forked from p30928647/excelize
Nested formula function support cell references as arguments
This commit is contained in:
parent
dd77cfe44c
commit
76c72e0a30
142
calc.go
142
calc.go
|
@ -111,6 +111,12 @@ type formulaArg struct {
|
|||
func (fa formulaArg) Value() (value string) {
|
||||
switch fa.Type {
|
||||
case ArgNumber:
|
||||
if fa.Boolean {
|
||||
if fa.Number == 0 {
|
||||
return "FALSE"
|
||||
}
|
||||
return "TRUE"
|
||||
}
|
||||
return fmt.Sprintf("%g", fa.Number)
|
||||
case ArgString:
|
||||
return fa.String
|
||||
|
@ -120,6 +126,22 @@ func (fa formulaArg) Value() (value string) {
|
|||
return
|
||||
}
|
||||
|
||||
// ToNumber returns a formula argument with number data type.
|
||||
func (fa formulaArg) ToNumber() formulaArg {
|
||||
var n float64
|
||||
var err error
|
||||
switch fa.Type {
|
||||
case ArgString:
|
||||
n, err = strconv.ParseFloat(fa.String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
}
|
||||
case ArgNumber:
|
||||
n = fa.Number
|
||||
}
|
||||
return newNumberFormulaArg(n)
|
||||
}
|
||||
|
||||
// formulaFuncs is the type of the formula functions.
|
||||
type formulaFuncs struct{}
|
||||
|
||||
|
@ -274,6 +296,9 @@ func getPriority(token efp.Token) (pri int) {
|
|||
|
||||
// newNumberFormulaArg constructs a number formula argument.
|
||||
func newNumberFormulaArg(n float64) formulaArg {
|
||||
if math.IsNaN(n) {
|
||||
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
||||
}
|
||||
return formulaArg{Type: ArgNumber, Number: n}
|
||||
}
|
||||
|
||||
|
@ -282,6 +307,20 @@ func newStringFormulaArg(s string) formulaArg {
|
|||
return formulaArg{Type: ArgString, String: s}
|
||||
}
|
||||
|
||||
// newMatrixFormulaArg constructs a matrix formula argument.
|
||||
func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
|
||||
return formulaArg{Type: ArgMatrix, Matrix: m}
|
||||
}
|
||||
|
||||
// newBoolFormulaArg constructs a boolean formula argument.
|
||||
func newBoolFormulaArg(b bool) formulaArg {
|
||||
var n float64
|
||||
if b {
|
||||
n = 1
|
||||
}
|
||||
return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
|
||||
}
|
||||
|
||||
// newErrorFormulaArg create an error formula argument of a given type with a specified error message.
|
||||
func newErrorFormulaArg(formulaError, msg string) formulaArg {
|
||||
return formulaArg{Type: ArgError, String: formulaError, Error: msg}
|
||||
|
@ -426,7 +465,12 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
|
|||
argsList.Init()
|
||||
opfStack.Pop()
|
||||
if opfStack.Len() > 0 { // still in function stack
|
||||
if nextToken.TType == efp.TokenTypeOperatorInfix {
|
||||
// mathematics calculate in formula function
|
||||
opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
||||
} else {
|
||||
argsList.PushBack(arg)
|
||||
}
|
||||
} else {
|
||||
opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
||||
}
|
||||
|
@ -994,11 +1038,11 @@ func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
|
||||
}
|
||||
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
arg := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if arg.Type == ArgError {
|
||||
return arg
|
||||
}
|
||||
return newNumberFormulaArg(math.Abs(val))
|
||||
return newNumberFormulaArg(math.Abs(arg.Number))
|
||||
}
|
||||
|
||||
// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
|
||||
|
@ -1011,11 +1055,11 @@ func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
|
||||
}
|
||||
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
arg := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if arg.Type == ArgError {
|
||||
return arg
|
||||
}
|
||||
return newNumberFormulaArg(math.Acos(val))
|
||||
return newNumberFormulaArg(math.Acos(arg.Number))
|
||||
}
|
||||
|
||||
// ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
|
||||
|
@ -1027,11 +1071,11 @@ func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
|
||||
}
|
||||
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
arg := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if arg.Type == ArgError {
|
||||
return arg
|
||||
}
|
||||
return newNumberFormulaArg(math.Acosh(val))
|
||||
return newNumberFormulaArg(math.Acosh(arg.Number))
|
||||
}
|
||||
|
||||
// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
|
||||
|
@ -1044,11 +1088,11 @@ func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
|
||||
}
|
||||
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
arg := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if arg.Type == ArgError {
|
||||
return arg
|
||||
}
|
||||
return newNumberFormulaArg(math.Pi/2 - math.Atan(val))
|
||||
return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
|
||||
}
|
||||
|
||||
// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
|
||||
|
@ -1060,11 +1104,11 @@ func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
|
||||
}
|
||||
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
arg := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if arg.Type == ArgError {
|
||||
return arg
|
||||
}
|
||||
return newNumberFormulaArg(math.Atanh(1 / val))
|
||||
return newNumberFormulaArg(math.Atanh(1 / arg.Number))
|
||||
}
|
||||
|
||||
// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
|
||||
|
@ -1110,11 +1154,11 @@ func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
|
||||
}
|
||||
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
arg := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if arg.Type == ArgError {
|
||||
return arg
|
||||
}
|
||||
return newNumberFormulaArg(math.Asin(val))
|
||||
return newNumberFormulaArg(math.Asin(arg.Number))
|
||||
}
|
||||
|
||||
// ASINH function calculates the inverse hyperbolic sine of a supplied number.
|
||||
|
@ -1126,11 +1170,11 @@ func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
|
||||
}
|
||||
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
arg := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if arg.Type == ArgError {
|
||||
return arg
|
||||
}
|
||||
return newNumberFormulaArg(math.Asinh(val))
|
||||
return newNumberFormulaArg(math.Asinh(arg.Number))
|
||||
}
|
||||
|
||||
// ATAN function calculates the arctangent (i.e. the inverse tangent) of a
|
||||
|
@ -1143,11 +1187,11 @@ func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
|
||||
}
|
||||
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
arg := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if arg.Type == ArgError {
|
||||
return arg
|
||||
}
|
||||
return newNumberFormulaArg(math.Atan(val))
|
||||
return newNumberFormulaArg(math.Atan(arg.Number))
|
||||
}
|
||||
|
||||
// ATANH function calculates the inverse hyperbolic tangent of a supplied
|
||||
|
@ -1159,11 +1203,11 @@ func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
|
|||
if argsList.Len() != 1 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
|
||||
}
|
||||
val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64)
|
||||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
arg := argsList.Front().Value.(formulaArg).ToNumber()
|
||||
if arg.Type == ArgError {
|
||||
return arg
|
||||
}
|
||||
return newNumberFormulaArg(math.Atanh(val))
|
||||
return newNumberFormulaArg(math.Atanh(arg.Number))
|
||||
}
|
||||
|
||||
// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
|
||||
|
@ -2185,19 +2229,19 @@ func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
|
|||
if err != nil {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
}
|
||||
matrix := make([][]float64, 0, dimension)
|
||||
matrix := make([][]formulaArg, 0, dimension)
|
||||
for i := 0; i < dimension; i++ {
|
||||
row := make([]float64, dimension)
|
||||
row := make([]formulaArg, dimension)
|
||||
for j := 0; j < dimension; j++ {
|
||||
if i == j {
|
||||
row[j] = float64(1.0)
|
||||
row[j] = newNumberFormulaArg(float64(1.0))
|
||||
} else {
|
||||
row[j] = float64(0.0)
|
||||
row[j] = newNumberFormulaArg(float64(0.0))
|
||||
}
|
||||
}
|
||||
matrix = append(matrix, row)
|
||||
}
|
||||
return
|
||||
return newMatrixFormulaArg(matrix)
|
||||
}
|
||||
|
||||
// ODD function ounds a supplied number away from zero (i.e. rounds a positive
|
||||
|
@ -2704,6 +2748,8 @@ func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
|
|||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
}
|
||||
sum += val
|
||||
case ArgNumber:
|
||||
sum += token.Number
|
||||
case ArgMatrix:
|
||||
for _, row := range token.Matrix {
|
||||
for _, value := range row {
|
||||
|
@ -3173,7 +3219,7 @@ func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
|
|||
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
|
||||
}
|
||||
}
|
||||
return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(and)))
|
||||
return newBoolFormulaArg(and)
|
||||
}
|
||||
|
||||
// OR function tests a number of supplied conditions and returns either TRUE
|
||||
|
@ -3380,7 +3426,7 @@ func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
|
|||
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
|
||||
}
|
||||
if argsList.Len() == 1 {
|
||||
return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(cond)))
|
||||
return newBoolFormulaArg(cond)
|
||||
}
|
||||
if cond {
|
||||
return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
|
||||
|
@ -3399,7 +3445,6 @@ func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
|
|||
//
|
||||
// CHOOSE(index_num,value1,[value2],...)
|
||||
//
|
||||
// TODO: resolve range choose.
|
||||
func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
|
||||
if argsList.Len() < 2 {
|
||||
return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
|
||||
|
@ -3415,5 +3460,12 @@ func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
|
|||
for i := 0; i < idx; i++ {
|
||||
arg = arg.Next()
|
||||
}
|
||||
return newStringFormulaArg(arg.Value.(formulaArg).String)
|
||||
var result formulaArg
|
||||
switch arg.Value.(formulaArg).Type {
|
||||
case ArgString:
|
||||
result = newStringFormulaArg(arg.Value.(formulaArg).String)
|
||||
case ArgMatrix:
|
||||
result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
|
14
calc_test.go
14
calc_test.go
|
@ -52,21 +52,26 @@ func TestCalcCellValue(t *testing.T) {
|
|||
"=ABS(6.5)": "6.5",
|
||||
"=ABS(0)": "0",
|
||||
"=ABS(2-4.5)": "2.5",
|
||||
"=ABS(ABS(-1))": "1",
|
||||
// ACOS
|
||||
"=ACOS(-1)": "3.141592653589793",
|
||||
"=ACOS(0)": "1.570796326794897",
|
||||
"=ACOS(ABS(0))": "1.570796326794897",
|
||||
// ACOSH
|
||||
"=ACOSH(1)": "0",
|
||||
"=ACOSH(2.5)": "1.566799236972411",
|
||||
"=ACOSH(5)": "2.292431669561178",
|
||||
"=ACOSH(ACOSH(5))": "1.471383321536679",
|
||||
// ACOT
|
||||
"=_xlfn.ACOT(1)": "0.785398163397448",
|
||||
"=_xlfn.ACOT(-2)": "2.677945044588987",
|
||||
"=_xlfn.ACOT(0)": "1.570796326794897",
|
||||
"=_xlfn.ACOT(_xlfn.ACOT(0))": "0.566911504941009",
|
||||
// ACOTH
|
||||
"=_xlfn.ACOTH(-5)": "-0.202732554054082",
|
||||
"=_xlfn.ACOTH(1.1)": "1.522261218861711",
|
||||
"=_xlfn.ACOTH(2)": "0.549306144334055",
|
||||
"=_xlfn.ACOTH(ABS(-2))": "0.549306144334055",
|
||||
// ARABIC
|
||||
`=_xlfn.ARABIC("IV")`: "4",
|
||||
`=_xlfn.ARABIC("-IV")`: "-4",
|
||||
|
@ -75,18 +80,22 @@ func TestCalcCellValue(t *testing.T) {
|
|||
// ASIN
|
||||
"=ASIN(-1)": "-1.570796326794897",
|
||||
"=ASIN(0)": "0",
|
||||
"=ASIN(ASIN(0))": "0",
|
||||
// ASINH
|
||||
"=ASINH(0)": "0",
|
||||
"=ASINH(-0.5)": "-0.481211825059604",
|
||||
"=ASINH(2)": "1.44363547517881",
|
||||
"=ASINH(ASINH(0))": "0",
|
||||
// ATAN
|
||||
"=ATAN(-1)": "-0.785398163397448",
|
||||
"=ATAN(0)": "0",
|
||||
"=ATAN(1)": "0.785398163397448",
|
||||
"=ATAN(ATAN(0))": "0",
|
||||
// ATANH
|
||||
"=ATANH(-0.8)": "-1.09861228866811",
|
||||
"=ATANH(0)": "0",
|
||||
"=ATANH(0.5)": "0.549306144334055",
|
||||
"=ATANH(ATANH(0))": "0",
|
||||
// ATAN2
|
||||
"=ATAN2(1,1)": "0.785398163397448",
|
||||
"=ATAN2(1,-1)": "-0.785398163397448",
|
||||
|
@ -277,7 +286,7 @@ func TestCalcCellValue(t *testing.T) {
|
|||
"=MULTINOMIAL(3,1,2,5)": "27720",
|
||||
`=MULTINOMIAL("",3,1,2,5)`: "27720",
|
||||
// _xlfn.MUNIT
|
||||
"=_xlfn.MUNIT(4)": "", // not support currently
|
||||
"=_xlfn.MUNIT(4)": "",
|
||||
// ODD
|
||||
"=ODD(22)": "23",
|
||||
"=ODD(1.22)": "3",
|
||||
|
@ -498,6 +507,7 @@ func TestCalcCellValue(t *testing.T) {
|
|||
// CHOOSE
|
||||
"=CHOOSE(4,\"red\",\"blue\",\"green\",\"brown\")": "brown",
|
||||
"=CHOOSE(1,\"red\",\"blue\",\"green\",\"brown\")": "red",
|
||||
"=SUM(CHOOSE(A2,A1,B1:B2,A1:A3,A1:A4))": "9",
|
||||
}
|
||||
for formula, expected := range mathCalc {
|
||||
f := prepareData()
|
||||
|
@ -514,6 +524,7 @@ func TestCalcCellValue(t *testing.T) {
|
|||
// ACOS
|
||||
"=ACOS()": "ACOS requires 1 numeric argument",
|
||||
`=ACOS("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
|
||||
"=ACOS(ACOS(0))": "#NUM!",
|
||||
// ACOSH
|
||||
"=ACOSH()": "ACOSH requires 1 numeric argument",
|
||||
`=ACOSH("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
|
||||
|
@ -523,6 +534,7 @@ func TestCalcCellValue(t *testing.T) {
|
|||
// _xlfn.ACOTH
|
||||
"=_xlfn.ACOTH()": "ACOTH requires 1 numeric argument",
|
||||
`=_xlfn.ACOTH("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
|
||||
"=_xlfn.ACOTH(_xlfn.ACOTH(2))": "#NUM!",
|
||||
// _xlfn.ARABIC
|
||||
"=_xlfn.ARABIC()": "ARABIC requires 1 numeric argument",
|
||||
// ASIN
|
||||
|
|
Loading…
Reference in New Issue