# Sensors reference * [__Collision detector__](#collision-detector) * [__Depth camera__](#depth-camera) * [__GNSS sensor__](#gnss-sensor) * [__IMU sensor__](#imu-sensor) * [__Lane invasion detector__](#lane-invasion-detector) * [__LIDAR sensor__](#lidar-sensor) * [__Obstacle detector__](#obstacle-detector) * [__Radar sensor__](#radar-sensor) * [__RGB camera__](#rgb-camera) * [__RSS sensor__](#rss-sensor) * [__Semantic LIDAR sensor__](#semantic-lidar-sensor) * [__Semantic segmentation camera__](#semantic-segmentation-camera) * [__DVS camera__](#dvs-camera) !!! Important All the sensors use the UE coordinate system (__x__-*forward*, __y__-*right*, __z__-*up*), and return coordinates in local space. When using any visualization software, pay attention to its coordinate system. Many invert the Y-axis, so visualizing the sensor data directly may result in mirrored outputs. --- ## Collision detector * __Blueprint:__ sensor.other.collision * __Output:__ [carla.CollisionEvent](python_api.md#carla.CollisionEvent) per collision. This sensor registers an event each time its parent actor collisions against something in the world. Several collisions may be detected during a single simulation step. To ensure that collisions with any kind of object are detected, the server creates "fake" actors for elements such as buildings or bushes so the semantic tag can be retrieved to identify it. Collision detectors do not have any configurable attribute. #### Output attributes
Sensor data attribute | Type | Description |
frame |
int | Frame number when the measurement took place. |
---|---|---|
timestamp |
double | Simulation time of the measurement in seconds since the beginning of the episode. |
transform |
carla.Transform | Location and rotation in world coordinates of the sensor at the time of the measurement. |
actor |
carla.Actor | Actor that measured the collision (sensor's parent). |
other_actor |
carla.Actor | Actor against whom the parent collided. |
normal_impulse |
carla.Vector3D | Normal impulse result of the collision. |
Blueprint attribute | Type | Default | Description |
image_size_x |
int | 800 | Image width in pixels. |
---|---|---|---|
image_size_y |
int | 600 | Image height in pixels. |
fov |
float | 90.0 | Horizontal field of view in degrees. |
sensor_tick |
float | 0.0 | Simulation seconds between sensor captures (ticks). |
Blueprint attribute | Type | Default | Description |
lens_circle_falloff |
float | 5.0 | Range: [0.0, 10.0] |
---|---|---|---|
lens_circle_multiplier |
float | 0.0 | Range: [0.0, 10.0] |
lens_k |
float | -1.0 | Range: [-inf, inf] |
lens_kcube |
float | 0.0 | Range: [-inf, inf] |
lens_x_size |
float | 0.08 | Range: [0.0, 1.0] |
lens_y_size |
float | 0.08 | Range: [0.0, 1.0] |
Sensor data attribute | Type | Description |
frame |
int | Frame number when the measurement took place. |
---|---|---|
timestamp |
double | Simulation time of the measurement in seconds since the beginning of the episode. |
transform |
carla.Transform | Location and rotation in world coordinates of the sensor at the time of the measurement. |
width |
int | Image width in pixels. |
height |
int | Image height in pixels. |
fov |
float | Horizontal field of view in degrees. |
raw_data |
bytes | Array of BGRA 32-bit pixels. |
Blueprint attribute | Type | Default | Description |
noise_alt_bias |
float | 0.0 | Mean parameter in the noise model for altitude. |
---|---|---|---|
noise_alt_stddev |
float | 0.0 | Standard deviation parameter in the noise model for altitude. |
noise_lat_bias |
float | 0.0 | Mean parameter in the noise model for latitude. |
noise_lat_stddev |
float | 0.0 | Standard deviation parameter in the noise model for latitude. |
noise_lon_bias |
float | 0.0 | Mean parameter in the noise model for longitude. |
noise_lon_stddev |
float | 0.0 | Standard deviation parameter in the noise model for longitude. |
noise_seed |
int | 0 | Initializer for a pseudorandom number generator. |
sensor_tick |
float | 0.0 | Simulation seconds between sensor captures (ticks). |
Sensor data attribute | Type | Description |
frame |
int | Frame number when the measurement took place. |
---|---|---|
timestamp |
double | Simulation time of the measurement in seconds since the beginning of the episode. |
transform |
carla.Transform | Location and rotation in world coordinates of the sensor at the time of the measurement. |
latitude |
double | Latitude of the actor. |
longitude |
double | Longitude of the actor. |
altitude |
double | Altitude of the actor. |
Blueprint attribute | Type | Default | Description |
noise_accel_stddev_x |
float | 0.0 | Standard deviation parameter in the noise model for acceleration (X axis). |
---|---|---|---|
noise_accel_stddev_y |
float | 0.0 | Standard deviation parameter in the noise model for acceleration (Y axis). |
noise_accel_stddev_z |
float | 0.0 | Standard deviation parameter in the noise model for acceleration (Z axis). |
noise_gyro_bias_x |
float | 0.0 | Mean parameter in the noise model for the gyroscope (X axis). |
noise_gyro_bias_y |
float | 0.0 | Mean parameter in the noise model for the gyroscope (Y axis). |
noise_gyro_bias_z |
float | 0.0 | Mean parameter in the noise model for the gyroscope (Z axis). |
noise_gyro_stddev_x |
float | 0.0 | Standard deviation parameter in the noise model for the gyroscope (X axis). |
noise_gyro_stddev_y |
float | 0.0 | Standard deviation parameter in the noise model for the gyroscope (Y axis). |
noise_gyro_stddev_z |
float | 0.0 | Standard deviation parameter in the noise model for the gyroscope (Z axis). |
noise_seed |
int | 0 | Initializer for a pseudorandom number generator. |
sensor_tick |
float | 0.0 | Simulation seconds between sensor captures (ticks). |
Sensor data attribute | Type | Description |
frame |
int | Frame number when the measurement took place. |
---|---|---|
timestamp |
double | Simulation time of the measurement in seconds since the beginning of the episode. |
transform |
carla.Transform | Location and rotation in world coordinates of the sensor at the time of the measurement. |
accelerometer |
carla.Vector3D | Measures linear acceleration in m/s^2 . |
gyroscope |
carla.Vector3D | Measures angular velocity in rad/sec . |
compass |
float | Orientation in radians. North is (0.0, -1.0, 0.0) in UE. |
Sensor data attribute | Type | Description |
frame |
int | Frame number when the measurement took place. |
---|---|---|
timestamp |
double | Simulation time of the measurement in seconds since the beginning of the episode. |
transform |
carla.Transform | Location and rotation in world coordinates of the sensor at the time of the measurement. |
actor |
carla.Actor | Vehicle that invaded another lane (parent actor). |
crossed_lane_markings |
list(carla.LaneMarking) | List of lane markings that have been crossed. |
Blueprint attribute | Type | Default | Description |
channels |
int | 32 | Number of lasers. |
---|---|---|---|
range |
float | 10.0 | Maximum distance to measure/raycast in meters (centimeters for CARLA 0.9.6 or previous). |
points_per_second |
int | 56000 | Points generated by all lasers per second. |
rotation_frequency |
float | 10.0 | LIDAR rotation frequency. |
upper_fov |
float | 10.0 | Angle in degrees of the highest laser. |
lower_fov |
float | -30.0 | Angle in degrees of the lowest laser. |
atmosphere_attenuation_rate |
float | 0.004 | Coefficient that measures the LIDAR instensity loss per meter. Check the intensity computation above. |
dropoff_general_rate |
float | 0.45 | General proportion of points that are randomy dropped. |
dropoff_intensity_limit |
float | 0.8 | For the intensity based drop-off, the threshold intensity value above which no points are dropped. |
dropoff_zero_intensity |
float | 0.4 | For the intensity based drop-off, the probability of each point with zero intensity being dropped. |
sensor_tick |
float | 0.0 | Simulation seconds between sensor captures (ticks). |
noise_stddev |
float | 0.0 | Standard deviation of the noise model to disturb each point along the vector of its raycast. |
Sensor data attribute | Type | Description |
frame |
int | Frame number when the measurement took place. |
---|---|---|
timestamp |
double | Simulation time of the measurement in seconds since the beginning of the episode. |
transform |
carla.Transform | Location and rotation in world coordinates of the sensor at the time of the measurement. |
horizontal_angle |
float | Angle (radians) in the XY plane of the LIDAR in the current frame. |
channels |
int | Number of channels (lasers) of the LIDAR. |
get_point_count(channel) |
int | Number of points per channel captured this frame. |
raw_data |
bytes | Array of 32-bits floats (XYZI of each point). |
Blueprint attribute | Type | Default | Description |
distance |
float | 5 | Distance to trace. |
---|---|---|---|
hit_radius |
float | 0.5 | Radius of the trace. |
only_dynamics |
bool | False | If true, the trace will only consider dynamic objects. |
debug_linetrace |
bool | False | If true, the trace will be visible. |
sensor_tick |
float | 0.0 | Simulation seconds between sensor captures (ticks). |
Sensor data attribute | Type | Description |
frame |
int | Frame number when the measurement took place. |
---|---|---|
timestamp |
double | Simulation time of the measurement in seconds since the beginning of the episode. |
transform |
carla.Transform | Location and rotation in world coordinates of the sensor at the time of the measurement. |
actor |
carla.Actor | Actor that detected the obstacle (parent actor). |
other_actor |
carla.Actor | Actor detected as an obstacle. |
distance |
float | Distance from actor to other_actor . |
Blueprint attribute | Type | Default | Description |
horizontal_fov |
float | 30.0 | Horizontal field of view in degrees. |
---|---|---|---|
points_per_second |
int | 1500 | Points generated by all lasers per second. |
range |
float | 100 | Maximum distance to measure/raycast in meters. |
sensor_tick |
float | 0.0 | Simulation seconds between sensor captures (ticks). |
vertical_fov |
float | 30.0 | Vertical field of view in degrees. |
Sensor data attribute | Type | Description |
raw_data |
carla.RadarDetection | The list of points detected. |
---|
RadarDetection attributes | Type | Description |
altitude |
float | Altitude angle in radians. |
---|---|---|
azimuth |
float | Azimuth angle in radians. |
depth |
float | Distance in meters. |
velocity |
float | Velocity towards the sensor. |
Blueprint attribute | Type | Default | Description |
bloom_intensity |
float | 0.675 | Intensity for the bloom post-process effect, 0.0 for disabling it. |
---|---|---|---|
fov |
float | 90.0 | Horizontal field of view in degrees. |
fstop |
float | 1.4 | Opening of the camera lens. Aperture is 1/fstop with typical lens going down to f/1.2 (larger opening). Larger numbers will reduce the Depth of Field effect. |
image_size_x |
int | 800 | Image width in pixels. |
image_size_y |
int | 600 | Image height in pixels. |
iso |
float | 100.0 | The camera sensor sensitivity. |
gamma |
float | 2.2 | Target gamma value of the camera. |
lens_flare_intensity |
float | 0.1 | Intensity for the lens flare post-process effect, 0.0 for disabling it. |
sensor_tick |
float | 0.0 | Simulation seconds between sensor captures (ticks). |
shutter_speed |
float | 200.0 | The camera shutter speed in seconds (1.0/s). |
Blueprint attribute | Type | Default | Description |
lens_circle_falloff |
float | 5.0 | Range: [0.0, 10.0] |
---|---|---|---|
lens_circle_multiplier |
float | 0.0 | Range: [0.0, 10.0] |
lens_k |
float | -1.0 | Range: [-inf, inf] |
lens_kcube |
float | 0.0 | Range: [-inf, inf] |
lens_x_size |
float | 0.08 | Range: [0.0, 1.0] |
lens_y_size |
float | 0.08 | Range: [0.0, 1.0] |
Blueprint attribute | Type | Default | Description | min_fstop |
float | 1.2 | Maximum aperture. |
---|---|---|---|
blade_count |
int | 5 | Number of blades that make up the diaphragm mechanism. |
exposure_mode |
str | histogram |
Can be manual or histogram . More in UE4 docs. |
exposure_compensation |
float | Linux: -1.5 Windows: 0.0 |
Logarithmic adjustment for the exposure. 0: no adjustment, -1:2x darker, -2:4 darker, 1:2x brighter, 2:4x brighter. |
exposure_min_bright |
float | 7.0 | In exposure_mode: "histogram" . Minimum brightness for auto exposure. The lowest the eye can adapt within. Must be greater than 0 and less than or equal to exposure_max_bright . |
exposure_max_bright |
float | 9.0 | In `exposure_mode: "histogram"`. Maximum brightness for auto exposure. The highestthe eye can adapt within. Must be greater than 0 and greater than or equal to `exposure_min_bright`. |
exposure_speed_up |
float | 3.0 | In exposure_mode: "histogram" . Speed at which the adaptation occurs from dark to bright environment. |
exposure_speed_down |
float | 1.0 | In exposure_mode: "histogram" . Speed at which the adaptation occurs from bright to dark environment. |
calibration_constant |
float | 16.0 | Calibration constant for 18% albedo. |
focal_distance |
float | 1000.0 | Distance at which the depth of field effect should be sharp. Measured in cm (UE units). |
blur_amount |
float | 1.0 | Strength/intensity of motion blur. |
blur_radius |
float | 0.0 | Radius in pixels at 1080p resolution to emulate atmospheric scattering according to distance from camera. |
motion_blur_intensity |
float | 0.45 | Strength of motion blur [0,1]. |
motion_blur_max_distortion |
float | 0.35 | Max distortion caused by motion blur. Percentage of screen width. |
motion_blur_min_object_screen_size |
float | 0.1 | Percentage of screen width objects must have for motion blur, lower value means less draw calls. |
slope |
float | 0.88 | Steepness of the S-curve for the tonemapper. Larger values make the slope steeper (darker) [0.0, 1.0]. |
toe |
float | 0.55 | Adjusts dark color in the tonemapper [0.0, 1.0]. |
shoulder |
float | 0.26 | Adjusts bright color in the tonemapper [0.0, 1.0]. |
black_clip |
float | 0.0 | This should NOT be adjusted. Sets where the crossover happens and black tones start to cut off their value [0.0, 1.0]. |
white_clip |
float | 0.04 | Set where the crossover happens and white tones start to cut off their value. Subtle change in most cases [0.0, 1.0]. |
temp |
float | 6500.0 | White balance in relation to the temperature of the light in the scene. White light: when this matches light temperature. Warm light: When higher than the light in the scene, it is a yellowish color. Cool light: When lower than the light. Blueish color. |
tint |
float | 0.0 | White balance temperature tint. Adjusts cyan and magenta color ranges. This should be used along with the white balance Temp property to get accurate colors. Under some light temperatures, the colors may appear to be more yellow or blue. This can be used to balance the resulting color to look more natural. |
chromatic_aberration_intensity |
float | 0.0 | Scaling factor to control color shifting, more noticeable on the screen borders. |
chromatic_aberration_offset |
float | 0.0 | Normalized distance to the center of the image where the effect takes place. |
enable_postprocess_effects |
bool | True | Post-process effects activation. |
Sensor data attribute | Type | Description |
frame |
int | Frame number when the measurement took place. |
---|---|---|
timestamp |
double | Simulation time of the measurement in seconds since the beginning of the episode. |
transform |
carla.Transform | Location and rotation in world coordinates of the sensor at the time of the measurement. |
width |
int | Image width in pixels. |
height |
int | Image height in pixels. |
fov |
float | Horizontal field of view in degrees. |
raw_data |
bytes | Array of BGRA 32-bit pixels. |
carla.RssSensor variables | Type | Description | ego_vehicle_dynamics |
ad.rss.world.RssDynamics | RSS parameters to be applied for the ego vehicle |
---|---|---|
other_vehicle_dynamics |
ad.rss.world.RssDynamics | RSS parameters to be applied for the other vehicles |
pedestrian_dynamics |
ad.rss.world.RssDynamics | RSS parameters to be applied for pedestrians |
road_boundaries_mode |
carla.RssRoadBoundariesMode | Enables/Disables the stay on road feature. Default is Off. |
carla.RssSensor methods | Description |
---|---|
routing_targets |
Get the current list of routing targets used for route. |
append_routing_target |
Append an additional position to the current routing targets. |
reset_routing_targets |
Deletes the appended routing targets. |
drop_route |
Discards the current route and creates a new one. |
register_actor_constellation_callback |
Register a callback to customize the calculations. |
set_log_level |
Sets the log level. |
set_map_log_level |
Sets the log level used for map related logs. |
carla.RssResponse attributes | Type | Description | response_valid |
bool | Validity of the response data. |
---|---|---|
proper_response |
ad.rss.state.ProperResponse | Proper response that the RSS calculated for the vehicle including acceleration restrictions. |
rss_state_snapshot |
ad.rss.state.RssStateSnapshot | RSS states at the current point in time. This is the detailed individual output of the RSS calclulations. |
situation_snapshot |
ad.rss.situation.SituationSnapshot | RSS situation at the current point in time. This is the processed input data for the RSS calclulations. |
world_model |
ad.rss.world.WorldModel | RSS world model at the current point in time. This is the input data for the RSS calculations. |
ego_dynamics_on_route |
carla.RssEgoDynamicsOnRoute | Current ego vehicle dynamics regarding the route. |
Blueprint attribute | Type | Default | Description |
channels |
int | 32 | Number of lasers. |
---|---|---|---|
range |
float | 10.0 | Maximum distance to measure/raycast in meters (centimeters for CARLA 0.9.6 or previous). |
points_per_second |
int | 56000 | Points generated by all lasers per second. |
rotation_frequency |
float | 10.0 | LIDAR rotation frequency. |
upper_fov |
float | 10.0 | Angle in degrees of the highest laser. |
lower_fov |
float | -30.0 | Angle in degrees of the lowest laser. |
sensor_tick |
float | 0.0 | Simulation seconds between sensor captures (ticks). |
Sensor data attribute | Type | Description |
frame |
int | Frame number when the measurement took place. |
---|---|---|
timestamp |
double | Simulation time of the measurement in seconds since the beginning of the episode. |
transform |
carla.Transform | Location and rotation in world coordinates of the sensor at the time of the measurement. |
horizontal_angle |
float | Angle (radians) in the XY plane of the LIDAR in the current frame. |
channels |
int | Number of channels (lasers) of the LIDAR. |
get_point_count(channel) |
int | Number of points per channel captured in the current frame. |
raw_data |
bytes | Array containing the point cloud with instance and semantic information. For each point, four 32-bits floats are stored. - XYZ coordinates. - cosine of the incident angle. - Unsigned int containing the index of the object hit. - Unsigned int containing the semantic tag of the object it. |
Value | Tag | Converted color | Description | 0 |
Unlabeled | (0, 0, 0) |
Elements that have not been categorized are considered Unlabeled . This category is meant to be empty or at least contain elements with no collisions. |
---|---|---|---|
1 |
Building | (70, 70, 70) |
Buildings like houses, skyscrapers,... and the elements attached to them. E.g. air conditioners, scaffolding, awning or ladders and much more. |
2 |
Fence | (100, 40, 40) |
Barriers, railing, or other upright structures. Basically wood or wire assemblies that enclose an area of ground. |
3 |
Other | (55, 90, 80) |
Everything that does not belong to any other category. |
4 |
Pedestrian | (220, 20, 60) |
Humans that walk or ride/drive any kind of vehicle or mobility system. E.g. bicycles or scooters, skateboards, horses, roller-blades, wheel-chairs, etc. |
5 |
Pole | (153, 153, 153) |
Small mainly vertically oriented pole. If the pole has a horizontal part (often for traffic light poles) this is also considered pole. E.g. sign pole, traffic light poles. |
6 |
RoadLine | (157, 234, 50) |
The markings on the road. |
7 |
Road | (128, 64, 128) |
Part of ground on which cars usually drive. E.g. lanes in any directions, and streets. |
8 |
SideWalk | (244, 35, 232) |
Part of ground designated for pedestrians or cyclists. Delimited from the road by some obstacle (such as curbs or poles), not only by markings. This label includes a possibly delimiting curb, traffic islands (the walkable part), and pedestrian zones. |
9 |
Vegetation | (107, 142, 35) |
Trees, hedges, all kinds of vertical vegetation. Ground-level vegetation is considered Terrain . |
10 |
Vehicles | (0, 0, 142) |
Cars, vans, trucks, motorcycles, bikes, buses, trains. |
11 |
Wall | (102, 102, 156) |
Individual standing walls. Not part of a building. |
12 |
TrafficSign | (220, 220, 0) |
Signs installed by the state/city authority, usually for traffic regulation. This category does not include the poles where signs are attached to. E.g. traffic- signs, parking signs, direction signs... |
13 |
Sky | (70, 130, 180) |
Open sky. Includes clouds and the sun. |
14 |
Ground | (81, 0, 81) |
Any horizontal ground-level structures that does not match any other category. For example areas shared by vehicles and pedestrians, or flat roundabouts delimited from the road by a curb. |
15 |
Bridge | (150, 100, 100) |
Only the structure of the bridge. Fences, people, vehicles, an other elements on top of it are labeled separately. |
16 |
RailTrack | (230, 150, 140) |
All kind of rail tracks that are non-drivable by cars. E.g. subway and train rail tracks. |
17 |
GuardRail | (180, 165, 180) |
All types of guard rails/crash barriers. |
18 |
TrafficLight | (250, 170, 30) |
Traffic light boxes without their poles. |
19 |
Static | (110, 190, 160) |
Elements in the scene and props that are immovable. E.g. fire hydrants, fixed benches, fountains, bus stops, etc. |
20 |
Dynamic | (170, 120, 50) |
Elements whose position is susceptible to change over time. E.g. Movable trash bins, buggies, bags, wheelchairs, animals, etc. |
21 |
Water | (45, 60, 150) |
Horizontal water surfaces. E.g. Lakes, sea, rivers. |
22 |
Terrain | (145, 170, 100) |
Grass, ground-level vegetation, soil or sand. These areas are not meant to be driven on. This label includes a possibly delimiting curb. |
Blueprint attribute | Type | Default | Description |
fov |
float | 90.0 | Horizontal field of view in degrees. |
---|---|---|---|
image_size_x |
int | 800 | Image width in pixels. |
image_size_y |
int | 600 | Image height in pixels. |
sensor_tick |
float | 0.0 | Simulation seconds between sensor captures (ticks). |
Blueprint attribute | Type | Default | Description |
lens_circle_falloff |
float | 5.0 | Range: [0.0, 10.0] |
---|---|---|---|
lens_circle_multiplier |
float | 0.0 | Range: [0.0, 10.0] |
lens_k |
float | -1.0 | Range: [-inf, inf] |
lens_kcube |
float | 0.0 | Range: [-inf, inf] |
lens_x_size |
float | 0.08 | Range: [0.0, 1.0] |
lens_y_size |
float | 0.08 | Range: [0.0, 1.0] |
Sensor data attribute | Type | Description | fov |
float | Horizontal field of view in degrees. |
---|---|---|
frame |
int | Frame number when the measurement took place. |
height |
int | Image height in pixels. |
raw_data |
bytes | Array of BGRA 32-bit pixels. |
timestamp |
double | Simulation time of the measurement in seconds since the beginning of the episode. |
transform |
carla.Transform | Location and rotation in world coordinates of the sensor at the time of the measurement. |
width |
int | Image width in pixels. |
Blueprint attribute | Type | Default | Description |
positive_threshold |
float | 0.3 | Positive threshold C associated to a increment in brightness change (0-1). |
---|---|---|---|
negative_threshold |
float | 0.3 | Negative threshold C associated to a decrement in brightness change (0-1). |
sigma_positive_threshold |
float | 0 | White noise standard deviation for positive events (0-1). |
sigma_negative_threshold |
float | 0 | White noise standard deviation for negative events (0-1). |
refractory_period_ns |
int | 0.0 | Refractory period (time during which a pixel cannot fire events just after it fired one), in nanoseconds. It limits the highest frequency of triggering events. |
use_log |
bool | true | Whether to work in the logarithmic intensity scale. |
log_eps |
float | 0.001 | Epsilon value used to convert images to log: L = log(eps + I / 255.0) .Where I is the grayscale value of the RGB image: I = 0.2989*R + 0.5870*G + 0.1140*B . |