192 lines
6.3 KiB
Python
Executable File
192 lines
6.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
|
|
# Barcelona (UAB), and the INTEL Visual Computing Lab.
|
|
#
|
|
# This work is licensed under the terms of the MIT license.
|
|
# For a copy, see <https://opensource.org/licenses/MIT>.
|
|
|
|
"""Basic CARLA client to generate point cloud in PLY format that you
|
|
can visualize with MeshLab (meshlab.net) for instance. Please
|
|
refer to client_example.py for a simpler and more documented example."""
|
|
|
|
from __future__ import print_function
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import random
|
|
import time
|
|
|
|
from carla.client import make_carla_client
|
|
from carla.sensor import Camera
|
|
from carla.settings import CarlaSettings
|
|
from carla.tcp import TCPConnectionError
|
|
from carla.util import print_over_same_line, StopWatch
|
|
from carla.image_converter import depth_to_local_point_cloud, to_rgb_array
|
|
from carla.transform import Transform
|
|
|
|
|
|
def run_carla_client(host, port, far):
|
|
# Here we will run a single episode with 300 frames.
|
|
number_of_frames = 3000
|
|
frame_step = 100 # Save one image every 100 frames
|
|
output_folder = '_out'
|
|
image_size = [800, 600]
|
|
camera_local_pos = [0.3, 0.0, 1.3] # [X, Y, Z]
|
|
camera_local_rotation = [0, 0, 0] # [pitch(Y), yaw(Z), roll(X)]
|
|
fov = 70
|
|
|
|
# Connect with the server
|
|
with make_carla_client(host, port) as client:
|
|
print('CarlaClient connected')
|
|
|
|
# Here we load the settings.
|
|
settings = CarlaSettings()
|
|
settings.set(
|
|
SynchronousMode=True,
|
|
SendNonPlayerAgentsInfo=False,
|
|
NumberOfVehicles=20,
|
|
NumberOfPedestrians=40,
|
|
WeatherId=random.choice([1, 3, 7, 8, 14]))
|
|
settings.randomize_seeds()
|
|
|
|
camera1 = Camera('CameraDepth', PostProcessing='Depth', FOV=fov)
|
|
camera1.set_image_size(*image_size)
|
|
camera1.set_position(*camera_local_pos)
|
|
camera1.set_rotation(*camera_local_rotation)
|
|
settings.add_sensor(camera1)
|
|
|
|
camera2 = Camera('CameraRGB', PostProcessing='SceneFinal', FOV=fov)
|
|
camera2.set_image_size(*image_size)
|
|
camera2.set_position(*camera_local_pos)
|
|
camera2.set_rotation(*camera_local_rotation)
|
|
settings.add_sensor(camera2)
|
|
|
|
client.load_settings(settings)
|
|
|
|
# Start at location index id '0'
|
|
client.start_episode(0)
|
|
|
|
# Compute the camera transform matrix
|
|
camera_to_car_transform = camera2.get_unreal_transform()
|
|
|
|
# Iterate every frame in the episode except for the first one.
|
|
for frame in range(1, number_of_frames):
|
|
# Read the data produced by the server this frame.
|
|
measurements, sensor_data = client.read_data()
|
|
|
|
# Save one image every 'frame_step' frames
|
|
if not frame % frame_step:
|
|
# Start transformations time mesure.
|
|
timer = StopWatch()
|
|
|
|
# RGB image [[[r,g,b],..[r,g,b]],..[[r,g,b],..[r,g,b]]]
|
|
image_RGB = to_rgb_array(sensor_data['CameraRGB'])
|
|
|
|
# 2d to (camera) local 3d
|
|
# We use the image_RGB to colorize each 3D point, this is optional.
|
|
# "max_depth" is used to keep only the points that are near to the
|
|
# camera, meaning 1.0 the farest points (sky)
|
|
point_cloud = depth_to_local_point_cloud(
|
|
sensor_data['CameraDepth'],
|
|
image_RGB,
|
|
max_depth=far
|
|
)
|
|
|
|
# (Camera) local 3d to world 3d.
|
|
# Get the transform from the player protobuf transformation.
|
|
world_transform = Transform(
|
|
measurements.player_measurements.transform
|
|
)
|
|
|
|
# Compute the final transformation matrix.
|
|
car_to_world_transform = world_transform * camera_to_car_transform
|
|
|
|
# Car to World transformation given the 3D points and the
|
|
# transformation matrix.
|
|
point_cloud.apply_transform(car_to_world_transform)
|
|
|
|
# End transformations time mesure.
|
|
timer.stop()
|
|
|
|
# Save PLY to disk
|
|
# This generates the PLY string with the 3D points and the RGB colors
|
|
# for each row of the file.
|
|
point_cloud.save_to_disk(os.path.join(
|
|
output_folder, '{:0>5}.ply'.format(frame))
|
|
)
|
|
|
|
print_message(timer.milliseconds(), len(point_cloud), frame)
|
|
|
|
client.send_control(
|
|
measurements.player_measurements.autopilot_control
|
|
)
|
|
|
|
|
|
def print_message(elapsed_time, point_n, frame):
|
|
message = ' '.join([
|
|
'Transformations took {:>3.0f} ms.',
|
|
'Saved {:>6} points to "{:0>5}.ply".'
|
|
]).format(elapsed_time, point_n, frame)
|
|
print_over_same_line(message)
|
|
|
|
|
|
def check_far(value):
|
|
fvalue = float(value)
|
|
if fvalue < 0.0 or fvalue > 1.0:
|
|
raise argparse.ArgumentTypeError(
|
|
"{} must be a float between 0.0 and 1.0")
|
|
return fvalue
|
|
|
|
|
|
def main():
|
|
argparser = argparse.ArgumentParser(description=__doc__)
|
|
argparser.add_argument(
|
|
'-v', '--verbose',
|
|
action='store_true',
|
|
dest='debug',
|
|
help='print debug information')
|
|
argparser.add_argument(
|
|
'--host',
|
|
metavar='H',
|
|
default='localhost',
|
|
help='IP of the host server (default: localhost)')
|
|
argparser.add_argument(
|
|
'-p', '--port',
|
|
metavar='P',
|
|
default=2000,
|
|
type=int,
|
|
help='TCP port to listen to (default: 2000)')
|
|
argparser.add_argument(
|
|
'-f', '--far',
|
|
default=0.2,
|
|
type=check_far,
|
|
help='The maximum save distance of camera-point '
|
|
'[0.0 (near), 1.0 (far)] (default: 0.2)')
|
|
|
|
args = argparser.parse_args()
|
|
|
|
log_level = logging.DEBUG if args.debug else logging.INFO
|
|
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
|
|
|
|
logging.info('listening to server %s:%s', args.host, args.port)
|
|
|
|
while True:
|
|
try:
|
|
run_carla_client(host=args.host, port=args.port, far=args.far)
|
|
print('\nDone!')
|
|
return
|
|
|
|
except TCPConnectionError as error:
|
|
logging.error(error)
|
|
time.sleep(1)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
try:
|
|
main()
|
|
except KeyboardInterrupt:
|
|
print('\nClient stoped by user.')
|