fn: ACOS, ACOSH, ACOT, ACOTH, ARABIC, ASIN, ASINH, ATANH, ATAN2, BASE

This commit is contained in:
xuri 2020-05-04 18:18:05 +08:00
parent bdf0538640
commit 789adf9202
No known key found for this signature in database
GPG Key ID: BA5E5BB1C948EDF7
2 changed files with 394 additions and 39 deletions

362
calc.go
View File

@ -102,11 +102,17 @@ func getPriority(token efp.Token) (pri int) {
// opf - Operation formula // opf - Operation formula
// opfd - Operand of the operation formula // opfd - Operand of the operation formula
// opft - Operator of the operation formula // opft - Operator of the operation formula
//
// Evaluate arguments of the operation formula by list:
//
// args - Arguments of the operation formula // args - Arguments of the operation formula
// //
// TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
//
func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) { func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
var err error var err error
opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack() opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
argsList := list.New()
for i := 0; i < len(tokens); i++ { for i := 0; i < len(tokens); i++ {
token := tokens[i] token := tokens[i]
@ -155,7 +161,7 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
return efp.Token{TValue: formulaErrorNAME}, err return efp.Token{TValue: formulaErrorNAME}, err
} }
for _, val := range result { for _, val := range result {
argsStack.Push(efp.Token{ argsList.PushBack(efp.Token{
TType: efp.TokenTypeOperand, TType: efp.TokenTypeOperand,
TSubType: efp.TokenSubTypeNumber, TSubType: efp.TokenSubTypeNumber,
TValue: val, TValue: val,
@ -184,11 +190,20 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
opftStack.Pop() opftStack.Pop()
} }
if !opfdStack.Empty() { if !opfdStack.Empty() {
argsStack.Push(opfdStack.Pop()) argsList.PushBack(opfdStack.Pop())
} }
continue continue
} }
// current token is logical
if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
}
// current token is text
if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
argsList.PushBack(token)
}
// current token is function stop // current token is function stop
if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop { if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
for !opftStack.Empty() { for !opftStack.Empty() {
@ -202,13 +217,14 @@ func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error)
// push opfd to args // push opfd to args
if opfdStack.Len() > 0 { if opfdStack.Len() > 0 {
argsStack.Push(opfdStack.Pop()) argsList.PushBack(opfdStack.Pop())
} }
// call formula function to evaluate // call formula function to evaluate
result, err := callFuncByName(&formulaFuncs{}, opfStack.Peek().(efp.Token).TValue, []reflect.Value{reflect.ValueOf(argsStack)}) result, err := callFuncByName(&formulaFuncs{}, strings.ReplaceAll(opfStack.Peek().(efp.Token).TValue, "_xlfn.", ""), []reflect.Value{reflect.ValueOf(argsList)})
if err != nil { if err != nil {
return efp.Token{}, err return efp.Token{}, err
} }
argsList.Init()
opfStack.Pop() opfStack.Pop()
if opfStack.Len() > 0 { // still in function stack if opfStack.Len() > 0 { // still in function stack
opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
@ -480,13 +496,13 @@ func callFuncByName(receiver interface{}, name string, params []reflect.Value) (
// //
// ABS(number) // ABS(number)
// //
func (fn *formulaFuncs) ABS(argsStack *Stack) (result string, err error) { func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
if argsStack.Len() != 1 { if argsList.Len() != 1 {
err = errors.New("ABS requires 1 numeric arguments") err = errors.New("ABS requires 1 numeric arguments")
return return
} }
var val float64 var val float64
val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil { if err != nil {
return return
} }
@ -494,6 +510,236 @@ func (fn *formulaFuncs) ABS(argsStack *Stack) (result string, err error) {
return return
} }
// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
// number, and returns an angle, in radians, between 0 and π. The syntax of
// the function is:
//
// ACOS(number)
//
func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ACOS requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Acos(val))
return
}
// ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
// of the function is:
//
// ACOSH(number)
//
func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ACOSH requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Acosh(val))
return
}
// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
// given number, and returns an angle, in radians, between 0 and π. The syntax
// of the function is:
//
// ACOT(number)
//
func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ACOT requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
return
}
// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
// value. The syntax of the function is:
//
// ACOTH(number)
//
func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ACOTH requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Atanh(1/val))
return
}
// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
// of the function is:
//
// ARABIC(text)
//
func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ARABIC requires 1 numeric arguments")
return
}
val, last, prefix := 0.0, 0.0, 1.0
for _, char := range argsList.Front().Value.(efp.Token).TValue {
digit := 0.0
switch char {
case '-':
prefix = -1
continue
case 'I':
digit = 1
case 'V':
digit = 5
case 'X':
digit = 10
case 'L':
digit = 50
case 'C':
digit = 100
case 'D':
digit = 500
case 'M':
digit = 1000
}
val += digit
switch {
case last == digit && (last == 5 || last == 50 || last == 500):
result = formulaErrorVALUE
return
case 2*last == digit:
result = formulaErrorVALUE
return
}
if last < digit {
val -= 2 * last
}
last = digit
}
result = fmt.Sprintf("%g", prefix*val)
return
}
// ASIN function calculates the arcsine (i.e. the inverse sine) of a given
// number, and returns an angle, in radians, between -π/2 and π/2. The syntax
// of the function is:
//
// ASIN(number)
//
func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ASIN requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Asin(val))
return
}
// ASINH function calculates the inverse hyperbolic sine of a supplied number.
// The syntax of the function is:
//
// ASINH(number)
//
func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ASINH requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Asinh(val))
return
}
// ATAN function calculates the arctangent (i.e. the inverse tangent) of a
// given number, and returns an angle, in radians, between -π/2 and +π/2. The
// syntax of the function is:
//
// ATAN(number)
//
func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ATAN requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Atan(val))
return
}
// ATANH function calculates the inverse hyperbolic tangent of a supplied
// number. The syntax of the function is:
//
// ATANH(number)
//
func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ATANH requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Atanh(val))
return
}
// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
// given set of x and y coordinates, and returns an angle, in radians, between
// -π/2 and +π/2. The syntax of the function is:
//
// ATAN2(x_num,y_num)
//
func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
if argsList.Len() != 2 {
err = errors.New("ATAN2 requires 2 numeric arguments")
return
}
var x, y float64
x, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
y, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Atan2(x, y))
return
}
// gcd returns the greatest common divisor of two supplied integers. // gcd returns the greatest common divisor of two supplied integers.
func gcd(x, y float64) float64 { func gcd(x, y float64) float64 {
x, y = math.Trunc(x), math.Trunc(y) x, y = math.Trunc(x), math.Trunc(y)
@ -513,13 +759,55 @@ func gcd(x, y float64) float64 {
return x return x
} }
// BASE function converts a number into a supplied base (radix), and returns a
// text representation of the calculated value. The syntax of the function is:
//
// BASE(number,radix,[min_length])
//
func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
if argsList.Len() < 2 {
err = errors.New("BASE requires at least 2 arguments")
return
}
if argsList.Len() > 3 {
err = errors.New("BASE allows at most 3 arguments")
return
}
var number float64
var radix, minLength int
number, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
radix, err = strconv.Atoi(argsList.Front().Next().Value.(efp.Token).TValue)
if err != nil {
return
}
if radix < 2 || radix > 36 {
err = errors.New("radix must be an integer ≥ 2 and ≤ 36")
return
}
if argsList.Len() > 2 {
minLength, err = strconv.Atoi(argsList.Back().Value.(efp.Token).TValue)
if err != nil {
return
}
}
result = strconv.FormatInt(int64(number), radix)
if len(result) < minLength {
result = strings.Repeat("0", minLength-len(result)) + result
}
result = strings.ToUpper(result)
return
}
// GCD function returns the greatest common divisor of two or more supplied // GCD function returns the greatest common divisor of two or more supplied
// integers.The syntax of the function is: // integers. The syntax of the function is:
// //
// GCD(number1,[number2],...) // GCD(number1,[number2],...)
// //
func (fn *formulaFuncs) GCD(argsStack *Stack) (result string, err error) { func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
if argsStack.Len() == 0 { if argsList.Len() == 0 {
err = errors.New("GCD requires at least 1 argument") err = errors.New("GCD requires at least 1 argument")
return return
} }
@ -527,8 +815,8 @@ func (fn *formulaFuncs) GCD(argsStack *Stack) (result string, err error) {
val float64 val float64
nums = []float64{} nums = []float64{}
) )
for !argsStack.Empty() { for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := argsStack.Pop().(efp.Token) token := arg.Value.(efp.Token)
if token.TValue == "" { if token.TValue == "" {
continue continue
} }
@ -573,8 +861,8 @@ func lcm(a, b float64) float64 {
// //
// LCM(number1,[number2],...) // LCM(number1,[number2],...)
// //
func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) { func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
if argsStack.Len() == 0 { if argsList.Len() == 0 {
err = errors.New("LCM requires at least 1 argument") err = errors.New("LCM requires at least 1 argument")
return return
} }
@ -582,8 +870,8 @@ func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) {
val float64 val float64
nums = []float64{} nums = []float64{}
) )
for !argsStack.Empty() { for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := argsStack.Pop().(efp.Token) token := arg.Value.(efp.Token)
if token.TValue == "" { if token.TValue == "" {
continue continue
} }
@ -618,17 +906,17 @@ func (fn *formulaFuncs) LCM(argsStack *Stack) (result string, err error) {
// //
// POWER(number,power) // POWER(number,power)
// //
func (fn *formulaFuncs) POWER(argsStack *Stack) (result string, err error) { func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
if argsStack.Len() != 2 { if argsList.Len() != 2 {
err = errors.New("POWER requires 2 numeric arguments") err = errors.New("POWER requires 2 numeric arguments")
return return
} }
var x, y float64 var x, y float64
y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil { if err != nil {
return return
} }
x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
if err != nil { if err != nil {
return return
} }
@ -649,13 +937,13 @@ func (fn *formulaFuncs) POWER(argsStack *Stack) (result string, err error) {
// //
// PRODUCT(number1,[number2],...) // PRODUCT(number1,[number2],...)
// //
func (fn *formulaFuncs) PRODUCT(argsStack *Stack) (result string, err error) { func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
var ( var (
val float64 val float64
product float64 = 1 product float64 = 1
) )
for !argsStack.Empty() { for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := argsStack.Pop().(efp.Token) token := arg.Value.(efp.Token)
if token.TValue == "" { if token.TValue == "" {
continue continue
} }
@ -676,13 +964,13 @@ func (fn *formulaFuncs) PRODUCT(argsStack *Stack) (result string, err error) {
// //
// SIGN(number) // SIGN(number)
// //
func (fn *formulaFuncs) SIGN(argsStack *Stack) (result string, err error) { func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
if argsStack.Len() != 1 { if argsList.Len() != 1 {
err = errors.New("SIGN requires 1 numeric arguments") err = errors.New("SIGN requires 1 numeric arguments")
return return
} }
var val float64 var val float64
val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil { if err != nil {
return return
} }
@ -703,13 +991,13 @@ func (fn *formulaFuncs) SIGN(argsStack *Stack) (result string, err error) {
// //
// SQRT(number) // SQRT(number)
// //
func (fn *formulaFuncs) SQRT(argsStack *Stack) (result string, err error) { func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
if argsStack.Len() != 1 { if argsList.Len() != 1 {
err = errors.New("SQRT requires 1 numeric arguments") err = errors.New("SQRT requires 1 numeric arguments")
return return
} }
var val float64 var val float64
val, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil { if err != nil {
return return
} }
@ -726,11 +1014,11 @@ func (fn *formulaFuncs) SQRT(argsStack *Stack) (result string, err error) {
// //
// SUM(number1,[number2],...) // SUM(number1,[number2],...)
// //
func (fn *formulaFuncs) SUM(argsStack *Stack) (result string, err error) { func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
var val float64 var val float64
var sum float64 var sum float64
for !argsStack.Empty() { for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := argsStack.Pop().(efp.Token) token := arg.Value.(efp.Token)
if token.TValue == "" { if token.TValue == "" {
continue continue
} }
@ -749,17 +1037,17 @@ func (fn *formulaFuncs) SUM(argsStack *Stack) (result string, err error) {
// //
// QUOTIENT(numerator,denominator) // QUOTIENT(numerator,denominator)
// //
func (fn *formulaFuncs) QUOTIENT(argsStack *Stack) (result string, err error) { func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
if argsStack.Len() != 2 { if argsList.Len() != 2 {
err = errors.New("QUOTIENT requires 2 numeric arguments") err = errors.New("QUOTIENT requires 2 numeric arguments")
return return
} }
var x, y float64 var x, y float64
y, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil { if err != nil {
return return
} }
x, err = strconv.ParseFloat(argsStack.Pop().(efp.Token).TValue, 64) y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
if err != nil { if err != nil {
return return
} }

View File

@ -24,6 +24,49 @@ func TestCalcCellValue(t *testing.T) {
"=ABS(6.5)": "6.5", "=ABS(6.5)": "6.5",
"=ABS(0)": "0", "=ABS(0)": "0",
"=ABS(2-4.5)": "2.5", "=ABS(2-4.5)": "2.5",
// ACOS
"=ACOS(-1)": "3.141592653589793",
"=ACOS(0)": "1.5707963267948966",
// ACOSH
"=ACOSH(1)": "0",
"=ACOSH(2.5)": "1.566799236972411",
"=ACOSH(5)": "2.2924316695611777",
// ACOT
"=_xlfn.ACOT(1)": "0.7853981633974483",
"=_xlfn.ACOT(-2)": "2.677945044588987",
"=_xlfn.ACOT(0)": "1.5707963267948966",
// ACOTH
"=_xlfn.ACOTH(-5)": "-0.2027325540540822",
"=_xlfn.ACOTH(1.1)": "1.5222612188617113",
"=_xlfn.ACOTH(2)": "0.5493061443340548",
// ARABIC
`=_xlfn.ARABIC("IV")`: "4",
`=_xlfn.ARABIC("-IV")`: "-4",
`=_xlfn.ARABIC("MCXX")`: "1120",
`=_xlfn.ARABIC("")`: "0",
// ASIN
"=ASIN(-1)": "-1.5707963267948966",
"=ASIN(0)": "0",
// ASINH
"=ASINH(0)": "0",
"=ASINH(-0.5)": "-0.48121182505960347",
"=ASINH(2)": "1.4436354751788103",
// ATAN
"=ATAN(-1)": "-0.7853981633974483",
"=ATAN(0)": "0",
"=ATAN(1)": "0.7853981633974483",
// ATANH
"=ATANH(-0.8)": "-1.0986122886681098",
"=ATANH(0)": "0",
"=ATANH(0.5)": "0.5493061443340548",
// ATAN2
"=ATAN2(1,1)": "0.7853981633974483",
"=ATAN2(1,-1)": "-0.7853981633974483",
"=ATAN2(4,0)": "0",
// BASE
"=BASE(12,2)": "1100",
"=BASE(12,2,8)": "00001100",
"=BASE(100000,16)": "186A0",
// GCD // GCD
"=GCD(1,5)": "1", "=GCD(1,5)": "1",
"=GCD(15,10,25)": "5", "=GCD(15,10,25)": "5",
@ -74,8 +117,32 @@ func TestCalcCellValue(t *testing.T) {
} }
mathCalcError := map[string]string{ mathCalcError := map[string]string{
// ABS // ABS
"=ABS(1,2)": "ABS requires 1 numeric arguments", "=ABS()": "ABS requires 1 numeric arguments",
"=ABS(~)": `cannot convert cell "~" to coordinates: invalid cell name "~"`, "=ABS(~)": `cannot convert cell "~" to coordinates: invalid cell name "~"`,
// ACOS
"=ACOS()": "ACOS requires 1 numeric arguments",
// ACOSH
"=ACOSH()": "ACOSH requires 1 numeric arguments",
// ACOT
"=_xlfn.ACOT()": "ACOT requires 1 numeric arguments",
// ACOTH
"=_xlfn.ACOTH()": "ACOTH requires 1 numeric arguments",
// ARABIC
"_xlfn.ARABIC()": "ARABIC requires 1 numeric arguments",
// ASIN
"=ASIN()": "ASIN requires 1 numeric arguments",
// ASINH
"=ASINH()": "ASINH requires 1 numeric arguments",
// ATAN
"=ATAN()": "ATAN requires 1 numeric arguments",
// ATANH
"=ATANH()": "ATANH requires 1 numeric arguments",
// ATAN2
"=ATAN2()": "ATAN2 requires 2 numeric arguments",
// BASE
"=BASE()": "BASE requires at least 2 arguments",
"=BASE(1,2,3,4)": "BASE allows at most 3 arguments",
"=BASE(1,1)": "radix must be an integer ≥ 2 and ≤ 36",
// GCD // GCD
"=GCD()": "GCD requires at least 1 argument", "=GCD()": "GCD requires at least 1 argument",
"=GCD(-1)": "GCD only accepts positive arguments", "=GCD(-1)": "GCD only accepts positive arguments",