carla/PythonAPI/util/check_raycast_sensors_deter...

492 lines
18 KiB
Python

#!/usr/bin/env python
# Copyright (c) 2020 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""
Check raycast sensors determinism for CARLA
This script spawn all the raycast sensors in a simple scenario and check if their
output are deterministic.
"""
import glob
import os
import sys
import argparse
import time
import filecmp
import shutil
from queue import Queue
from queue import Empty
import numpy as np
try:
sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
sys.version_info.major,
sys.version_info.minor,
'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
pass
import carla
class Scenario():
def __init__(self, client, world, save_snapshots_mode=False):
self.world = world
self.client = client
self.actor_list = []
self.init_timestamp = []
self.active = False
self.prefix = ""
self.save_snapshots_mode = save_snapshots_mode
self.snapshots = []
self.sensor_list = []
self.sensor_queue = Queue()
def init_scene(self, prefix, settings = None, spectator_tr = None):
self.prefix = prefix
self.actor_list = []
self.active = True
self.snapshots = []
self.sensor_list = []
self.sensor_queue = Queue()
self.reload_world(settings, spectator_tr)
# Init timestamp
snapshot = self.world.get_snapshot()
self.init_timestamp = {'frame0' : snapshot.frame, 'time0' : snapshot.timestamp.elapsed_seconds}
def add_actor(self, actor, actor_name="Actor"):
actor_idx = len(self.actor_list)
name = str(actor_idx) + "_" + actor_name
self.actor_list.append((name, actor))
if self.save_snapshots_mode:
self.snapshots.append(np.empty((0,11), float))
def wait(self, frames=100):
for _i in range(0, frames):
self.world.tick()
if self.active:
for _s in self.sensor_list:
self.sensor_queue.get(True, 1.0)
def clear_scene(self):
for sensor in self.sensor_list:
sensor[1].destroy()
for actor in self.actor_list:
actor.destroy()
self.active = False
def reload_world(self, settings = None, spectator_tr = None):
self.client.reload_world()
if settings is not None:
self.world.apply_settings(settings)
if spectator_tr is not None:
self.reset_spectator(spectator_tr)
def reset_spectator(self, spectator_tr):
spectator = self.world.get_spectator()
spectator.set_transform(spectator_tr)
def save_snapshot(self, actor):
snapshot = self.world.get_snapshot()
actor_snapshot = np.array([
float(snapshot.frame - self.init_timestamp['frame0']), \
snapshot.timestamp.elapsed_seconds - self.init_timestamp['time0'], \
actor.get_velocity().x, actor.get_velocity().y, actor.get_velocity().z, \
actor.get_location().x, actor.get_location().y, actor.get_location().z, \
actor.get_angular_velocity().x, actor.get_angular_velocity().y, actor.get_angular_velocity().z])
return actor_snapshot
def save_snapshots(self):
if not self.save_snapshots_mode:
return
for i in range (0, len(self.actor_list)):
self.snapshots[i] = np.vstack((self.snapshots[i], self.save_snapshot(self.actor_list[i][1])))
def save_snapshots_to_disk(self):
if not self.save_snapshots_mode:
return
for i, actor in enumerate(self.actor_list):
np.savetxt(self.get_filename(actor[0]), self.snapshots[i])
def get_filename_with_prefix(self, prefix, actor_id=None, frame=None):
add_id = "" if actor_id is None else "_" + actor_id
add_frame = "" if frame is None else ("_%04d") % frame
return prefix + add_id + add_frame + ".out"
def get_filename(self, actor_id=None, frame=None):
return self.get_filename_with_prefix(self.prefix, actor_id, frame)
def run_simulation(self, prefix, run_settings, spectator_tr, tics = 200):
original_settings = self.world.get_settings()
self.init_scene(prefix, run_settings, spectator_tr)
t_start = time.perf_counter()
for _i in range(0, tics):
self.world.tick()
self.save_snapshots()
self.sensor_syncronization()
t_end = time.perf_counter()
self.world.apply_settings(original_settings)
self.save_snapshots_to_disk()
self.clear_scene()
return t_end - t_start
def add_sensor(self, sensor, sensor_type):
sen_idx = len(self.sensor_list)
if sensor_type == "LiDAR":
name = str(sen_idx) + "_LiDAR"
sensor.listen(lambda data : self.add_lidar_snapshot(data, name))
elif sensor_type == "SemLiDAR":
name = str(sen_idx) + "_SemLiDAR"
sensor.listen(lambda data : self.add_semlidar_snapshot(data, name))
elif sensor_type == "Radar":
name = str(sen_idx) + "_Radar"
sensor.listen(lambda data : self.add_radar_snapshot(data, name))
self.sensor_list.append((name, sensor))
def add_lidar_snapshot(self, lidar_data, name="LiDAR"):
if not self.active:
return
points = np.frombuffer(lidar_data.raw_data, dtype=np.dtype('f4'))
points = np.reshape(points, (int(points.shape[0] / 4), 4))
frame = lidar_data.frame - self.init_timestamp['frame0']
np.savetxt(self.get_filename(name, frame), points)
self.sensor_queue.put((lidar_data.frame, name))
def add_semlidar_snapshot(self, lidar_data, name="SemLiDAR"):
if not self.active:
return
data = np.frombuffer(lidar_data.raw_data, dtype=np.dtype([
('x', np.float32), ('y', np.float32), ('z', np.float32),
('CosAngle', np.float32), ('ObjIdx', np.uint32), ('ObjTag', np.uint32)]))
points = np.array([data['x'], data['y'], data['z'], data['CosAngle'], data['ObjTag']]).T
frame = lidar_data.frame - self.init_timestamp['frame0']
np.savetxt(self.get_filename(name, frame), points)
self.sensor_queue.put((lidar_data.frame, name))
def add_radar_snapshot(self, radar_data, name="Radar"):
if not self.active:
return
points = np.frombuffer(radar_data.raw_data, dtype=np.dtype('f4'))
points = np.reshape(points, (int(points.shape[0] / 4), 4))
frame = radar_data.frame - self.init_timestamp['frame0']
np.savetxt(self.get_filename(name, frame), points)
self.sensor_queue.put((radar_data.frame, name))
def sensor_syncronization(self):
# Sensor Syncronization
w_frame = self.world.get_snapshot().frame
for sensor in self.sensor_list:
s_frame = self.sensor_queue.get(True, 1.0)[0]
if w_frame != s_frame:
print("Error!!! frames are not equal for %s: %d %d" % (sensor[0], w_frame, s_frame))
class SpawnLidarNoDropff(Scenario):
def init_scene(self, prefix, settings = None, spectator_tr = None):
super().init_scene(prefix, settings, spectator_tr)
blueprint_library = self.world.get_blueprint_library()
vehicle00_tr = carla.Transform(carla.Location(140, -205, 0.1), carla.Rotation(yaw=181.5))
vehicle00 = self.world.spawn_actor(blueprint_library.filter("tt")[0], vehicle00_tr)
vehicle00.set_target_velocity(carla.Vector3D(-25, 0, 0))
lidar_bp = self.world.get_blueprint_library().find('sensor.lidar.ray_cast')
lidar_bp.set_attribute('dropoff_general_rate', '0.0')
lidar_bp.set_attribute('noise_seed', '43233')
lidar_tr = carla.Transform(carla.Location(z=2))
lidar = self.world.spawn_actor(lidar_bp, lidar_tr, attach_to=vehicle00)
self.add_sensor(lidar, "LiDAR")
self.actor_list.append(vehicle00)
self.wait(1)
class SpawnSemanticLidar(Scenario):
def init_scene(self, prefix, settings = None, spectator_tr = None):
super().init_scene(prefix, settings, spectator_tr)
blueprint_library = self.world.get_blueprint_library()
vehicle00_tr = carla.Transform(carla.Location(140, -205, 0.1), carla.Rotation(yaw=181.5))
vehicle00 = self.world.spawn_actor(blueprint_library.filter("tt")[0], vehicle00_tr)
vehicle00.set_target_velocity(carla.Vector3D(-25, 0, 0))
lidar_bp = self.world.get_blueprint_library().find('sensor.lidar.ray_cast_semantic')
lidar_tr = carla.Transform(carla.Location(z=2))
lidar = self.world.spawn_actor(lidar_bp, lidar_tr, attach_to=vehicle00)
self.add_sensor(lidar, "SemLiDAR")
self.actor_list.append(vehicle00)
self.wait(1)
class SpawnRadar(Scenario):
def init_scene(self, prefix, settings = None, spectator_tr = None):
super().init_scene(prefix, settings, spectator_tr)
blueprint_library = self.world.get_blueprint_library()
vehicle00_tr = carla.Transform(carla.Location(140, -205, 0.1), carla.Rotation(yaw=181.5))
vehicle00 = self.world.spawn_actor(blueprint_library.filter("tt")[0], vehicle00_tr)
vehicle00.set_target_velocity(carla.Vector3D(-25, 0, 0))
radar_bp = self.world.get_blueprint_library().find('sensor.other.radar')
radar_bp.set_attribute('noise_seed', '54283')
radar_tr = carla.Transform(carla.Location(z=2))
radar = self.world.spawn_actor(radar_bp, radar_tr, attach_to=vehicle00)
self.add_sensor(radar, "Radar")
self.actor_list.append(vehicle00)
self.wait(1)
class SpawnLidarWithDropff(Scenario):
def init_scene(self, prefix, settings = None, spectator_tr = None):
super().init_scene(prefix, settings, spectator_tr)
blueprint_library = self.world.get_blueprint_library()
vehicle00_tr = carla.Transform(carla.Location(140, -205, 0.1), carla.Rotation(yaw=181.5))
vehicle00 = self.world.spawn_actor(blueprint_library.filter("tt")[0], vehicle00_tr)
vehicle00.set_target_velocity(carla.Vector3D(-25, 0, 0))
lidar_bp = self.world.get_blueprint_library().find('sensor.lidar.ray_cast')
lidar_bp.set_attribute('channels', '64')
lidar_bp.set_attribute('noise_seed', '249013')
lidar_tr = carla.Transform(carla.Location(z=2))
lidar = self.world.spawn_actor(lidar_bp, lidar_tr, attach_to=vehicle00)
self.add_sensor(lidar, "LiDAR")
self.actor_list.append(vehicle00)
self.wait(1)
class SpawnAllRaycastSensors(Scenario):
def init_scene(self, prefix, settings = None, spectator_tr = None):
super().init_scene(prefix, settings, spectator_tr)
blueprint_library = self.world.get_blueprint_library()
vehicle00_tr = carla.Transform(carla.Location(140, -205, 0.1), carla.Rotation(yaw=181.5))
vehicle00 = self.world.spawn_actor(blueprint_library.filter("tt")[0], vehicle00_tr)
vehicle00.set_target_velocity(carla.Vector3D(-25, 0, 0))
vehicle01_tr = carla.Transform(carla.Location(50, -200, 0.1), carla.Rotation(yaw=1.5))
vehicle01 = self.world.spawn_actor(blueprint_library.filter("lincoln")[0], vehicle01_tr)
vehicle01.set_target_velocity(carla.Vector3D(25, 0, 0))
radar_bp = self.world.get_blueprint_library().find('sensor.other.radar')
radar_bp.set_attribute('noise_seed', '54283')
radar_tr = carla.Transform(carla.Location(z=2))
radar = self.world.spawn_actor(radar_bp, radar_tr, attach_to=vehicle00)
lidar01_bp = self.world.get_blueprint_library().find('sensor.lidar.ray_cast')
lidar01_bp.set_attribute('noise_seed', '12134')
lidar01_tr = carla.Transform(carla.Location(x=1, z=2))
lidar01 = self.world.spawn_actor(lidar01_bp, lidar01_tr, attach_to=vehicle00)
lidar02_bp = self.world.get_blueprint_library().find('sensor.lidar.ray_cast_semantic')
lidar02_tr = carla.Transform(carla.Location(x=1, z=2))
lidar02 = self.world.spawn_actor(lidar02_bp, lidar02_tr, attach_to=vehicle01)
lidar03_bp = self.world.get_blueprint_library().find('sensor.lidar.ray_cast')
lidar03_bp.set_attribute('noise_seed', '23135')
lidar03_tr = carla.Transform(carla.Location(z=2))
lidar03 = self.world.spawn_actor(lidar03_bp, lidar03_tr, attach_to=vehicle01)
self.add_sensor(radar, "Radar")
self.add_sensor(lidar01, "LiDAR")
self.add_sensor(lidar02, "SemLiDAR")
self.add_sensor(lidar03, "LiDAR")
self.actor_list.append(vehicle00)
self.actor_list.append(vehicle01)
self.wait(1)
class TestSensorScenario():
def __init__(self, scene, output_path):
self.scene = scene
self.world = self.scene.world
self.client = self.scene.client
self.scenario_name = self.scene.__class__.__name__
self.output_path = output_path
def compare_files(self, file_i, file_j):
# First, we check if the files are exactly equal,
# if they are the simulations are equivalent
check_ij = filecmp.cmp(file_i, file_j)
if check_ij:
return True
# If not, if we have different number of points
# the simulations are not equivalent
data_i = np.loadtxt(file_i)
data_j = np.loadtxt(file_j)
if data_i.shape != data_j.shape:
return False
# If they have the same number of points but there is
# a small diference, the simulations could be equivalent
# differing only in floaring-point arithmetic errors
max_error = np.amax(np.abs(data_i-data_j))
return max_error < 0.01
def check_simulations(self, rep_prefixes, sim_tics):
repetitions = len(rep_prefixes)
mat_check = np.zeros((repetitions, repetitions), int)
for i in range(0, repetitions):
mat_check[i][i] = 1
for j in range(0, i):
sim_check = True
for f_idx in range(1, sim_tics):
for sensor in self.scene.sensor_list:
file_i = self.scene.get_filename_with_prefix(rep_prefixes[i], sensor[0], f_idx)
file_j = self.scene.get_filename_with_prefix(rep_prefixes[j], sensor[0], f_idx)
check_ij = self.compare_files(file_i, file_j)
sim_check = sim_check and check_ij
mat_check[i][j] = int(sim_check)
mat_check[j][i] = int(sim_check)
determinism = np.sum(mat_check,axis=1)
determinism_set = list(set(determinism))
determinism_set.sort(reverse=True)
return determinism_set
def test_scenario(self, repetitions = 1, sim_tics = 100):
output_str = "Testing Determinism in %s -> " % (self.scenario_name)
prefix = self.output_path + self.scenario_name
config_settings = self.world.get_settings()
config_settings.synchronous_mode = True
config_settings.fixed_delta_seconds = 0.05
spectator_tr = carla.Transform(carla.Location(160, -205, 10), carla.Rotation(yaw=180))
sim_prefixes = []
t_comp = 0
for i in range(0, repetitions):
prefix_rep = prefix + "_rep_" + ("%03d" % i)
t_comp += self.scene.run_simulation(prefix_rep, config_settings, spectator_tr, tics=sim_tics)
sim_prefixes.append(prefix_rep)
determ_repet = self.check_simulations(sim_prefixes, sim_tics)
output_str += "Deterministic Repetitions: %r / %2d" % (determ_repet, repetitions)
output_str += " -> Comp. FPS: %.0f" % ((repetitions*sim_tics)/t_comp)
if determ_repet == repetitions:
print("Error!!! Scenario %s is not deterministic: %d / %d" % (self.scenario_name, determ_repet, repetitions))
return output_str
def main(arg):
"""Main function of the script"""
client = carla.Client(arg.host, arg.port)
client.set_timeout(5.0)
world = client.get_world()
pre_settings = world.get_settings()
world.apply_settings(pre_settings)
try:
# Setting output temporal folder
output_path = os.path.dirname(os.path.realpath(__file__))
output_path = os.path.join(output_path, "_sensors") + os.path.sep
if not os.path.exists(output_path):
os.mkdir(output_path)
test_list = [
TestSensorScenario(SpawnAllRaycastSensors(client, world), output_path),
TestSensorScenario(SpawnLidarNoDropff(client, world), output_path),
TestSensorScenario(SpawnLidarWithDropff(client, world), output_path),
TestSensorScenario(SpawnSemanticLidar(client, world), output_path),
TestSensorScenario(SpawnRadar(client, world), output_path)
]
repetitions = 10
for item in test_list:
print("--------------------------------------------------------------")
out = item.test_scenario(repetitions)
print(out)
print("--------------------------------------------------------------")
# Remove all the output files
#shutil.rmtree(path)
finally:
world.apply_settings(pre_settings)
if __name__ == "__main__":
argparser = argparse.ArgumentParser(
description=__doc__)
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host CARLA Simulator (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port of CARLA Simulator (default: 2000)')
argparser.add_argument(
'--filter',
metavar='PATTERN',
default='model3',
help='actor filter (default: "vehicle.*")')
args = argparser.parse_args()
try:
main(args)
except KeyboardInterrupt:
print(' - Exited by user.')