 35, 232), # Sidewalk (107, 142, 35), # Vegetation (0, 0, 142), # Vehicle (102, 102, 156), # Wall (220, 220, 0), # TrafficSign (70, 130, 180), # Sky (81, 0, 81), # Ground (150, 100, 100), # Bridge (230, 150, 140), # RailTrack (180, 165, 180), # GuardRail (250, 170, 30), # TrafficLight (110, 190, 160), # Static (170, 120, 50), # Dynamic (45, 60, 150), # Water (145, 170, 100), # Terrain ]) / 255.0 # normalize each channel [0-1] since is what Open3D uses def lidar_callback(point_cloud, point_list): """Prepares a point cloud with intensity colors ready to be consumed by Open3D""" data = np.copy(np.frombuffer(point_cloud.raw_data, dtype=np.dtype('f4'))) data = np.reshape(data, (int(data.shape[0] / 4), 4)) # Isolate the intensity and compute a color for it intensity = data[:, -1] intensity_col = 1.0 - np.log(intensity) / np.log(np.exp(-0.004 * 100)) int_color = np.c_[ np.interp(intensity_col, VID_RANGE, VIRIDIS[:, 0]), np.interp(intensity_col, VID_RANGE, VIRIDIS[:, 1]), np.interp(intensity_col, VID_RANGE, VIRIDIS[:, 2])] # Isolate the 3D data points = data[:, :-1] # We're negating the y to correclty visualize a world that matches # what we see in Unreal since Open3D uses a right-handed coordinate system points[:, :1] = -points[:, :1] # # An example of converting points from sensor to vehicle space if we had # # a carla.Transform variable named "tran": # points = np.append(points, np.ones((points.shape[0], 1)), axis=1) # points = np.dot(tran.get_matrix(), points.T).T # points = points[:, :-1] point_list.points = o3d.utility.Vector3dVector(points) point_list.colors = o3d.utility.Vector3dVector(int_color) def semantic_lidar_callback(point_cloud, point_list): """Prepares a point cloud with semantic segmentation colors ready to be consumed by Open3D""" data = np.frombuffer(point_cloud.raw_data, dtype=np.dtype([ ('x', np.float32), ('y', np.float32), ('z', np.float32), ('CosAngle', np.float32), ('ObjIdx', np.uint32), ('ObjTag', np.uint32)])) # We're negating the y to correclty visualize a world that matches # what we see in Unreal since Open3D uses a right-handed coordinate system points = np.array([data['x'], -data['y'], data['z']]).T # # An example of adding some noise to our data if needed: # points += np.random.uniform(-0.05, 0.05, size=points.shape) # Colorize the pointcloud based on the CityScapes color palette labels = np.array(data['ObjTag']) int_color = LABEL_COLORS[labels] # # In case you want to make the color intensity depending # # of the incident ray angle, you can use: # int_color *= np.array(data['CosAngle'])[:, None] point_list.points = o3d.utility.Vector3dVector(points) point_list.colors = o3d.utility.Vector3dVector(int_color) def generate_lidar_bp(arg, world, blueprint_library, delta): """Generates a CARLA blueprint based on the script parameters""" if arg.semantic: lidar_bp = world.get_blueprint_library().find('sensor.lidar.ray_cast_semantic') else: lidar_bp = blueprint_library.find('sensor.lidar.ray_cast') if arg.no_noise: lidar_bp.set_attribute('dropoff_general_rate', '0.0') lidar_bp.set_attribute('dropoff_intensity_limit', '1.0') lidar_bp.set_attribute('dropoff_zero_intensity', '0.0') else: lidar_bp.set_attribute('noise_stddev', '0.2') lidar_bp.set_attribute('upper_fov', str(arg.upper_fov)) lidar_bp.set_attribute('lower_fov', str(arg.lower_fov)) lidar_bp.set_attribute('channels', str(arg.channels)) lidar_bp.set_attribute('range', str(arg.range)) lidar_bp.set_attribute('rotation_frequency', str(1.0 / delta)) lidar_bp.set_attribute('points_per_second', str(arg.points_per_second)) return lidar_bp def add_open3d_axis(vis): """Add a small 3D axis on Open3D Visualizer""" axis = o3d.geometry.LineSet() axis.points = o3d.utility.Vector3dVector(np.array([ [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])) axis.lines = o3d.utility.Vector2iVector(np.array([ [0, 1], [0, 2], [0, 3]])) axis.colors = o3d.utility.Vector3dVector(np.array([ [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])) vis.add_geometry(axis) def main(arg): """Main function of the script""" client = carla.Client(arg.host, arg.port) client.set_timeout(2.0) world = client.get_world() try: original_settings = world.get_settings() settings = world.get_settings() traffic_manager = client.get_trafficmanager(8000) traffic_manager.set_synchronous_mode(True) delta = 0.05 settings.fixed_delta_seconds = delta settings.synchronous_mode = True settings.no_rendering_mode = arg.no_rendering world.apply_settings(settings) blueprint_library = world.get_blueprint_library() vehicle_bp = blueprint_library.filter(arg.filter)[0] vehicle_transform = random.choice(world.get_map().get_spawn_points()) vehicle = world.spawn_actor(vehicle_bp, vehicle_transform) vehicle.set_autopilot(arg.no_autopilot) lidar_bp = generate_lidar_bp(arg, world, blueprint_library, delta) user_offset = carla.Location(arg.x, arg.y, arg.z) lidar_transform = carla.Transform(carla.Location(x=-0.5, z=1.8) + user_offset) lidar = world.spawn_actor(lidar_bp, lidar_transform, attach_to=vehicle) point_list = o3d.geometry.PointCloud() if arg.semantic: lidar.listen(lambda data: semantic_lidar_callback(data, point_list)) else: lidar.listen(lambda data: lidar_callback(data, point_list)) vis = o3d.visualization.Visualizer() vis.create_window( window_name='Carla Lidar', width=960, height=540, left=480, top=270) vis.get_render_option().background_color = [0.05, 0.05, 0.05] vis.get_render_option().point_size = 1 vis.get_render_option().show_coordinate_frame = True if arg.show_axis: add_open3d_axis(vis) frame = 0 dt0 = datetime.now() while True: if frame == 2: vis.add_geometry(point_list) vis.update_geometry(point_list) vis.poll_events() vis.update_renderer() # # This can fix Open3D jittering issues: time.sleep(0.005) world.tick() process_time = datetime.now() - dt0 sys.stdout.write('\r' + 'FPS: ' + str(1.0 / process_time.total_seconds())) sys.stdout.flush() dt0 = datetime.now() frame += 1 finally: world.apply_settings(original_settings) traffic_manager.set_synchronous_mode(False) vehicle.destroy() lidar.destroy() vis.destroy_window() if __name__ == "__main__": argparser = argparse.ArgumentParser( description=__doc__) argparser.add_argument( '--host', metavar='H', default='localhost', help='IP of the host CARLA Simulator (default: localhost)') argparser.add_argument( '-p', '--port', metavar='P', default=2000, type=int, help='TCP port of CARLA Simulator (default: 2000)') argparser.add_argument( '--no-rendering', action='store_true', help='use the no-rendering mode which will provide some extra' ' performance but you will lose the articulated objects in the' ' lidar, such as pedestrians') argparser.add_argument( '--semantic', action='store_true', help='use the semantic lidar instead, which provides ground truth' ' information') argparser.add_argument( '--no-noise', action='store_true', help='remove the drop off and noise from the normal (non-semantic) lidar') argparser.add_argument( '--no-autopilot', action='store_false', help='disables the autopilot so the vehicle will remain stopped') argparser.add_argument( '--show-axis', action='store_true', help='show the cartesian coordinates axis') argparser.add_argument( '--filter', metavar='PATTERN', default='model3', help='actor filter (default: "vehicle.*")') argparser.add_argument( '--upper-fov', default=15.0, type=float, help='lidar\'s upper field of view in degrees (default: 15.0)') argparser.add_argument( '--lower-fov', default=-25.0, type=float, help='lidar\'s lower field of view in degrees (default: -25.0)') argparser.add_argument( '--channels', default=64.0, type=float, help='lidar\'s channel count (default: 64)') argparser.add_argument( '--range', default=100.0, type=float, help='lidar\'s maximum range in meters (default: 100.0)') argparser.add_argument( '--points-per-second', default=500000, type=int, help='lidar\'s points per second (default: 500000)') argparser.add_argument( '-x', default=0.0, type=float, help='offset in the sensor position in the X-axis in meters (default: 0.0)') argparser.add_argument( '-y', default=0.0, type=float, help='offset in the sensor position in the Y-axis in meters (default: 0.0)') argparser.add_argument( '-z', default=0.0, type=float, help='offset in the sensor position in the Z-axis in meters (default: 0.0)') args = argparser.parse_args() try: main(args) except KeyboardInterrupt: print(' - Exited by user.')