forked from p30928647/excelize
ref #65, new formula functions: CHISQ.DIST.RT CHISQ.DIST and GAMMALN.PRECISE
This commit is contained in:
parent
f8d763d0bd
commit
46336bc788
216
calc.go
216
calc.go
|
@ -357,6 +357,8 @@ type formulaFuncs struct {
|
|||
// CHIDIST
|
||||
// CHIINV
|
||||
// CHITEST
|
||||
// CHISQ.DIST
|
||||
// CHISQ.DIST.RT
|
||||
// CHISQ.TEST
|
||||
// CHOOSE
|
||||
// CLEAN
|
||||
|
@ -449,6 +451,7 @@ type formulaFuncs struct {
|
|||
// GAMMA.INV
|
||||
// GAMMAINV
|
||||
// GAMMALN
|
||||
// GAMMALN.PRECISE
|
||||
// GAUSS
|
||||
// GCD
|
||||
// GEOMEAN
|
||||
|
@ -6416,6 +6419,200 @@ func (fn *formulaFuncs) CHITEST(argsList *list.List) formulaArg {
|
|||
return fn.CHIDIST(args)
|
||||
}
|
||||
|
||||
// getGammaSeries calculates a power-series of the gamma function.
|
||||
func getGammaSeries(fA, fX float64) float64 {
|
||||
var (
|
||||
fHalfMachEps = 2.22045e-016 / 2
|
||||
fDenomfactor = fA
|
||||
fSummand = 1 / fA
|
||||
fSum = fSummand
|
||||
nCount = 1
|
||||
)
|
||||
for fSummand/fSum > fHalfMachEps && nCount <= 10000 {
|
||||
fDenomfactor = fDenomfactor + 1
|
||||
fSummand = fSummand * fX / fDenomfactor
|
||||
fSum = fSum + fSummand
|
||||
nCount = nCount + 1
|
||||
}
|
||||
return fSum
|
||||
}
|
||||
|
||||
// getGammaContFraction returns continued fraction with odd items of the gamma
|
||||
// function.
|
||||
func getGammaContFraction(fA, fX float64) float64 {
|
||||
var (
|
||||
fBigInv = 2.22045e-016
|
||||
fHalfMachEps = fBigInv / 2
|
||||
fBig = 1 / fBigInv
|
||||
fCount = 0.0
|
||||
fY = 1 - fA
|
||||
fDenom = fX + 2 - fA
|
||||
fPkm1 = fX + 1
|
||||
fPkm2 = 1.0
|
||||
fQkm1 = fDenom * fX
|
||||
fQkm2 = fX
|
||||
fApprox = fPkm1 / fQkm1
|
||||
bFinished = false
|
||||
)
|
||||
for !bFinished && fCount < 10000 {
|
||||
fCount = fCount + 1
|
||||
fY = fY + 1
|
||||
fDenom = fDenom + 2
|
||||
var (
|
||||
fNum = fY * fCount
|
||||
f1 = fPkm1 * fDenom
|
||||
f2 = fPkm2 * fNum
|
||||
fPk = math.Nextafter(f1, f1) - math.Nextafter(f2, f2)
|
||||
f3 = fQkm1 * fDenom
|
||||
f4 = fQkm2 * fNum
|
||||
fQk = math.Nextafter(f3, f3) - math.Nextafter(f4, f4)
|
||||
)
|
||||
if fQk != 0 {
|
||||
var fR = fPk / fQk
|
||||
bFinished = math.Abs((fApprox-fR)/fR) <= fHalfMachEps
|
||||
fApprox = fR
|
||||
}
|
||||
fPkm2, fPkm1, fQkm2, fQkm1 = fPkm1, fPk, fQkm1, fQk
|
||||
if math.Abs(fPk) > fBig {
|
||||
// reduce a fraction does not change the value
|
||||
fPkm2 = fPkm2 * fBigInv
|
||||
fPkm1 = fPkm1 * fBigInv
|
||||
fQkm2 = fQkm2 * fBigInv
|
||||
fQkm1 = fQkm1 * fBigInv
|
||||
}
|
||||
}
|
||||
return fApprox
|
||||
}
|
||||
|
||||
// getLogGammaHelper is a part of implementation of the function getLogGamma.
|
||||
func getLogGammaHelper(fZ float64) float64 {
|
||||
var _fg = 6.024680040776729583740234375
|
||||
var zgHelp = fZ + _fg - 0.5
|
||||
return math.Log(getLanczosSum(fZ)) + (fZ-0.5)*math.Log(zgHelp) - zgHelp
|
||||
}
|
||||
|
||||
// getGammaHelper is a part of implementation of the function getLogGamma.
|
||||
func getGammaHelper(fZ float64) float64 {
|
||||
var (
|
||||
gamma = getLanczosSum(fZ)
|
||||
fg = 6.024680040776729583740234375
|
||||
zgHelp = fZ + fg - 0.5
|
||||
// avoid intermediate overflow
|
||||
halfpower = math.Pow(zgHelp, fZ/2-0.25)
|
||||
)
|
||||
gamma *= halfpower
|
||||
gamma /= math.Exp(zgHelp)
|
||||
gamma *= halfpower
|
||||
if fZ <= 20 && fZ == math.Floor(fZ) {
|
||||
gamma = math.Round(gamma)
|
||||
}
|
||||
return gamma
|
||||
}
|
||||
|
||||
// getLogGamma calculates the natural logarithm of the gamma function.
|
||||
func getLogGamma(fZ float64) float64 {
|
||||
var fMaxGammaArgument = 171.624376956302
|
||||
if fZ >= fMaxGammaArgument {
|
||||
return getLogGammaHelper(fZ)
|
||||
}
|
||||
if fZ >= 1.0 {
|
||||
return math.Log(getGammaHelper(fZ))
|
||||
}
|
||||
if fZ >= 0.5 {
|
||||
return math.Log(getGammaHelper(fZ+1) / fZ)
|
||||
}
|
||||
return getLogGammaHelper(fZ+2) - math.Log(fZ+1) - math.Log(fZ)
|
||||
}
|
||||
|
||||
// getLowRegIGamma returns lower regularized incomplete gamma function.
|
||||
func getLowRegIGamma(fA, fX float64) float64 {
|
||||
fLnFactor := fA*math.Log(fX) - fX - getLogGamma(fA)
|
||||
fFactor := math.Exp(fLnFactor)
|
||||
if fX > fA+1 {
|
||||
return 1 - fFactor*getGammaContFraction(fA, fX)
|
||||
}
|
||||
return fFactor * getGammaSeries(fA, fX)
|
||||
}
|
||||
|
||||
// getChiSqDistCDF returns left tail for the Chi-Square distribution.
|
||||
func getChiSqDistCDF(fX, fDF float64) float64 {
|
||||
if fX <= 0 {
|
||||
return 0
|
||||
}
|
||||
return getLowRegIGamma(fDF/2, fX/2)
|
||||
}
|
||||
|
||||
// getChiSqDistPDF calculates the probability density function for the
|
||||
// Chi-Square distribution.
|
||||
func getChiSqDistPDF(fX, fDF float64) float64 {
|
||||
if fDF*fX > 1391000 {
|
||||
return math.Exp((0.5*fDF-1)*math.Log(fX*0.5) - 0.5*fX - math.Log(2) - getLogGamma(0.5*fDF))
|
||||
}
|
||||
var fCount, fValue float64
|
||||
if math.Mod(fDF, 2) < 0.5 {
|
||||
fValue = 0.5
|
||||
fCount = 2
|
||||
} else {
|
||||
fValue = 1 / math.Sqrt(fX*2*math.Pi)
|
||||
fCount = 1
|
||||
}
|
||||
for fCount < fDF {
|
||||
fValue *= fX / fCount
|
||||
fCount += 2
|
||||
}
|
||||
if fX >= 1425 {
|
||||
fValue = math.Exp(math.Log(fValue) - fX/2)
|
||||
} else {
|
||||
fValue *= math.Exp(-fX / 2)
|
||||
}
|
||||
return fValue
|
||||
}
|
||||
|
||||
// CHISQdotDIST function calculates the Probability Density Function or the
|
||||
// Cumulative Distribution Function for the Chi-Square Distribution. The
|
||||
// syntax of the function is:
|
||||
//
|
||||
// CHISQ.DIST(x,degrees_freedom,cumulative)
|
||||
//
|
||||
func (fn *formulaFuncs) CHISQdotDIST(argsList *list.List) formulaArg {
|
||||
if argsList.Len() != 3 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "CHISQ.DIST requires 3 arguments")
|
||||
}
|
||||
var x, degrees, cumulative formulaArg
|
||||
if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
|
||||
return x
|
||||
}
|
||||
if degrees = argsList.Front().Next().Value.(formulaArg).ToNumber(); degrees.Type != ArgNumber {
|
||||
return degrees
|
||||
}
|
||||
if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
|
||||
return cumulative
|
||||
}
|
||||
if x.Number < 0 {
|
||||
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
||||
}
|
||||
maxDeg := math.Pow10(10)
|
||||
if degrees.Number < 1 || degrees.Number >= maxDeg {
|
||||
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
||||
}
|
||||
if cumulative.Number == 1 {
|
||||
return newNumberFormulaArg(getChiSqDistCDF(x.Number, degrees.Number))
|
||||
}
|
||||
return newNumberFormulaArg(getChiSqDistPDF(x.Number, degrees.Number))
|
||||
}
|
||||
|
||||
// CHISQdotDISTdotRT function calculates the right-tailed probability of the
|
||||
// Chi-Square Distribution. The syntax of the function is:
|
||||
//
|
||||
// CHISQ.DIST.RT(x,degrees_freedom)
|
||||
//
|
||||
func (fn *formulaFuncs) CHISQdotDISTdotRT(argsList *list.List) formulaArg {
|
||||
if argsList.Len() != 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "CHISQ.DIST.RT requires 2 numeric arguments")
|
||||
}
|
||||
return fn.CHIDIST(argsList)
|
||||
}
|
||||
|
||||
// CHISQdotTEST function performs the chi-square test on two supplied data sets
|
||||
// (of observed and expected frequencies), and returns the probability that
|
||||
// the differences between the sets are simply due to sampling error. The
|
||||
|
@ -7033,6 +7230,25 @@ func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
|
|||
return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
|
||||
}
|
||||
|
||||
// GAMMALNdotPRECISE function returns the natural logarithm of the Gamma
|
||||
// Function, Γ(n). The syntax of the function is:
|
||||
//
|
||||
// GAMMALN.PRECISE(x)
|
||||
//
|
||||
func (fn *formulaFuncs) GAMMALNdotPRECISE(argsList *list.List) formulaArg {
|
||||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN.PRECISE requires 1 numeric argument")
|
||||
}
|
||||
x := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if x.Type != ArgNumber {
|
||||
return x
|
||||
}
|
||||
if x.Number <= 0 {
|
||||
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
||||
}
|
||||
return newNumberFormulaArg(getLogGamma(x.Number))
|
||||
}
|
||||
|
||||
// GAUSS function returns the probability that a member of a standard normal
|
||||
// population will fall between the mean and a specified number of standard
|
||||
// deviations from the mean. The syntax of the function is:
|
||||
|
|
31
calc_test.go
31
calc_test.go
|
@ -851,6 +851,20 @@ func TestCalcCellValue(t *testing.T) {
|
|||
"=CHIINV(0.75,1)": "0.101531044267622",
|
||||
"=CHIINV(0.1,2)": "4.60517018598809",
|
||||
"=CHIINV(0.8,2)": "0.446287102628419",
|
||||
// CHISQ.DIST
|
||||
"=CHISQ.DIST(0,2,TRUE)": "0",
|
||||
"=CHISQ.DIST(4,1,TRUE)": "0.954499736103642",
|
||||
"=CHISQ.DIST(1180,1180,FALSE)": "0.00821093706387967",
|
||||
"=CHISQ.DIST(2,1,FALSE)": "0.103776874355149",
|
||||
"=CHISQ.DIST(3,2,FALSE)": "0.111565080074215",
|
||||
"=CHISQ.DIST(2,3,FALSE)": "0.207553748710297",
|
||||
"=CHISQ.DIST(1425,1,FALSE)": "3.88315098887099E-312",
|
||||
"=CHISQ.DIST(3,2,TRUE)": "0.77686983985157",
|
||||
// CHISQ.DIST.RT
|
||||
"=CHISQ.DIST.RT(0.5,3)": "0.918891411654676",
|
||||
"=CHISQ.DIST.RT(8,3)": "0.0460117056892314",
|
||||
"=CHISQ.DIST.RT(40,4)": "4.32842260712097E-08",
|
||||
"=CHISQ.DIST.RT(42,4)": "1.66816329414062E-08",
|
||||
// CONFIDENCE
|
||||
"=CONFIDENCE(0.05,0.07,100)": "0.0137197479028414",
|
||||
// CONFIDENCE.NORM
|
||||
|
@ -918,6 +932,9 @@ func TestCalcCellValue(t *testing.T) {
|
|||
// GAMMALN
|
||||
"=GAMMALN(4.5)": "2.45373657084244",
|
||||
"=GAMMALN(INT(1))": "0",
|
||||
// GAMMALN.PRECISE
|
||||
"=GAMMALN.PRECISE(0.4)": "0.796677817701784",
|
||||
"=GAMMALN.PRECISE(4.5)": "2.45373657084244",
|
||||
// GAUSS
|
||||
"=GAUSS(-5)": "-0.499999713348428",
|
||||
"=GAUSS(0)": "0",
|
||||
|
@ -2523,6 +2540,17 @@ func TestCalcCellValue(t *testing.T) {
|
|||
"=CHIINV(0,1)": "#NUM!",
|
||||
"=CHIINV(2,1)": "#NUM!",
|
||||
"=CHIINV(0.5,0.5)": "#NUM!",
|
||||
// CHISQ.DIST
|
||||
"=CHISQ.DIST()": "CHISQ.DIST requires 3 arguments",
|
||||
"=CHISQ.DIST(\"\",2,TRUE)": "strconv.ParseFloat: parsing \"\": invalid syntax",
|
||||
"=CHISQ.DIST(3,\"\",TRUE)": "strconv.ParseFloat: parsing \"\": invalid syntax",
|
||||
"=CHISQ.DIST(3,2,\"\")": "strconv.ParseBool: parsing \"\": invalid syntax",
|
||||
"=CHISQ.DIST(-1,2,TRUE)": "#NUM!",
|
||||
"=CHISQ.DIST(3,0,TRUE)": "#NUM!",
|
||||
// CHISQ.DIST.RT
|
||||
"=CHISQ.DIST.RT()": "CHISQ.DIST.RT requires 2 numeric arguments",
|
||||
"=CHISQ.DIST.RT(\"\",3)": "strconv.ParseFloat: parsing \"\": invalid syntax",
|
||||
"=CHISQ.DIST.RT(0.5,\"\")": "strconv.ParseFloat: parsing \"\": invalid syntax",
|
||||
// CONFIDENCE
|
||||
"=CONFIDENCE()": "CONFIDENCE requires 3 numeric arguments",
|
||||
"=CONFIDENCE(\"\",0.07,100)": "strconv.ParseFloat: parsing \"\": invalid syntax",
|
||||
|
@ -2621,6 +2649,9 @@ func TestCalcCellValue(t *testing.T) {
|
|||
"=GAMMALN(F1)": "GAMMALN requires 1 numeric argument",
|
||||
"=GAMMALN(0)": "#N/A",
|
||||
"=GAMMALN(INT(0))": "#N/A",
|
||||
// GAMMALN.PRECISE
|
||||
"=GAMMALN.PRECISE()": "GAMMALN.PRECISE requires 1 numeric argument",
|
||||
"=GAMMALN.PRECISE(\"\")": "strconv.ParseFloat: parsing \"\": invalid syntax",
|
||||
// GAUSS
|
||||
"=GAUSS()": "GAUSS requires 1 numeric argument",
|
||||
"=GAUSS(\"\")": "strconv.ParseFloat: parsing \"\": invalid syntax",
|
||||
|
|
Loading…
Reference in New Issue