diff --git a/calc.go b/calc.go index 5ebdcf7c..7c912eb6 100644 --- a/calc.go +++ b/calc.go @@ -102,11 +102,17 @@ func getPriority(token efp.Token) (pri int) { // opf - Operation formula // opfd - Operand of the operation formula // opft - Operator of the operation formula +// +// Evaluate arguments of the operation formula by list: +// // args - Arguments of the operation formula // +// TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union +// func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) { var err error - opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack() + opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack() + argsList := list.New() for i := 0; i < len(tokens); i++ { token := tokens[i] @@ -155,7 +161,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) return efp.Token{TValue: formulaErrorNAME}, err } for _, val := range result { - argsStack.Push(efp.Token{ + argsList.PushBack(efp.Token{ TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber, TValue: val, @@ -184,11 +190,20 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) opftStack.Pop() } if !opfdStack.Empty() { - argsStack.Push(opfdStack.Pop()) + argsList.PushBack(opfdStack.Pop()) } continue } + // current token is logical + if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical { + } + + // current token is text + if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText { + argsList.PushBack(token) + } + // current token is function stop if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop { for !opftStack.Empty() { @@ -202,13 +217,14 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) // push opfd to args if opfdStack.Len() > 0 { - argsStack.Push(opfdStack.Pop()) + argsList.PushBack(opfdStack.Pop()) } // call formula function to evaluate - result, err := callFuncByName(&formulaFuncs{}, opfStack.Peek().(efp.Token).TValue, []reflect.Value{reflect.ValueOf(argsStack)}) + result, err := callFuncByName(&formulaFuncs{}, strings.ReplaceAll(opfStack.Peek().(efp.Token).TValue, "_xlfn.", ""), []reflect.Value{reflect.ValueOf(argsList)}) if err != nil { return efp.Token{}, err } + argsList.Init() opfStack.Pop() if opfStack.Len() > 0 { // still in function stack opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) @@ -480,13 +496,13 @@ func callFuncByName(receiver interface{}, name string, params []reflect.Value) ( // // ABS(number) // -func (fn *formulaFuncs) ABS(argsStack *Stack) (result string, err error) { - if argsStack.Len() != 1 { +func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { err = errors.New("ABS requires 1 numeric arguments") return } var val float64 - val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) + val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } @@ -494,6 +510,236 @@ func (fn *formulaFuncs) ABS(argsStack *Stack) (result string, err error) { return } +// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given +// number, and returns an angle, in radians, between 0 and π. The syntax of +// the function is: +// +// ACOS(number) +// +func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { + err = errors.New("ACOS requires 1 numeric arguments") + return + } + var val float64 + val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) + if err != nil { + return + } + result = fmt.Sprintf("%g", math.Acos(val)) + return +} + +// ACOSH function calculates the inverse hyperbolic cosine of a supplied number. +// of the function is: +// +// ACOSH(number) +// +func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { + err = errors.New("ACOSH requires 1 numeric arguments") + return + } + var val float64 + val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) + if err != nil { + return + } + result = fmt.Sprintf("%g", math.Acosh(val)) + return +} + +// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a +// given number, and returns an angle, in radians, between 0 and π. The syntax +// of the function is: +// +// ACOT(number) +// +func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { + err = errors.New("ACOT requires 1 numeric arguments") + return + } + var val float64 + val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) + if err != nil { + return + } + result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val)) + return +} + +// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied +// value. The syntax of the function is: +// +// ACOTH(number) +// +func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { + err = errors.New("ACOTH requires 1 numeric arguments") + return + } + var val float64 + val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) + if err != nil { + return + } + result = fmt.Sprintf("%g", math.Atanh(1/val)) + return +} + +// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax +// of the function is: +// +// ARABIC(text) +// +func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { + err = errors.New("ARABIC requires 1 numeric arguments") + return + } + val, last, prefix := 0.0, 0.0, 1.0 + for _, char := range argsList.Front().Value.(efp.Token).TValue { + digit := 0.0 + switch char { + case '-': + prefix = -1 + continue + case 'I': + digit = 1 + case 'V': + digit = 5 + case 'X': + digit = 10 + case 'L': + digit = 50 + case 'C': + digit = 100 + case 'D': + digit = 500 + case 'M': + digit = 1000 + } + val += digit + switch { + case last == digit && (last == 5 || last == 50 || last == 500): + result = formulaErrorVALUE + return + case 2*last == digit: + result = formulaErrorVALUE + return + } + if last < digit { + val -= 2 * last + } + last = digit + } + result = fmt.Sprintf("%g", prefix*val) + return +} + +// ASIN function calculates the arcsine (i.e. the inverse sine) of a given +// number, and returns an angle, in radians, between -π/2 and π/2. The syntax +// of the function is: +// +// ASIN(number) +// +func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { + err = errors.New("ASIN requires 1 numeric arguments") + return + } + var val float64 + val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) + if err != nil { + return + } + result = fmt.Sprintf("%g", math.Asin(val)) + return +} + +// ASINH function calculates the inverse hyperbolic sine of a supplied number. +// The syntax of the function is: +// +// ASINH(number) +// +func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { + err = errors.New("ASINH requires 1 numeric arguments") + return + } + var val float64 + val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) + if err != nil { + return + } + result = fmt.Sprintf("%g", math.Asinh(val)) + return +} + +// ATAN function calculates the arctangent (i.e. the inverse tangent) of a +// given number, and returns an angle, in radians, between -π/2 and +π/2. The +// syntax of the function is: +// +// ATAN(number) +// +func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { + err = errors.New("ATAN requires 1 numeric arguments") + return + } + var val float64 + val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) + if err != nil { + return + } + result = fmt.Sprintf("%g", math.Atan(val)) + return +} + +// ATANH function calculates the inverse hyperbolic tangent of a supplied +// number. The syntax of the function is: +// +// ATANH(number) +// +func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { + err = errors.New("ATANH requires 1 numeric arguments") + return + } + var val float64 + val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) + if err != nil { + return + } + result = fmt.Sprintf("%g", math.Atanh(val)) + return +} + +// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a +// given set of x and y coordinates, and returns an angle, in radians, between +// -π/2 and +π/2. The syntax of the function is: +// +// ATAN2(x_num,y_num) +// +func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) { + if argsList.Len() != 2 { + err = errors.New("ATAN2 requires 2 numeric arguments") + return + } + var x, y float64 + x, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64) + if err != nil { + return + } + y, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) + if err != nil { + return + } + result = fmt.Sprintf("%g", math.Atan2(x, y)) + return +} + // gcd returns the greatest common divisor of two supplied integers. func gcd(x, y float64) float64 { x, y = math.Trunc(x), math.Trunc(y) @@ -513,13 +759,55 @@ func gcd(x, y float64) float64 { return x } +// BASE function converts a number into a supplied base (radix), and returns a +// text representation of the calculated value. The syntax of the function is: +// +// BASE(number,radix,[min_length]) +// +func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) { + if argsList.Len() < 2 { + err = errors.New("BASE requires at least 2 arguments") + return + } + if argsList.Len() > 3 { + err = errors.New("BASE allows at most 3 arguments") + return + } + var number float64 + var radix, minLength int + number, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) + if err != nil { + return + } + radix, err = strconv.Atoi(argsList.Front().Next().Value.(efp.Token).TValue) + if err != nil { + return + } + if radix < 2 || radix > 36 { + err = errors.New("radix must be an integer ≥ 2 and ≤ 36") + return + } + if argsList.Len() > 2 { + minLength, err = strconv.Atoi(argsList.Back().Value.(efp.Token).TValue) + if err != nil { + return + } + } + result = strconv.FormatInt(int64(number), radix) + if len(result) < minLength { + result = strings.Repeat("0", minLength-len(result)) + result + } + result = strings.ToUpper(result) + return +} + // GCD function returns the greatest common divisor of two or more supplied -// integers.The syntax of the function is: +// integers. The syntax of the function is: // // GCD(number1,[number2],...) // -func (fn *formulaFuncs) GCD(argsStack *Stack) (result string, err error) { - if argsStack.Len() == 0 { +func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) { + if argsList.Len() == 0 { err = errors.New("GCD requires at least 1 argument") return } @@ -527,8 +815,8 @@ func (fn *formulaFuncs) GCD(argsStack *Stack) (result string, err error) { val float64 nums = []float64{} ) - for !argsStack.Empty() { - token := argsStack.Pop().(efp.Token) + for arg := argsList.Front(); arg != nil; arg = arg.Next() { + token := arg.Value.(efp.Token) if token.TValue == "" { continue } @@ -573,8 +861,8 @@ func lcm(a, b float64) float64 { // // LCM(number1,[number2],...) // -func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) { - if argsStack.Len() == 0 { +func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) { + if argsList.Len() == 0 { err = errors.New("LCM requires at least 1 argument") return } @@ -582,8 +870,8 @@ func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) { val float64 nums = []float64{} ) - for !argsStack.Empty() { - token := argsStack.Pop().(efp.Token) + for arg := argsList.Front(); arg != nil; arg = arg.Next() { + token := arg.Value.(efp.Token) if token.TValue == "" { continue } @@ -618,17 +906,17 @@ func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) { // // POWER(number,power) // -func (fn *formulaFuncs) POWER(argsStack *Stack) (result string, err error) { - if argsStack.Len() != 2 { +func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) { + if argsList.Len() != 2 { err = errors.New("POWER requires 2 numeric arguments") return } var x, y float64 - y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) + x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } - x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) + y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64) if err != nil { return } @@ -649,13 +937,13 @@ func (fn *formulaFuncs) POWER(argsStack *Stack) (result string, err error) { // // PRODUCT(number1,[number2],...) // -func (fn *formulaFuncs) PRODUCT(argsStack *Stack) (result string, err error) { +func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) { var ( val float64 product float64 = 1 ) - for !argsStack.Empty() { - token := argsStack.Pop().(efp.Token) + for arg := argsList.Front(); arg != nil; arg = arg.Next() { + token := arg.Value.(efp.Token) if token.TValue == "" { continue } @@ -676,13 +964,13 @@ func (fn *formulaFuncs) PRODUCT(argsStack *Stack) (result string, err error) { // // SIGN(number) // -func (fn *formulaFuncs) SIGN(argsStack *Stack) (result string, err error) { - if argsStack.Len() != 1 { +func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { err = errors.New("SIGN requires 1 numeric arguments") return } var val float64 - val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) + val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } @@ -703,13 +991,13 @@ func (fn *formulaFuncs) SIGN(argsStack *Stack) (result string, err error) { // // SQRT(number) // -func (fn *formulaFuncs) SQRT(argsStack *Stack) (result string, err error) { - if argsStack.Len() != 1 { +func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) { + if argsList.Len() != 1 { err = errors.New("SQRT requires 1 numeric arguments") return } var val float64 - val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) + val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } @@ -726,11 +1014,11 @@ func (fn *formulaFuncs) SQRT(argsStack *Stack) (result string, err error) { // // SUM(number1,[number2],...) // -func (fn *formulaFuncs) SUM(argsStack *Stack) (result string, err error) { +func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) { var val float64 var sum float64 - for !argsStack.Empty() { - token := argsStack.Pop().(efp.Token) + for arg := argsList.Front(); arg != nil; arg = arg.Next() { + token := arg.Value.(efp.Token) if token.TValue == "" { continue } @@ -749,17 +1037,17 @@ func (fn *formulaFuncs) SUM(argsStack *Stack) (result string, err error) { // // QUOTIENT(numerator,denominator) // -func (fn *formulaFuncs) QUOTIENT(argsStack *Stack) (result string, err error) { - if argsStack.Len() != 2 { +func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) { + if argsList.Len() != 2 { err = errors.New("QUOTIENT requires 2 numeric arguments") return } var x, y float64 - y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) + x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } - x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) + y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64) if err != nil { return } diff --git a/calc_test.go b/calc_test.go index 84fa955d..bb8ae8ae 100644 --- a/calc_test.go +++ b/calc_test.go @@ -24,6 +24,49 @@ func TestCalcCellValue(t *testing.T) { "=ABS(6.5)": "6.5", "=ABS(0)": "0", "=ABS(2-4.5)": "2.5", + // ACOS + "=ACOS(-1)": "3.141592653589793", + "=ACOS(0)": "1.5707963267948966", + // ACOSH + "=ACOSH(1)": "0", + "=ACOSH(2.5)": "1.566799236972411", + "=ACOSH(5)": "2.2924316695611777", + // ACOT + "=_xlfn.ACOT(1)": "0.7853981633974483", + "=_xlfn.ACOT(-2)": "2.677945044588987", + "=_xlfn.ACOT(0)": "1.5707963267948966", + // ACOTH + "=_xlfn.ACOTH(-5)": "-0.2027325540540822", + "=_xlfn.ACOTH(1.1)": "1.5222612188617113", + "=_xlfn.ACOTH(2)": "0.5493061443340548", + // ARABIC + `=_xlfn.ARABIC("IV")`: "4", + `=_xlfn.ARABIC("-IV")`: "-4", + `=_xlfn.ARABIC("MCXX")`: "1120", + `=_xlfn.ARABIC("")`: "0", + // ASIN + "=ASIN(-1)": "-1.5707963267948966", + "=ASIN(0)": "0", + // ASINH + "=ASINH(0)": "0", + "=ASINH(-0.5)": "-0.48121182505960347", + "=ASINH(2)": "1.4436354751788103", + // ATAN + "=ATAN(-1)": "-0.7853981633974483", + "=ATAN(0)": "0", + "=ATAN(1)": "0.7853981633974483", + // ATANH + "=ATANH(-0.8)": "-1.0986122886681098", + "=ATANH(0)": "0", + "=ATANH(0.5)": "0.5493061443340548", + // ATAN2 + "=ATAN2(1,1)": "0.7853981633974483", + "=ATAN2(1,-1)": "-0.7853981633974483", + "=ATAN2(4,0)": "0", + // BASE + "=BASE(12,2)": "1100", + "=BASE(12,2,8)": "00001100", + "=BASE(100000,16)": "186A0", // GCD "=GCD(1,5)": "1", "=GCD(15,10,25)": "5", @@ -74,8 +117,32 @@ func TestCalcCellValue(t *testing.T) { } mathCalcError := map[string]string{ // ABS - "=ABS(1,2)": "ABS requires 1 numeric arguments", - "=ABS(~)": `cannot convert cell "~" to coordinates: invalid cell name "~"`, + "=ABS()": "ABS requires 1 numeric arguments", + "=ABS(~)": `cannot convert cell "~" to coordinates: invalid cell name "~"`, + // ACOS + "=ACOS()": "ACOS requires 1 numeric arguments", + // ACOSH + "=ACOSH()": "ACOSH requires 1 numeric arguments", + // ACOT + "=_xlfn.ACOT()": "ACOT requires 1 numeric arguments", + // ACOTH + "=_xlfn.ACOTH()": "ACOTH requires 1 numeric arguments", + // ARABIC + "_xlfn.ARABIC()": "ARABIC requires 1 numeric arguments", + // ASIN + "=ASIN()": "ASIN requires 1 numeric arguments", + // ASINH + "=ASINH()": "ASINH requires 1 numeric arguments", + // ATAN + "=ATAN()": "ATAN requires 1 numeric arguments", + // ATANH + "=ATANH()": "ATANH requires 1 numeric arguments", + // ATAN2 + "=ATAN2()": "ATAN2 requires 2 numeric arguments", + // BASE + "=BASE()": "BASE requires at least 2 arguments", + "=BASE(1,2,3,4)": "BASE allows at most 3 arguments", + "=BASE(1,1)": "radix must be an integer ≥ 2 and ≤ 36", // GCD "=GCD()": "GCD requires at least 1 argument", "=GCD(-1)": "GCD only accepts positive arguments",