#!/usr/bin/env python # Copyright (c) 2018 Intel Labs. # authors: German Ros (german.ros@intel.com) # # This work is licensed under the terms of the MIT license. # For a copy, see . """ This module contains a local planner to perform low-level waypoint following based on PID controllers. """ from enum import Enum from collections import deque import random import carla from agents.navigation.controller import VehiclePIDController from agents.tools.misc import distance_vehicle, draw_waypoints class RoadOption(Enum): """ RoadOption represents the possible topological configurations when moving from a segment of lane to other. """ VOID = -1 LEFT = 1 RIGHT = 2 STRAIGHT = 3 LANEFOLLOW = 4 class LocalPlanner(object): """ LocalPlanner implements the basic behavior of following a trajectory of waypoints that is generated on-the-fly. The low-level motion of the vehicle is computed by using two PID controllers, one is used for the lateral control and the other for the longitudinal control (cruise speed). When multiple paths are available (intersections) this local planner makes a random choice. """ # minimum distance to target waypoint as a percentage (e.g. within 90% of # total distance) MIN_DISTANCE_PERCENTAGE = 0.9 def __init__(self, vehicle, opt_dict=None): """ :param vehicle: actor to apply to local planner logic onto :param opt_dict: dictionary of arguments with the following semantics: dt -- time difference between physics control in seconds. This is typically fixed from server side using the arguments -benchmark -fps=F . In this case dt = 1/F target_speed -- desired cruise speed in Km/h sampling_radius -- search radius for next waypoints in seconds: e.g. 0.5 seconds ahead lateral_control_dict -- dictionary of arguments to setup the lateral PID controller {'K_P':, 'K_D':, 'K_I':, 'dt'} longitudinal_control_dict -- dictionary of arguments to setup the longitudinal PID controller {'K_P':, 'K_D':, 'K_I':, 'dt'} """ self._vehicle = vehicle self._map = self._vehicle.get_world().get_map() self._buffer_size = 5 self.dt = None self.target_speed = None self.sampling_radius = None self.min_distance = None self.current_waypoint = None self.target_road_option = None self.next_waypoints = None self.target_waypoint = None self.vehicle_controller = None self.global_plan = None # queue with tuples of (waypoint, RoadOption) self.waypoints_queue = deque(maxlen=600) self.waypoint_buffer = deque(maxlen=self._buffer_size) # initializing controller self.init_controller(opt_dict) def __del__(self): if self._vehicle: self._vehicle.destroy() print("Destroying ego-vehicle!") def reset_vehicle(self): self._vehicle = None print("Resetting ego-vehicle!") def init_controller(self, opt_dict): """ Controller initialization. :param opt_dict: dictionary of arguments. :return: """ # default params self.dt = 1.0 / 20.0 self.target_speed = 20.0 # Km/h self.sampling_radius = self.target_speed * 0.5 / 3.6 # 0.5 seconds horizon self.min_distance = self.sampling_radius * self.MIN_DISTANCE_PERCENTAGE args_lateral_dict = { 'K_P': 1.95, 'K_D': 0.01, 'K_I': 1.4, 'dt': self.dt} args_longitudinal_dict = { 'K_P': 1.0, 'K_D': 0, 'K_I': 1, 'dt': self.dt} # parameters overload if opt_dict: if 'dt' in opt_dict: self.dt = opt_dict['dt'] if 'target_speed' in opt_dict: self.target_speed = opt_dict['target_speed'] if 'sampling_radius' in opt_dict: self.sampling_radius = self.target_speed * \ opt_dict['sampling_radius'] / 3.6 if 'lateral_control_dict' in opt_dict: args_lateral_dict = opt_dict['lateral_control_dict'] if 'longitudinal_control_dict' in opt_dict: args_longitudinal_dict = opt_dict['longitudinal_control_dict'] self.current_waypoint = self._map.get_waypoint(self._vehicle.get_location()) self.vehicle_controller = VehiclePIDController(self._vehicle, args_lateral=args_lateral_dict, args_longitudinal=args_longitudinal_dict) self.global_plan = False # compute initial waypoints self.waypoints_queue.append((self.current_waypoint.next(self.sampling_radius)[0], RoadOption.LANEFOLLOW)) self.target_road_option = RoadOption.LANEFOLLOW # fill waypoint trajectory queue self._compute_next_waypoints(k=200) def set_speed(self, speed): """ Request new target speed. :param speed: new target speed in Km/h :return: """ self.target_speed = speed def _compute_next_waypoints(self, k=1): """ Add new waypoints to the trajectory queue. :param k: how many waypoints to compute :return: """ # check we do not overflow the queue available_entries = self.waypoints_queue.maxlen - len(self.waypoints_queue) k = min(available_entries, k) for _ in range(k): last_waypoint = self.waypoints_queue[-1][0] next_waypoints = list(last_waypoint.next(self.sampling_radius)) if len(next_waypoints) == 1: # only one option available ==> lanefollowing next_waypoint = next_waypoints[0] road_option = RoadOption.LANEFOLLOW else: # random choice between the possible options road_options_list = retrieve_options( next_waypoints, last_waypoint) road_option = random.choice(road_options_list) next_waypoint = next_waypoints[road_options_list.index( road_option)] self.waypoints_queue.append((next_waypoint, road_option)) def set_global_plan(self, current_plan): self.waypoints_queue.clear() for elem in current_plan: self.waypoints_queue.append(elem) self.target_road_option = RoadOption.LANEFOLLOW self.global_plan = True def run_step(self, debug=True): """ Execute one step of local planning which involves running the longitudinal and lateral PID controllers to follow the waypoints trajectory. :param debug: boolean flag to activate waypoints debugging :return: """ # not enough waypoints in the horizon? => add more! if len(self.waypoints_queue) < int(self.waypoints_queue.maxlen * 0.5): if not self.global_plan: self._compute_next_waypoints(k=100) if len(self.waypoints_queue) == 0: control = carla.VehicleControl() control.steer = 0.0 control.throttle = 0.0 control.brake = 0.0 control.hand_brake = False control.manual_gear_shift = False return control # Buffering the waypoints if not self.waypoint_buffer: for i in range(self._buffer_size): if self.waypoints_queue: self.waypoint_buffer.append( self.waypoints_queue.popleft()) else: break # current vehicle waypoint self.current_waypoint = self._map.get_waypoint(self._vehicle.get_location()) # target waypoint self.target_waypoint, self.target_road_option = self.waypoint_buffer[0] # move using PID controllers control = self.vehicle_controller.run_step(self.target_speed, self.target_waypoint) # purge the queue of obsolete waypoints vehicle_transform = self._vehicle.get_transform() max_index = -1 for i, (waypoint, _) in enumerate(self.waypoint_buffer): if distance_vehicle( waypoint, vehicle_transform) < self.min_distance: max_index = i if max_index >= 0: for i in range(max_index + 1): self.waypoint_buffer.popleft() if debug: draw_waypoints(self._vehicle.get_world(), [self.target_waypoint], self._vehicle.get_location().z + 1.0) return control def retrieve_options(list_waypoints, current_waypoint): """ Compute the type of connection between the current active waypoint and the multiple waypoints present in list_waypoints. The result is encoded as a list of RoadOption enums. :param list_waypoints: list with the possible target waypoints in case of multiple options :param current_waypoint: current active waypoint :return: list of RoadOption enums representing the type of connection from the active waypoint to each candidate in list_waypoints """ options = [] for next_waypoint in list_waypoints: # this is needed because something we are linking to # the beggining of an intersection, therefore the # variation in angle is small next_next_waypoint = next_waypoint.next(3.0)[0] link = compute_connection(current_waypoint, next_next_waypoint) options.append(link) return options def compute_connection(current_waypoint, next_waypoint): """ Compute the type of topological connection between an active waypoint (current_waypoint) and a target waypoint (next_waypoint). :param current_waypoint: active waypoint :param next_waypoint: target waypoint :return: the type of topological connection encoded as a RoadOption enum: RoadOption.STRAIGHT RoadOption.LEFT RoadOption.RIGHT """ n = next_waypoint.transform.rotation.yaw n = n % 360.0 c = current_waypoint.transform.rotation.yaw c = c % 360.0 diff_angle = (n - c) % 180.0 if diff_angle < 1.0: return RoadOption.STRAIGHT elif diff_angle > 90.0: return RoadOption.LEFT else: return RoadOption.RIGHT