forked from p30928647/excelize
fn: ACOS, ACOSH, ACOT, ACOTH, ARABIC, ASIN, ASINH, ATANH, ATAN2, BASE
This commit is contained in:
parent
bdf0538640
commit
789adf9202
362
calc.go
362
calc.go
|
@ -102,11 +102,17 @@ func getPriority(token efp.Token) (pri int) {
|
||||||
// opf - Operation formula
|
// opf - Operation formula
|
||||||
// opfd - Operand of the operation formula
|
// opfd - Operand of the operation formula
|
||||||
// opft - Operator of the operation formula
|
// opft - Operator of the operation formula
|
||||||
|
//
|
||||||
|
// Evaluate arguments of the operation formula by list:
|
||||||
|
//
|
||||||
// args - Arguments of the operation formula
|
// args - Arguments of the operation formula
|
||||||
//
|
//
|
||||||
|
// TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
|
||||||
|
//
|
||||||
func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
|
func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
|
||||||
var err error
|
var err error
|
||||||
opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
|
opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
|
||||||
|
argsList := list.New()
|
||||||
for i := 0; i < len(tokens); i++ {
|
for i := 0; i < len(tokens); i++ {
|
||||||
token := tokens[i]
|
token := tokens[i]
|
||||||
|
|
||||||
|
@ -155,7 +161,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
|
||||||
return efp.Token{TValue: formulaErrorNAME}, err
|
return efp.Token{TValue: formulaErrorNAME}, err
|
||||||
}
|
}
|
||||||
for _, val := range result {
|
for _, val := range result {
|
||||||
argsStack.Push(efp.Token{
|
argsList.PushBack(efp.Token{
|
||||||
TType: efp.TokenTypeOperand,
|
TType: efp.TokenTypeOperand,
|
||||||
TSubType: efp.TokenSubTypeNumber,
|
TSubType: efp.TokenSubTypeNumber,
|
||||||
TValue: val,
|
TValue: val,
|
||||||
|
@ -184,11 +190,20 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
|
||||||
opftStack.Pop()
|
opftStack.Pop()
|
||||||
}
|
}
|
||||||
if !opfdStack.Empty() {
|
if !opfdStack.Empty() {
|
||||||
argsStack.Push(opfdStack.Pop())
|
argsList.PushBack(opfdStack.Pop())
|
||||||
}
|
}
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// current token is logical
|
||||||
|
if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
|
||||||
|
}
|
||||||
|
|
||||||
|
// current token is text
|
||||||
|
if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
|
||||||
|
argsList.PushBack(token)
|
||||||
|
}
|
||||||
|
|
||||||
// current token is function stop
|
// current token is function stop
|
||||||
if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
|
if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
|
||||||
for !opftStack.Empty() {
|
for !opftStack.Empty() {
|
||||||
|
@ -202,13 +217,14 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
|
||||||
|
|
||||||
// push opfd to args
|
// push opfd to args
|
||||||
if opfdStack.Len() > 0 {
|
if opfdStack.Len() > 0 {
|
||||||
argsStack.Push(opfdStack.Pop())
|
argsList.PushBack(opfdStack.Pop())
|
||||||
}
|
}
|
||||||
// call formula function to evaluate
|
// call formula function to evaluate
|
||||||
result, err := callFuncByName(&formulaFuncs{}, opfStack.Peek().(efp.Token).TValue, []reflect.Value{reflect.ValueOf(argsStack)})
|
result, err := callFuncByName(&formulaFuncs{}, strings.ReplaceAll(opfStack.Peek().(efp.Token).TValue, "_xlfn.", ""), []reflect.Value{reflect.ValueOf(argsList)})
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return efp.Token{}, err
|
return efp.Token{}, err
|
||||||
}
|
}
|
||||||
|
argsList.Init()
|
||||||
opfStack.Pop()
|
opfStack.Pop()
|
||||||
if opfStack.Len() > 0 { // still in function stack
|
if opfStack.Len() > 0 { // still in function stack
|
||||||
opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
||||||
|
@ -480,13 +496,13 @@ func callFuncByName(receiver interface{}, name string, params []reflect.Value) (
|
||||||
//
|
//
|
||||||
// ABS(number)
|
// ABS(number)
|
||||||
//
|
//
|
||||||
func (fn *formulaFuncs) ABS(argsStack *Stack) (result string, err error) {
|
func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
|
||||||
if argsStack.Len() != 1 {
|
if argsList.Len() != 1 {
|
||||||
err = errors.New("ABS requires 1 numeric arguments")
|
err = errors.New("ABS requires 1 numeric arguments")
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
var val float64
|
var val float64
|
||||||
val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
|
@ -494,6 +510,236 @@ func (fn *formulaFuncs) ABS(argsStack *Stack) (result string, err error) {
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
|
||||||
|
// number, and returns an angle, in radians, between 0 and π. The syntax of
|
||||||
|
// the function is:
|
||||||
|
//
|
||||||
|
// ACOS(number)
|
||||||
|
//
|
||||||
|
func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
|
||||||
|
if argsList.Len() != 1 {
|
||||||
|
err = errors.New("ACOS requires 1 numeric arguments")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
var val float64
|
||||||
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
result = fmt.Sprintf("%g", math.Acos(val))
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
|
||||||
|
// of the function is:
|
||||||
|
//
|
||||||
|
// ACOSH(number)
|
||||||
|
//
|
||||||
|
func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
|
||||||
|
if argsList.Len() != 1 {
|
||||||
|
err = errors.New("ACOSH requires 1 numeric arguments")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
var val float64
|
||||||
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
result = fmt.Sprintf("%g", math.Acosh(val))
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
|
||||||
|
// given number, and returns an angle, in radians, between 0 and π. The syntax
|
||||||
|
// of the function is:
|
||||||
|
//
|
||||||
|
// ACOT(number)
|
||||||
|
//
|
||||||
|
func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
|
||||||
|
if argsList.Len() != 1 {
|
||||||
|
err = errors.New("ACOT requires 1 numeric arguments")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
var val float64
|
||||||
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
|
||||||
|
// value. The syntax of the function is:
|
||||||
|
//
|
||||||
|
// ACOTH(number)
|
||||||
|
//
|
||||||
|
func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
|
||||||
|
if argsList.Len() != 1 {
|
||||||
|
err = errors.New("ACOTH requires 1 numeric arguments")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
var val float64
|
||||||
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
result = fmt.Sprintf("%g", math.Atanh(1/val))
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
|
||||||
|
// of the function is:
|
||||||
|
//
|
||||||
|
// ARABIC(text)
|
||||||
|
//
|
||||||
|
func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
|
||||||
|
if argsList.Len() != 1 {
|
||||||
|
err = errors.New("ARABIC requires 1 numeric arguments")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
val, last, prefix := 0.0, 0.0, 1.0
|
||||||
|
for _, char := range argsList.Front().Value.(efp.Token).TValue {
|
||||||
|
digit := 0.0
|
||||||
|
switch char {
|
||||||
|
case '-':
|
||||||
|
prefix = -1
|
||||||
|
continue
|
||||||
|
case 'I':
|
||||||
|
digit = 1
|
||||||
|
case 'V':
|
||||||
|
digit = 5
|
||||||
|
case 'X':
|
||||||
|
digit = 10
|
||||||
|
case 'L':
|
||||||
|
digit = 50
|
||||||
|
case 'C':
|
||||||
|
digit = 100
|
||||||
|
case 'D':
|
||||||
|
digit = 500
|
||||||
|
case 'M':
|
||||||
|
digit = 1000
|
||||||
|
}
|
||||||
|
val += digit
|
||||||
|
switch {
|
||||||
|
case last == digit && (last == 5 || last == 50 || last == 500):
|
||||||
|
result = formulaErrorVALUE
|
||||||
|
return
|
||||||
|
case 2*last == digit:
|
||||||
|
result = formulaErrorVALUE
|
||||||
|
return
|
||||||
|
}
|
||||||
|
if last < digit {
|
||||||
|
val -= 2 * last
|
||||||
|
}
|
||||||
|
last = digit
|
||||||
|
}
|
||||||
|
result = fmt.Sprintf("%g", prefix*val)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// ASIN function calculates the arcsine (i.e. the inverse sine) of a given
|
||||||
|
// number, and returns an angle, in radians, between -π/2 and π/2. The syntax
|
||||||
|
// of the function is:
|
||||||
|
//
|
||||||
|
// ASIN(number)
|
||||||
|
//
|
||||||
|
func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
|
||||||
|
if argsList.Len() != 1 {
|
||||||
|
err = errors.New("ASIN requires 1 numeric arguments")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
var val float64
|
||||||
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
result = fmt.Sprintf("%g", math.Asin(val))
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// ASINH function calculates the inverse hyperbolic sine of a supplied number.
|
||||||
|
// The syntax of the function is:
|
||||||
|
//
|
||||||
|
// ASINH(number)
|
||||||
|
//
|
||||||
|
func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
|
||||||
|
if argsList.Len() != 1 {
|
||||||
|
err = errors.New("ASINH requires 1 numeric arguments")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
var val float64
|
||||||
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
result = fmt.Sprintf("%g", math.Asinh(val))
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// ATAN function calculates the arctangent (i.e. the inverse tangent) of a
|
||||||
|
// given number, and returns an angle, in radians, between -π/2 and +π/2. The
|
||||||
|
// syntax of the function is:
|
||||||
|
//
|
||||||
|
// ATAN(number)
|
||||||
|
//
|
||||||
|
func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
|
||||||
|
if argsList.Len() != 1 {
|
||||||
|
err = errors.New("ATAN requires 1 numeric arguments")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
var val float64
|
||||||
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
result = fmt.Sprintf("%g", math.Atan(val))
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// ATANH function calculates the inverse hyperbolic tangent of a supplied
|
||||||
|
// number. The syntax of the function is:
|
||||||
|
//
|
||||||
|
// ATANH(number)
|
||||||
|
//
|
||||||
|
func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
|
||||||
|
if argsList.Len() != 1 {
|
||||||
|
err = errors.New("ATANH requires 1 numeric arguments")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
var val float64
|
||||||
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
result = fmt.Sprintf("%g", math.Atanh(val))
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
|
||||||
|
// given set of x and y coordinates, and returns an angle, in radians, between
|
||||||
|
// -π/2 and +π/2. The syntax of the function is:
|
||||||
|
//
|
||||||
|
// ATAN2(x_num,y_num)
|
||||||
|
//
|
||||||
|
func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
|
||||||
|
if argsList.Len() != 2 {
|
||||||
|
err = errors.New("ATAN2 requires 2 numeric arguments")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
var x, y float64
|
||||||
|
x, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
y, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
result = fmt.Sprintf("%g", math.Atan2(x, y))
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
// gcd returns the greatest common divisor of two supplied integers.
|
// gcd returns the greatest common divisor of two supplied integers.
|
||||||
func gcd(x, y float64) float64 {
|
func gcd(x, y float64) float64 {
|
||||||
x, y = math.Trunc(x), math.Trunc(y)
|
x, y = math.Trunc(x), math.Trunc(y)
|
||||||
|
@ -513,13 +759,55 @@ func gcd(x, y float64) float64 {
|
||||||
return x
|
return x
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// BASE function converts a number into a supplied base (radix), and returns a
|
||||||
|
// text representation of the calculated value. The syntax of the function is:
|
||||||
|
//
|
||||||
|
// BASE(number,radix,[min_length])
|
||||||
|
//
|
||||||
|
func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
|
||||||
|
if argsList.Len() < 2 {
|
||||||
|
err = errors.New("BASE requires at least 2 arguments")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
if argsList.Len() > 3 {
|
||||||
|
err = errors.New("BASE allows at most 3 arguments")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
var number float64
|
||||||
|
var radix, minLength int
|
||||||
|
number, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
radix, err = strconv.Atoi(argsList.Front().Next().Value.(efp.Token).TValue)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
if radix < 2 || radix > 36 {
|
||||||
|
err = errors.New("radix must be an integer ≥ 2 and ≤ 36")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
if argsList.Len() > 2 {
|
||||||
|
minLength, err = strconv.Atoi(argsList.Back().Value.(efp.Token).TValue)
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
}
|
||||||
|
result = strconv.FormatInt(int64(number), radix)
|
||||||
|
if len(result) < minLength {
|
||||||
|
result = strings.Repeat("0", minLength-len(result)) + result
|
||||||
|
}
|
||||||
|
result = strings.ToUpper(result)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
// GCD function returns the greatest common divisor of two or more supplied
|
// GCD function returns the greatest common divisor of two or more supplied
|
||||||
// integers.The syntax of the function is:
|
// integers. The syntax of the function is:
|
||||||
//
|
//
|
||||||
// GCD(number1,[number2],...)
|
// GCD(number1,[number2],...)
|
||||||
//
|
//
|
||||||
func (fn *formulaFuncs) GCD(argsStack *Stack) (result string, err error) {
|
func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
|
||||||
if argsStack.Len() == 0 {
|
if argsList.Len() == 0 {
|
||||||
err = errors.New("GCD requires at least 1 argument")
|
err = errors.New("GCD requires at least 1 argument")
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
|
@ -527,8 +815,8 @@ func (fn *formulaFuncs) GCD(argsStack *Stack) (result string, err error) {
|
||||||
val float64
|
val float64
|
||||||
nums = []float64{}
|
nums = []float64{}
|
||||||
)
|
)
|
||||||
for !argsStack.Empty() {
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
||||||
token := argsStack.Pop().(efp.Token)
|
token := arg.Value.(efp.Token)
|
||||||
if token.TValue == "" {
|
if token.TValue == "" {
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
@ -573,8 +861,8 @@ func lcm(a, b float64) float64 {
|
||||||
//
|
//
|
||||||
// LCM(number1,[number2],...)
|
// LCM(number1,[number2],...)
|
||||||
//
|
//
|
||||||
func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) {
|
func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
|
||||||
if argsStack.Len() == 0 {
|
if argsList.Len() == 0 {
|
||||||
err = errors.New("LCM requires at least 1 argument")
|
err = errors.New("LCM requires at least 1 argument")
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
|
@ -582,8 +870,8 @@ func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) {
|
||||||
val float64
|
val float64
|
||||||
nums = []float64{}
|
nums = []float64{}
|
||||||
)
|
)
|
||||||
for !argsStack.Empty() {
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
||||||
token := argsStack.Pop().(efp.Token)
|
token := arg.Value.(efp.Token)
|
||||||
if token.TValue == "" {
|
if token.TValue == "" {
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
@ -618,17 +906,17 @@ func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) {
|
||||||
//
|
//
|
||||||
// POWER(number,power)
|
// POWER(number,power)
|
||||||
//
|
//
|
||||||
func (fn *formulaFuncs) POWER(argsStack *Stack) (result string, err error) {
|
func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
|
||||||
if argsStack.Len() != 2 {
|
if argsList.Len() != 2 {
|
||||||
err = errors.New("POWER requires 2 numeric arguments")
|
err = errors.New("POWER requires 2 numeric arguments")
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
var x, y float64
|
var x, y float64
|
||||||
y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
|
@ -649,13 +937,13 @@ func (fn *formulaFuncs) POWER(argsStack *Stack) (result string, err error) {
|
||||||
//
|
//
|
||||||
// PRODUCT(number1,[number2],...)
|
// PRODUCT(number1,[number2],...)
|
||||||
//
|
//
|
||||||
func (fn *formulaFuncs) PRODUCT(argsStack *Stack) (result string, err error) {
|
func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
|
||||||
var (
|
var (
|
||||||
val float64
|
val float64
|
||||||
product float64 = 1
|
product float64 = 1
|
||||||
)
|
)
|
||||||
for !argsStack.Empty() {
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
||||||
token := argsStack.Pop().(efp.Token)
|
token := arg.Value.(efp.Token)
|
||||||
if token.TValue == "" {
|
if token.TValue == "" {
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
@ -676,13 +964,13 @@ func (fn *formulaFuncs) PRODUCT(argsStack *Stack) (result string, err error) {
|
||||||
//
|
//
|
||||||
// SIGN(number)
|
// SIGN(number)
|
||||||
//
|
//
|
||||||
func (fn *formulaFuncs) SIGN(argsStack *Stack) (result string, err error) {
|
func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
|
||||||
if argsStack.Len() != 1 {
|
if argsList.Len() != 1 {
|
||||||
err = errors.New("SIGN requires 1 numeric arguments")
|
err = errors.New("SIGN requires 1 numeric arguments")
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
var val float64
|
var val float64
|
||||||
val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
|
@ -703,13 +991,13 @@ func (fn *formulaFuncs) SIGN(argsStack *Stack) (result string, err error) {
|
||||||
//
|
//
|
||||||
// SQRT(number)
|
// SQRT(number)
|
||||||
//
|
//
|
||||||
func (fn *formulaFuncs) SQRT(argsStack *Stack) (result string, err error) {
|
func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
|
||||||
if argsStack.Len() != 1 {
|
if argsList.Len() != 1 {
|
||||||
err = errors.New("SQRT requires 1 numeric arguments")
|
err = errors.New("SQRT requires 1 numeric arguments")
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
var val float64
|
var val float64
|
||||||
val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
|
@ -726,11 +1014,11 @@ func (fn *formulaFuncs) SQRT(argsStack *Stack) (result string, err error) {
|
||||||
//
|
//
|
||||||
// SUM(number1,[number2],...)
|
// SUM(number1,[number2],...)
|
||||||
//
|
//
|
||||||
func (fn *formulaFuncs) SUM(argsStack *Stack) (result string, err error) {
|
func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
|
||||||
var val float64
|
var val float64
|
||||||
var sum float64
|
var sum float64
|
||||||
for !argsStack.Empty() {
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
||||||
token := argsStack.Pop().(efp.Token)
|
token := arg.Value.(efp.Token)
|
||||||
if token.TValue == "" {
|
if token.TValue == "" {
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
@ -749,17 +1037,17 @@ func (fn *formulaFuncs) SUM(argsStack *Stack) (result string, err error) {
|
||||||
//
|
//
|
||||||
// QUOTIENT(numerator,denominator)
|
// QUOTIENT(numerator,denominator)
|
||||||
//
|
//
|
||||||
func (fn *formulaFuncs) QUOTIENT(argsStack *Stack) (result string, err error) {
|
func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
|
||||||
if argsStack.Len() != 2 {
|
if argsList.Len() != 2 {
|
||||||
err = errors.New("QUOTIENT requires 2 numeric arguments")
|
err = errors.New("QUOTIENT requires 2 numeric arguments")
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
var x, y float64
|
var x, y float64
|
||||||
y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64)
|
y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
|
|
69
calc_test.go
69
calc_test.go
|
@ -24,6 +24,49 @@ func TestCalcCellValue(t *testing.T) {
|
||||||
"=ABS(6.5)": "6.5",
|
"=ABS(6.5)": "6.5",
|
||||||
"=ABS(0)": "0",
|
"=ABS(0)": "0",
|
||||||
"=ABS(2-4.5)": "2.5",
|
"=ABS(2-4.5)": "2.5",
|
||||||
|
// ACOS
|
||||||
|
"=ACOS(-1)": "3.141592653589793",
|
||||||
|
"=ACOS(0)": "1.5707963267948966",
|
||||||
|
// ACOSH
|
||||||
|
"=ACOSH(1)": "0",
|
||||||
|
"=ACOSH(2.5)": "1.566799236972411",
|
||||||
|
"=ACOSH(5)": "2.2924316695611777",
|
||||||
|
// ACOT
|
||||||
|
"=_xlfn.ACOT(1)": "0.7853981633974483",
|
||||||
|
"=_xlfn.ACOT(-2)": "2.677945044588987",
|
||||||
|
"=_xlfn.ACOT(0)": "1.5707963267948966",
|
||||||
|
// ACOTH
|
||||||
|
"=_xlfn.ACOTH(-5)": "-0.2027325540540822",
|
||||||
|
"=_xlfn.ACOTH(1.1)": "1.5222612188617113",
|
||||||
|
"=_xlfn.ACOTH(2)": "0.5493061443340548",
|
||||||
|
// ARABIC
|
||||||
|
`=_xlfn.ARABIC("IV")`: "4",
|
||||||
|
`=_xlfn.ARABIC("-IV")`: "-4",
|
||||||
|
`=_xlfn.ARABIC("MCXX")`: "1120",
|
||||||
|
`=_xlfn.ARABIC("")`: "0",
|
||||||
|
// ASIN
|
||||||
|
"=ASIN(-1)": "-1.5707963267948966",
|
||||||
|
"=ASIN(0)": "0",
|
||||||
|
// ASINH
|
||||||
|
"=ASINH(0)": "0",
|
||||||
|
"=ASINH(-0.5)": "-0.48121182505960347",
|
||||||
|
"=ASINH(2)": "1.4436354751788103",
|
||||||
|
// ATAN
|
||||||
|
"=ATAN(-1)": "-0.7853981633974483",
|
||||||
|
"=ATAN(0)": "0",
|
||||||
|
"=ATAN(1)": "0.7853981633974483",
|
||||||
|
// ATANH
|
||||||
|
"=ATANH(-0.8)": "-1.0986122886681098",
|
||||||
|
"=ATANH(0)": "0",
|
||||||
|
"=ATANH(0.5)": "0.5493061443340548",
|
||||||
|
// ATAN2
|
||||||
|
"=ATAN2(1,1)": "0.7853981633974483",
|
||||||
|
"=ATAN2(1,-1)": "-0.7853981633974483",
|
||||||
|
"=ATAN2(4,0)": "0",
|
||||||
|
// BASE
|
||||||
|
"=BASE(12,2)": "1100",
|
||||||
|
"=BASE(12,2,8)": "00001100",
|
||||||
|
"=BASE(100000,16)": "186A0",
|
||||||
// GCD
|
// GCD
|
||||||
"=GCD(1,5)": "1",
|
"=GCD(1,5)": "1",
|
||||||
"=GCD(15,10,25)": "5",
|
"=GCD(15,10,25)": "5",
|
||||||
|
@ -74,8 +117,32 @@ func TestCalcCellValue(t *testing.T) {
|
||||||
}
|
}
|
||||||
mathCalcError := map[string]string{
|
mathCalcError := map[string]string{
|
||||||
// ABS
|
// ABS
|
||||||
"=ABS(1,2)": "ABS requires 1 numeric arguments",
|
"=ABS()": "ABS requires 1 numeric arguments",
|
||||||
"=ABS(~)": `cannot convert cell "~" to coordinates: invalid cell name "~"`,
|
"=ABS(~)": `cannot convert cell "~" to coordinates: invalid cell name "~"`,
|
||||||
|
// ACOS
|
||||||
|
"=ACOS()": "ACOS requires 1 numeric arguments",
|
||||||
|
// ACOSH
|
||||||
|
"=ACOSH()": "ACOSH requires 1 numeric arguments",
|
||||||
|
// ACOT
|
||||||
|
"=_xlfn.ACOT()": "ACOT requires 1 numeric arguments",
|
||||||
|
// ACOTH
|
||||||
|
"=_xlfn.ACOTH()": "ACOTH requires 1 numeric arguments",
|
||||||
|
// ARABIC
|
||||||
|
"_xlfn.ARABIC()": "ARABIC requires 1 numeric arguments",
|
||||||
|
// ASIN
|
||||||
|
"=ASIN()": "ASIN requires 1 numeric arguments",
|
||||||
|
// ASINH
|
||||||
|
"=ASINH()": "ASINH requires 1 numeric arguments",
|
||||||
|
// ATAN
|
||||||
|
"=ATAN()": "ATAN requires 1 numeric arguments",
|
||||||
|
// ATANH
|
||||||
|
"=ATANH()": "ATANH requires 1 numeric arguments",
|
||||||
|
// ATAN2
|
||||||
|
"=ATAN2()": "ATAN2 requires 2 numeric arguments",
|
||||||
|
// BASE
|
||||||
|
"=BASE()": "BASE requires at least 2 arguments",
|
||||||
|
"=BASE(1,2,3,4)": "BASE allows at most 3 arguments",
|
||||||
|
"=BASE(1,1)": "radix must be an integer ≥ 2 and ≤ 36",
|
||||||
// GCD
|
// GCD
|
||||||
"=GCD()": "GCD requires at least 1 argument",
|
"=GCD()": "GCD requires at least 1 argument",
|
||||||
"=GCD(-1)": "GCD only accepts positive arguments",
|
"=GCD(-1)": "GCD only accepts positive arguments",
|
||||||
|
|
Loading…
Reference in New Issue