carla/PythonAPI/util/vehicle_physics_tester.py

442 lines
14 KiB
Python

#!/usr/bin/env python
# Copyright (c) 2021 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""
Tester for vehicle physics utility for CARLA
Uses:
Basics scenearios (acceleration, brake, u-turn):
python vehicle_physics_tester.py --filter vehicle_id --basics
High-speed (100km/h) turn sceneario:
python vehicle_physics_tester.py --filter vehicle_id --turn
"""
import glob
import os
import sys
import argparse
import time
import numpy as np
try:
sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
sys.version_info.major,
sys.version_info.minor,
'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
pass
import carla
class VehicleControlStop:
def __init__(self, x_min = -100000, x_max = +100000, y_min = -100000, y_max = +100000,
yaw_min = -500, yaw_max = +500, speed_min = -1, speed_max = +100000):
self.x_min = x_min
self.x_max = x_max
self.y_min = y_min
self.y_max = y_max
self.yaw_min = yaw_min
self.yaw_max = yaw_max
self.speed_min = speed_min
self.speed_max = speed_max
def stop_control(self, vehicle):
loc = vehicle.get_location()
if loc.x > self.x_max :
return True
if loc.x < self.x_min:
return True
if loc.y > self.y_max :
return True
if loc.y < self.y_min:
return True
rot = vehicle.get_transform().rotation
if rot.yaw > self.yaw_max :
return True
if rot.yaw < self.yaw_min:
return True
speed = norm(vehicle.get_velocity())
if speed > self.speed_max :
return True
if speed < self.speed_min:
return True
return False
def change_physics_control(vehicle, tire_friction = None, drag = None, wheel_sweep = None,
max_rpm = None):
physics_control = vehicle.get_physics_control()
if drag is not None:
physics_control.drag_coefficient = drag
if wheel_sweep is not None:
physics_control.use_sweep_wheel_collision = wheel_sweep
if max_rpm is not None:
physics_control.max_rpm = max_rpm
if len(physics_control.forward_gears) == 1:
gear = 1.0
physics_control.forward_gears = [gear]
if len(physics_control.reverse_gears) == 1:
gear = 1.0
physics_control.reverse_gears = [gear]
front_left_wheel = physics_control.wheels[0]
front_right_wheel = physics_control.wheels[1]
rear_left_wheel = physics_control.wheels[2]
rear_right_wheel = physics_control.wheels[3]
if tire_friction is not None:
front_left_wheel.tire_friction = tire_friction
front_right_wheel.tire_friction = tire_friction
rear_left_wheel.tire_friction = tire_friction
rear_right_wheel.tire_friction = tire_friction
wheels = [front_left_wheel, front_right_wheel, rear_left_wheel, rear_right_wheel]
physics_control.wheels = wheels
return physics_control
def print_step_info(world, vehicle):
snapshot = world.get_snapshot()
print("%d %06.03f %+8.03f %+8.03f %+8.03f %+8.03f %+8.03f %+8.03f %+8.03f %+8.03f %+8.03f" %
(snapshot.frame, snapshot.timestamp.elapsed_seconds, \
vehicle.get_acceleration().x, vehicle.get_acceleration().y, vehicle.get_acceleration().z, \
vehicle.get_velocity().x, vehicle.get_velocity().y, vehicle.get_velocity().z, \
vehicle.get_location().x, vehicle.get_location().y, vehicle.get_location().z))
def wait(world, frames=100):
for _i in range(0, frames):
world.tick()
def norm(vec):
return np.sqrt(vec.x*vec.x + vec.y*vec.y + vec.z*vec.z)
class TelemetryPoint:
def __init__(self, curr_time=None, location=None, rotation=None, velocity=None):
self.time = curr_time
self.location = location
self.rotation = rotation
self.velocity = velocity
def __str__(self):
return "%.2f %s %s %s" % (self.time, str(self.location), str(self.rotation), str(self.velocity))
def __sub__(self, other):
t = self.time - other.time
l = self.location - other.location
r = carla.Rotation()
v = self.velocity - other.velocity
return TelemetryPoint(t, l, r, v)
class TelemetryData:
def __init__(self, curr_time, vehicle):
self.list_of_telemetries = []
location = vehicle.get_location()
rotation = vehicle.get_transform().rotation
velocity = vehicle.get_velocity()
self.list_of_telemetries.append(TelemetryPoint(curr_time, location, rotation, velocity))
def __str__(self):
ret_str = ""
for idx, val in enumerate(self.list_of_telemetries):
ret_str += "%d: %s\n" % (idx, str(val))
return ret_str
def add_telemetry(self, curr_time, vehicle):
location = vehicle.get_location()
rotation = vehicle.get_transform().rotation
velocity = vehicle.get_velocity()
self.list_of_telemetries.append(TelemetryPoint(curr_time, location, rotation, velocity))
def number_of_telemetries(self):
return len(self.list_of_telemetries)
def get_telemetry(self, index):
if index >= self.number_of_telemetries():
return TelemetryPoint()
return self.list_of_telemetries[index]
def get_telemetry_delta(self, index):
if index >= (self.number_of_telemetries()-1):
return TelemetryPoint()
return self.list_of_telemetries[index+1] - self.list_of_telemetries[index]
def get_scalar_delta(self, index):
if index >= (self.number_of_telemetries()-1):
return TelemetryPoint()
delta = self.list_of_telemetries[index+1] - self.list_of_telemetries[index]
return delta.time, norm(delta.location), norm(delta.velocity)
def run_scenario(world, bp_veh, init_loc, init_speed = 0.0, init_frames=10,
controls=[(150, carla.VehicleControl(), VehicleControlStop())],
apply_phys_control = None):
veh_transf = init_loc
vehicle = world.spawn_actor(bp_veh, veh_transf)
wait(world, 10)
data = TelemetryData(world.get_snapshot().elapsed_seconds, vehicle)
# Initialization at init_speed
vehicle.enable_constant_velocity(carla.Vector3D(init_speed, 0, 0))
wait(world, init_frames)
vehicle.disable_constant_velocity()
wait(world, 1)
for i_control in controls:
control_frames = i_control[0]
control = i_control[1]
stopper = i_control[2]
data.add_telemetry(world.get_snapshot().elapsed_seconds, vehicle)
# Apply control
vehicle.apply_control(control)
for _i in range(0, control_frames):
world.tick()
check = stopper.stop_control(vehicle)
if check:
break
data.add_telemetry(world.get_snapshot().elapsed_seconds, vehicle)
wait(world, 10)
vehicle.destroy()
return data
def brake_scenario(world, bp_veh, speed):
spectator_transform = carla.Transform(carla.Location(20, -190, 10), carla.Rotation(yaw=67, pitch=-13))
try:
spectator = world.get_spectator()
spectator.set_transform(spectator_transform)
except:
print("No spectator")
init_loc = carla.Transform(carla.Location(32, -180, 0.5), carla.Rotation(yaw=90))
controls = [
(1000, carla.VehicleControl(brake=1.0), VehicleControlStop(speed_min=0.1))]
data = run_scenario(world, bp_veh, init_loc, init_speed=speed/3.6, controls=controls)
delta = data.get_scalar_delta(1)
end_vel = 3.6*norm(data.get_telemetry(2).velocity)
print(" %.0f -> 0 km/h: (%.1f s, %.1f m)" % (speed, delta[0], delta[1]), end="")
def accel_scenario(world, bp_veh, max_vel):
spectator_transform = carla.Transform(carla.Location(20, -190, 10), carla.Rotation(yaw=67, pitch=-13))
try:
spectator = world.get_spectator()
spectator.set_transform(spectator_transform)
except:
print("No spectator")
init_loc = carla.Transform(carla.Location(32, -180, 0.5), carla.Rotation(yaw=90))
controls = [
(1000, carla.VehicleControl(throttle=1.0), VehicleControlStop(speed_max=max_vel/3.6))]
data = run_scenario(world, bp_veh, init_loc=init_loc, controls=controls)
delta = data.get_scalar_delta(1)
end_vel = 3.6*norm(data.get_telemetry(2).velocity)
print(" 0 -> %.0f km/h: (%.1f s, %.1f m)" % (max_vel, delta[0], delta[1]), end="")
def uturn_scenario(world, bp_veh):
spectator_transform = carla.Transform(carla.Location(30, -180, 20), carla.Rotation(yaw=-140, pitch=-36))
try:
spectator = world.get_spectator()
spectator.set_transform(spectator_transform)
except:
pass
init_pos = carla.Transform(carla.Location(15, -190, 0.2), carla.Rotation(yaw=0))
controls = [
(1000, carla.VehicleControl(throttle=1.0), VehicleControlStop(x_max=19)),
(1000, carla.VehicleControl(throttle=0.25, steer=-0.4), VehicleControlStop(yaw_min=-170)),
(100, carla.VehicleControl(throttle=0.4), VehicleControlStop(x_min =10))
]
data = run_scenario(world, bp_veh, init_loc=init_pos, controls=controls)
end_vel = 3.6*norm(data.get_telemetry(3).velocity)
def highspeed_turn_scenario(world, bp_veh, steer):
spectator_transform = carla.Transform(carla.Location(70, -200, 15), carla.Rotation(yaw=0, pitch=-12))
try:
spectator = world.get_spectator()
spectator.set_transform(spectator_transform)
except:
pass
init_pos = carla.Transform(carla.Location(50, -204, 0.2), carla.Rotation(yaw=0))
init_frames = 2
init_speed = 100 / 3.6
controls = [(100, carla.VehicleControl(throttle=0.5), VehicleControlStop(x_max=100)),
(200, carla.VehicleControl(throttle=1.0, steer = steer), VehicleControlStop(yaw_max=45, speed_min=3)),
(200, carla.VehicleControl(brake=1), VehicleControlStop())]
data = run_scenario(world, bp_veh, init_loc=init_pos, init_speed=init_speed, init_frames = init_frames, controls=controls)
time.sleep(1)
def main(arg):
"""Main function of the script"""
client = carla.Client(arg.host, arg.port)
client.set_timeout(30.0)
world = client.get_world()
try:
# Setting the world and the spawn properties
original_settings = world.get_settings()
settings = world.get_settings()
delta = 0.05
settings.fixed_delta_seconds = delta
settings.synchronous_mode = True
world.apply_settings(settings)
if world.get_map().name != "Town05":
client.load_world("Town05", False)
for bp_veh in world.get_blueprint_library().filter(args.filter):
print("-------------------------------------------")
print(bp_veh.id, end="", flush=True)
if args.show_physics_control:
try:
veh_transf = carla.Transform()
veh_transf.location.z = 100
vehicle = world.spawn_actor(bp_veh, veh_transf)
print()
print(vehicle.get_physics_control())
vehicle.destroy()
except:
pass
if args.none:
continue
if args.accel or args.all:
accel_scenario(world, bp_veh, 50)
accel_scenario(world, bp_veh, 100)
if args.brake or args.all:
brake_scenario(world, bp_veh, 80)
brake_scenario(world, bp_veh, 100)
if args.uturn or args.all:
uturn_scenario(world, bp_veh)
if args.turn or args.all:
highspeed_turn_scenario(world, bp_veh, 0.2)
print()
print("-------------------------------------------")
finally:
world.apply_settings(original_settings)
if __name__ == "__main__":
argparser = argparse.ArgumentParser(
description=__doc__)
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host CARLA Simulator (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port of CARLA Simulator (default: 2000)')
argparser.add_argument(
'--filter',
metavar='PATTERN',
default='vehicle.*',
help='actor filter (default: "vehicle.*")')
argparser.set_defaults(accel=False)
argparser.add_argument(
'--accel',
dest='accel',
action='store_true',
help='Execute accel scenarios')
argparser.set_defaults(brake=False)
argparser.add_argument(
'--brake',
dest='brake',
action='store_true',
help='Execute brake scenarios')
argparser.set_defaults(uturn=False)
argparser.add_argument(
'--uturn',
dest='uturn',
action='store_true',
help='Execute brake scenarios')
argparser.set_defaults(turn=False)
argparser.add_argument(
'--turn',
dest='turn',
action='store_true',
help='Execute basic scenarios')
argparser.set_defaults(all=True)
argparser.add_argument(
'--all',
dest='all',
action='store_true',
help='Execute all scenarios')
argparser.set_defaults(none=False)
argparser.add_argument(
'--none',
dest='none',
action='store_true',
help='Do not execute any scenarios')
argparser.set_defaults(show_physics_control=False)
argparser.add_argument(
'--show_physics_control',
dest='show_physics_control',
action='store_true',
help='Show default physics control of cars')
args = argparser.parse_args()
if args.accel or args.brake or args.uturn or args.turn:
args.all = False
try:
main(args)
except KeyboardInterrupt:
print(' - Exited by user.')