carla/PythonAPI/agents/navigation/agent.py

207 lines
8.0 KiB
Python

#!/usr/bin/env python
# Copyright (c) 2018 Intel Labs.
# authors: German Ros (german.ros@intel.com)
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
""" This module implements an agent that roams around a track following random
waypoints and avoiding other vehicles.
The agent also responds to traffic lights. """
from enum import Enum
import carla
from agents.tools.misc import is_within_distance_ahead, compute_magnitude_angle
class AgentState(Enum):
"""
AGENT_STATE represents the possible states of a roaming agent
"""
NAVIGATING = 1
BLOCKED_BY_VEHICLE = 2
BLOCKED_RED_LIGHT = 3
class Agent(object):
"""
Base class to define agents in CARLA
"""
def __init__(self, vehicle):
"""
:param vehicle: actor to apply to local planner logic onto
"""
self._vehicle = vehicle
self._proximity_threshold = 10.0 # meters
self._local_planner = None
self._world = self._vehicle.get_world()
self._map = self._vehicle.get_world().get_map()
self._last_traffic_light = None
def run_step(self, debug=False):
"""
Execute one step of navigation.
:return: control
"""
control = carla.VehicleControl()
if debug:
control.steer = 0.0
control.throttle = 0.0
control.brake = 0.0
control.hand_brake = False
control.manual_gear_shift = False
return control
def _is_light_red(self, lights_list):
"""
Method to check if there is a red light affecting us. This version of
the method is compatible with both European and US style traffic lights.
:param lights_list: list containing TrafficLight objects
:return: a tuple given by (bool_flag, traffic_light), where
- bool_flag is True if there is a traffic light in RED
affecting us and False otherwise
- traffic_light is the object itself or None if there is no
red traffic light affecting us
"""
if self._map.name == 'Town01' or self._map.name == 'Town02':
return self._is_light_red_europe_style(lights_list)
else:
return self._is_light_red_us_style(lights_list)
def _is_light_red_europe_style(self, lights_list):
"""
This method is specialized to check European style traffic lights.
:param lights_list: list containing TrafficLight objects
:return: a tuple given by (bool_flag, traffic_light), where
- bool_flag is True if there is a traffic light in RED
affecting us and False otherwise
- traffic_light is the object itself or None if there is no
red traffic light affecting us
"""
ego_vehicle_location = self._vehicle.get_location()
ego_vehicle_waypoint = self._map.get_waypoint(ego_vehicle_location)
for traffic_light in lights_list:
object_waypoint = self._map.get_waypoint(traffic_light.get_location())
if object_waypoint.road_id != ego_vehicle_waypoint.road_id or \
object_waypoint.lane_id != ego_vehicle_waypoint.lane_id:
continue
loc = traffic_light.get_location()
if is_within_distance_ahead(loc, ego_vehicle_location,
self._vehicle.get_transform().rotation.yaw,
self._proximity_threshold):
if traffic_light.state == carla.TrafficLightState.Red:
return (True, traffic_light)
return (False, None)
def _is_light_red_us_style(self, lights_list, debug=False):
"""
This method is specialized to check US style traffic lights.
:param lights_list: list containing TrafficLight objects
:return: a tuple given by (bool_flag, traffic_light), where
- bool_flag is True if there is a traffic light in RED
affecting us and False otherwise
- traffic_light is the object itself or None if there is no
red traffic light affecting us
"""
ego_vehicle_location = self._vehicle.get_location()
ego_vehicle_waypoint = self._map.get_waypoint(ego_vehicle_location)
if ego_vehicle_waypoint.is_intersection:
# It is too late. Do not block the intersection! Keep going!
return (False, None)
if self._local_planner.target_waypoint is not None:
if self._local_planner.target_waypoint.is_intersection:
min_angle = 180.0
sel_magnitude = 0.0
sel_traffic_light = None
for traffic_light in lights_list:
loc = traffic_light.get_location()
magnitude, angle = compute_magnitude_angle(loc,
ego_vehicle_location,
self._vehicle.get_transform().rotation.yaw)
if magnitude < 80.0 and angle < min(25.0, min_angle):
sel_magnitude = magnitude
sel_traffic_light = traffic_light
min_angle = angle
if sel_traffic_light is not None:
if debug:
print('=== Magnitude = {} | Angle = {} | ID = {}'.format(
sel_magnitude, min_angle, sel_traffic_light.id))
if self._last_traffic_light is None:
self._last_traffic_light = sel_traffic_light
if self._last_traffic_light.state == carla.TrafficLightState.Red:
return (True, self._last_traffic_light)
else:
self._last_traffic_light = None
return (False, None)
def _is_vehicle_hazard(self, vehicle_list):
"""
Check if a given vehicle is an obstacle in our way. To this end we take
into account the road and lane the target vehicle is on and run a
geometry test to check if the target vehicle is under a certain distance
in front of our ego vehicle.
WARNING: This method is an approximation that could fail for very large
vehicles, which center is actually on a different lane but their
extension falls within the ego vehicle lane.
:param vehicle_list: list of potential obstacle to check
:return: a tuple given by (bool_flag, vehicle), where
- bool_flag is True if there is a vehicle ahead blocking us
and False otherwise
- vehicle is the blocker object itself
"""
ego_vehicle_location = self._vehicle.get_location()
ego_vehicle_waypoint = self._map.get_waypoint(ego_vehicle_location)
for target_vehicle in vehicle_list:
# do not account for the ego vehicle
if target_vehicle.id == self._vehicle.id:
continue
# if the object is not in our lane it's not an obstacle
target_vehicle_waypoint = self._map.get_waypoint(target_vehicle.get_location())
if target_vehicle_waypoint.road_id != ego_vehicle_waypoint.road_id or \
target_vehicle_waypoint.lane_id != ego_vehicle_waypoint.lane_id:
continue
loc = target_vehicle.get_location()
if is_within_distance_ahead(loc, ego_vehicle_location,
self._vehicle.get_transform().rotation.yaw,
self._proximity_threshold):
return (True, target_vehicle)
return (False, None)
def emergency_stop(self):
"""
Send an emergency stop command to the vehicle
:return:
"""
control = carla.VehicleControl()
control.steer = 0.0
control.throttle = 0.0
control.brake = 1.0
control.hand_brake = False
return control