Support encrypt workbook with password #199 (#1324)

This commit is contained in:
Sangua633 2022-08-20 15:51:03 +08:00 committed by GitHub
parent 76f336809f
commit cfa2d603dd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 312 additions and 571 deletions

878
crypt.go
View File

@ -25,7 +25,9 @@ import (
"encoding/xml"
"hash"
"math"
"path/filepath"
"reflect"
"sort"
"strings"
"github.com/richardlehane/mscfb"
@ -37,6 +39,10 @@ import (
var (
blockKey = []byte{0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, 0xd6} // Block keys used for encryption
oleIdentifier = []byte{0xd0, 0xcf, 0x11, 0xe0, 0xa1, 0xb1, 0x1a, 0xe1}
headerCLSID = make([]byte, 16)
difSect = -4
endOfChain = -2
fatSect = -3
iterCount = 50000
packageEncryptionChunkSize = 4096
packageOffset = 8 // First 8 bytes are the size of the stream
@ -150,7 +156,7 @@ func Decrypt(raw []byte, opt *Options) (packageBuf []byte, err error) {
}
// Encrypt API encrypt data with the password.
func Encrypt(raw []byte, opt *Options) (packageBuf []byte, err error) {
func Encrypt(raw []byte, opt *Options) ([]byte, error) {
encryptor := encryption{
EncryptedVerifierHashInput: make([]byte, 16),
EncryptedVerifierHashValue: make([]byte, 32),
@ -169,9 +175,13 @@ func Encrypt(raw []byte, opt *Options) (packageBuf []byte, err error) {
binary.LittleEndian.PutUint64(encryptedPackage, uint64(len(raw)))
encryptedPackage = append(encryptedPackage, encryptor.encrypt(raw)...)
// Create a new CFB
compoundFile := cfb{}
packageBuf = compoundFile.Writer(encryptionInfoBuffer, encryptedPackage)
return packageBuf, nil
compoundFile := &cfb{
paths: []string{"Root Entry/"},
sectors: []sector{{name: "Root Entry", typeID: 5}},
}
compoundFile.put("EncryptionInfo", encryptionInfoBuffer)
compoundFile.put("EncryptedPackage", encryptedPackage)
return compoundFile.write(), nil
}
// extractPart extract data from storage by specified part name.
@ -618,6 +628,15 @@ func genISOPasswdHash(passwd, hashAlgorithm, salt string, spinCount int) (hashVa
type cfb struct {
stream []byte
position int
paths []string
sectors []sector
}
// sector structure used for FAT, directory, miniFAT, and miniStream sectors.
type sector struct {
clsID, content []byte
name string
C, L, R, color, size, start, state, typeID int
}
// writeBytes write bytes in the stream by a given value with an offset.
@ -666,415 +685,156 @@ func (c *cfb) writeStrings(value string) {
c.writeBytes(buffer)
}
// writeVersionStream provides a function to write compound file version
// stream.
func (c *cfb) writeVersionStream() []byte {
var storage cfb
storage.writeUint32(0x3c)
storage.writeStrings("Microsoft.Container.DataSpaces")
storage.writeUint32(0x01)
storage.writeUint32(0x01)
storage.writeUint32(0x01)
return storage.stream
// put provides a function to add an entry to compound file by given entry name
// and raw bytes.
func (c *cfb) put(name string, content []byte) {
path := c.paths[0]
if len(path) <= len(name) && name[:len(path)] == path {
path = name
} else {
if len(path) > 0 && string(path[len(path)-1]) != "/" {
path += "/"
}
path = strings.ReplaceAll(path+name, "//", "/")
}
file := sector{name: path, typeID: 2, content: content, size: len(content)}
c.sectors = append(c.sectors, file)
c.paths = append(c.paths, path)
}
// writeDataSpaceMapStream provides a function to write compound file
// DataSpaceMap stream.
func (c *cfb) writeDataSpaceMapStream() []byte {
var storage cfb
storage.writeUint32(0x08)
storage.writeUint32(0x01)
storage.writeUint32(0x68)
storage.writeUint32(0x01)
storage.writeUint32(0x00)
storage.writeUint32(0x20)
storage.writeStrings("EncryptedPackage")
storage.writeUint32(0x32)
storage.writeStrings("StrongEncryptionDataSpace")
storage.writeUint16(0x00)
return storage.stream
}
// writeStrongEncryptionDataSpaceStream provides a function to write compound
// file StrongEncryptionDataSpace stream.
func (c *cfb) writeStrongEncryptionDataSpaceStream() []byte {
var storage cfb
storage.writeUint32(0x08)
storage.writeUint32(0x01)
storage.writeUint32(0x32)
storage.writeStrings("StrongEncryptionTransform")
storage.writeUint16(0x00)
return storage.stream
}
// writePrimaryStream provides a function to write compound file Primary
// stream.
func (c *cfb) writePrimaryStream() []byte {
var storage cfb
storage.writeUint32(0x6C)
storage.writeUint32(0x01)
storage.writeUint32(0x4C)
storage.writeStrings("{FF9A3F03-56EF-4613-BDD5-5A41C1D07246}")
storage.writeUint32(0x4E)
storage.writeUint16(0x00)
storage.writeUint32(0x01)
storage.writeUint32(0x01)
storage.writeUint32(0x01)
storage.writeStrings("AES128")
storage.writeUint32(0x00)
storage.writeUint32(0x04)
return storage.stream
}
// writeFileStream provides a function to write encrypted package in compound
// file by a given buffer and the short sector allocation table.
func (c *cfb) writeFileStream(encryptionInfoBuffer []byte, SSAT []int) ([]byte, []int) {
var (
storage cfb
miniProperties int
stream = make([]byte, 0x100)
)
if encryptionInfoBuffer != nil {
copy(stream, encryptionInfoBuffer)
}
storage.writeBytes(stream)
streamBlocks := len(stream) / 64
if len(stream)%64 > 0 {
streamBlocks++
}
for i := 1; i < streamBlocks; i++ {
SSAT = append(SSAT, i)
}
SSAT = append(SSAT, -2)
miniProperties += streamBlocks
versionStream := make([]byte, 0x80)
version := c.writeVersionStream()
copy(versionStream, version)
storage.writeBytes(versionStream)
versionBlocks := len(versionStream) / 64
if len(versionStream)%64 > 0 {
versionBlocks++
}
for i := 1; i < versionBlocks; i++ {
SSAT = append(SSAT, i+miniProperties)
}
SSAT = append(SSAT, -2)
miniProperties += versionBlocks
dataSpaceMap := make([]byte, 0x80)
dataStream := c.writeDataSpaceMapStream()
copy(dataSpaceMap, dataStream)
storage.writeBytes(dataSpaceMap)
dataSpaceMapBlocks := len(dataSpaceMap) / 64
if len(dataSpaceMap)%64 > 0 {
dataSpaceMapBlocks++
}
for i := 1; i < dataSpaceMapBlocks; i++ {
SSAT = append(SSAT, i+miniProperties)
}
SSAT = append(SSAT, -2)
miniProperties += dataSpaceMapBlocks
dataSpaceStream := c.writeStrongEncryptionDataSpaceStream()
storage.writeBytes(dataSpaceStream)
dataSpaceStreamBlocks := len(dataSpaceStream) / 64
if len(dataSpaceStream)%64 > 0 {
dataSpaceStreamBlocks++
}
for i := 1; i < dataSpaceStreamBlocks; i++ {
SSAT = append(SSAT, i+miniProperties)
}
SSAT = append(SSAT, -2)
miniProperties += dataSpaceStreamBlocks
primaryStream := make([]byte, 0x1C0)
primary := c.writePrimaryStream()
copy(primaryStream, primary)
storage.writeBytes(primaryStream)
primaryBlocks := len(primary) / 64
if len(primary)%64 > 0 {
primaryBlocks++
}
for i := 1; i < primaryBlocks; i++ {
SSAT = append(SSAT, i+miniProperties)
}
SSAT = append(SSAT, -2)
if len(SSAT) < 128 {
for i := len(SSAT); i < 128; i++ {
SSAT = append(SSAT, -1)
// compare provides a function to compare object path, each set of sibling
// objects in one level of the containment hierarchy (all child objects under
// a storage object) is represented as a red-black tree. The parent object of
// this set of siblings will have a pointer to the top of this tree.
func (c *cfb) compare(left, right string) int {
L, R, i, j := strings.Split(left, "/"), strings.Split(right, "/"), 0, 0
for Z := int(math.Min(float64(len(L)), float64(len(R)))); i < Z; i++ {
if j = len(L[i]) - len(R[i]); j != 0 {
return j
}
if L[i] != R[i] {
if L[i] < R[i] {
return -1
}
return 1
}
}
storage.position = 0
return storage.stream, SSAT
return len(L) - len(R)
}
// writeRootEntry provides a function to write compound file root directory
// entry. The first entry in the first sector of the directory chain
// (also referred to as the first element of the directory array, or stream
// ID #0) is known as the root directory entry, and it is reserved for two
// purposes. First, it provides a root parent for all objects that are
// stationed at the root of the compound file. Second, its function is
// overloaded to store the size and starting sector for the mini stream.
func (c *cfb) writeRootEntry(customSectID int) []byte {
storage := cfb{stream: make([]byte, 128)}
storage.writeStrings("Root Entry")
storage.position = 0x40
storage.writeUint16(0x16)
storage.writeBytes([]byte{5, 0})
storage.writeUint32(-1)
storage.writeUint32(-1)
storage.writeUint32(1)
storage.position = 0x64
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(customSectID)
storage.writeUint32(0x340)
return storage.stream
// prepare provides a function to prepare object before write stream.
func (c *cfb) prepare() {
type object struct {
path string
sector sector
}
var objects []object
for i := 0; i < len(c.paths); i++ {
if c.sectors[i].typeID == 0 {
continue
}
objects = append(objects, object{path: c.paths[i], sector: c.sectors[i]})
}
sort.Slice(objects, func(i, j int) bool {
return c.compare(objects[i].path, objects[j].path) == 0
})
c.paths, c.sectors = []string{}, []sector{}
for i := 0; i < len(objects); i++ {
c.paths = append(c.paths, objects[i].path)
c.sectors = append(c.sectors, objects[i].sector)
}
for i := 0; i < len(objects); i++ {
sector, path := &c.sectors[i], c.paths[i]
sector.name, sector.color = filepath.Base(path), 1
sector.L, sector.R, sector.C = -1, -1, -1
sector.size, sector.start = len(sector.content), 0
if len(sector.clsID) == 0 {
sector.clsID = headerCLSID
}
if i == 0 {
sector.C = -1
if len(objects) > 1 {
sector.C = 1
}
sector.size, sector.typeID = 0, 5
} else {
if len(c.paths) > i+1 && filepath.Dir(c.paths[i+1]) == filepath.Dir(path) {
sector.R = i + 1
}
sector.typeID = 2
}
}
}
// writeEncryptionInfo provides a function to write compound file
// writeEncryptionInfo stream. The writeEncryptionInfo stream contains
// detailed information that is used to initialize the cryptography used to
// encrypt the EncryptedPackage stream.
func (c *cfb) writeEncryptionInfo() []byte {
storage := cfb{stream: make([]byte, 128)}
storage.writeStrings("EncryptionInfo")
storage.position = 0x40
storage.writeUint16(0x1E)
storage.writeBytes([]byte{2, 1})
storage.writeUint32(0x03)
storage.writeUint32(0x02)
storage.writeUint32(-1)
storage.position = 0x64
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0xF8)
return storage.stream
// locate provides a function to locate sectors location and size of the
// compound file.
func (c *cfb) locate() []int {
var miniStreamSectorSize, FATSectorSize int
for i := 0; i < len(c.sectors); i++ {
sector := c.sectors[i]
if len(sector.content) == 0 {
continue
}
size := len(sector.content)
if size > 0 {
if size < 0x1000 {
miniStreamSectorSize += (size + 0x3F) >> 6
} else {
FATSectorSize += (size + 0x01FF) >> 9
}
}
}
directorySectors := (len(c.paths) + 3) >> 2
miniStreamSectors := (miniStreamSectorSize + 7) >> 3
miniFATSectors := (miniStreamSectorSize + 0x7F) >> 7
sectors := miniStreamSectors + FATSectorSize + directorySectors + miniFATSectors
FATSectors := (sectors + 0x7F) >> 7
DIFATSectors := 0
if FATSectors > 109 {
DIFATSectors = int(math.Ceil((float64(FATSectors) - 109) / 0x7F))
}
for ((sectors + FATSectors + DIFATSectors + 0x7F) >> 7) > FATSectors {
FATSectors++
if FATSectors <= 109 {
DIFATSectors = 0
} else {
DIFATSectors = int(math.Ceil((float64(FATSectors) - 109) / 0x7F))
}
}
location := []int{1, DIFATSectors, FATSectors, miniFATSectors, directorySectors, FATSectorSize, miniStreamSectorSize, 0}
c.sectors[0].size = miniStreamSectorSize << 6
c.sectors[0].start = location[0] + location[1] + location[2] + location[3] + location[4] + location[5]
location[7] = c.sectors[0].start + ((location[6] + 7) >> 3)
return location
}
// writeEncryptedPackage provides a function to write compound file
// writeEncryptedPackage stream. The writeEncryptedPackage stream is an
// encrypted stream of bytes containing the entire ECMA-376 source file in
// compressed form.
func (c *cfb) writeEncryptedPackage(propertyCount, size int) []byte {
storage := cfb{stream: make([]byte, 128)}
storage.writeStrings("EncryptedPackage")
storage.position = 0x40
storage.writeUint16(0x22)
storage.writeBytes([]byte{2, 0})
storage.writeUint32(-1)
storage.writeUint32(-1)
storage.writeUint32(-1)
storage.position = 0x64
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(propertyCount)
storage.writeUint32(size)
return storage.stream
}
// writeDataSpaces provides a function to write compound file writeDataSpaces
// stream. The data spaces structure consists of a set of interrelated
// storages and streams in an OLE compound file.
func (c *cfb) writeDataSpaces() []byte {
storage := cfb{stream: make([]byte, 128)}
storage.writeUint16(0x06)
storage.position = 0x40
storage.writeUint16(0x18)
storage.writeBytes([]byte{1, 0})
storage.writeUint32(-1)
storage.writeUint32(-1)
storage.writeUint32(5)
storage.position = 0x64
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
return storage.stream
}
// writeVersion provides a function to write compound file version. The
// writeVersion structure specifies the version of a product or feature. It
// contains a major and a minor version number.
func (c *cfb) writeVersion() []byte {
storage := cfb{stream: make([]byte, 128)}
storage.writeStrings("Version")
storage.position = 0x40
storage.writeUint16(0x10)
storage.writeBytes([]byte{2, 1})
storage.writeUint32(-1)
storage.writeUint32(-1)
storage.writeUint32(-1)
storage.position = 0x64
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(4)
storage.writeUint32(76)
return storage.stream
}
// writeDataSpaceMap provides a function to write compound file
// writeDataSpaceMap stream. The writeDataSpaceMap structure associates
// protected content with data space definitions. The data space definition,
// in turn, describes the series of transforms that MUST be applied to that
// protected content to restore it to its original form. By using a map to
// associate data space definitions with content, a single data space
// definition can be used to define the transforms applied to more than one
// piece of protected content. However, a given piece of protected content can
// be referenced only by a single data space definition.
func (c *cfb) writeDataSpaceMap() []byte {
storage := cfb{stream: make([]byte, 128)}
storage.writeStrings("DataSpaceMap")
storage.position = 0x40
storage.writeUint16(0x1A)
storage.writeBytes([]byte{2, 1})
storage.writeUint32(0x04)
storage.writeUint32(0x06)
storage.writeUint32(-1)
storage.position = 0x64
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(6)
storage.writeUint32(112)
return storage.stream
}
// writeDataSpaceInfo provides a function to write compound file
// writeDataSpaceInfo storage. The writeDataSpaceInfo is a storage containing
// the data space definitions used in the file. This storage must contain one
// or more streams, each of which contains a DataSpaceDefinition structure.
// The storage must contain exactly one stream for each DataSpaceMapEntry
// structure in the DataSpaceMap stream. The name of each stream must be equal
// to the DataSpaceName field of exactly one DataSpaceMapEntry structure
// contained in the DataSpaceMap stream.
func (c *cfb) writeDataSpaceInfo() []byte {
storage := cfb{stream: make([]byte, 128)}
storage.writeStrings("DataSpaceInfo")
storage.position = 0x40
storage.writeUint16(0x1C)
storage.writeBytes([]byte{1, 1})
storage.writeUint32(-1)
storage.writeUint32(8)
storage.writeUint32(7)
storage.position = 0x64
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
return storage.stream
}
// writeStrongEncryptionDataSpace provides a function to write compound file
// writeStrongEncryptionDataSpace stream.
func (c *cfb) writeStrongEncryptionDataSpace() []byte {
storage := cfb{stream: make([]byte, 128)}
storage.writeStrings("StrongEncryptionDataSpace")
storage.position = 0x40
storage.writeUint16(0x34)
storage.writeBytes([]byte{2, 1})
storage.writeUint32(-1)
storage.writeUint32(-1)
storage.writeUint32(-1)
storage.position = 0x64
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(8)
storage.writeUint32(64)
return storage.stream
}
// writeTransformInfo provides a function to write compound file
// writeTransformInfo storage. writeTransformInfo is a storage containing
// definitions for the transforms used in the data space definitions stored in
// the DataSpaceInfo storage. The stream contains zero or more definitions for
// the possible transforms that can be applied to the data in content
// streams.
func (c *cfb) writeTransformInfo() []byte {
storage := cfb{stream: make([]byte, 128)}
storage.writeStrings("TransformInfo")
storage.position = 0x40
storage.writeUint16(0x1C)
storage.writeBytes([]byte{1, 0})
storage.writeUint32(-1)
storage.writeUint32(-1)
storage.writeUint32(9)
storage.position = 0x64
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
return storage.stream
}
// writeStrongEncryptionTransform provides a function to write compound file
// writeStrongEncryptionTransform storage.
func (c *cfb) writeStrongEncryptionTransform() []byte {
storage := cfb{stream: make([]byte, 128)}
storage.writeStrings("StrongEncryptionTransform")
storage.position = 0x40
storage.writeUint16(0x34)
storage.writeBytes([]byte{1})
storage.writeBytes([]byte{1})
storage.writeUint32(-1)
storage.writeUint32(-1)
storage.writeUint32(0x0A)
storage.position = 0x64
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
return storage.stream
}
// writePrimary provides a function to write compound file writePrimary stream.
func (c *cfb) writePrimary() []byte {
storage := cfb{stream: make([]byte, 128)}
storage.writeUint16(0x06)
storage.writeStrings("Primary")
storage.position = 0x40
storage.writeUint16(0x12)
storage.writeBytes([]byte{2, 1})
storage.writeUint32(-1)
storage.writeUint32(-1)
storage.writeUint32(-1)
storage.position = 0x64
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(9)
storage.writeUint32(208)
return storage.stream
}
// writeNoneDir provides a function to write compound file writeNoneDir stream.
func (c *cfb) writeNoneDir() []byte {
storage := cfb{stream: make([]byte, 128)}
storage.position = 0x40
storage.writeUint16(0x00)
storage.writeUint16(0x00)
storage.writeUint32(-1)
storage.writeUint32(-1)
storage.writeUint32(-1)
return storage.stream
// writeMSAT provides a function to write compound file master sector allocation
// table.
func (c *cfb) writeMSAT(location []int) {
var i, offset int
for i = 0; i < 109; i++ {
if i < location[2] {
c.writeUint32(location[1] + i)
} else {
c.writeUint32(-1)
}
}
if location[1] != 0 {
for offset = 0; offset < location[1]; offset++ {
for ; i < 236+offset*127; i++ {
if i < location[2] {
c.writeUint32(location[1] + i)
} else {
c.writeUint32(-1)
}
}
if offset == location[1]-1 {
c.writeUint32(endOfChain)
} else {
c.writeUint32(offset + 1)
}
}
}
}
// writeDirectoryEntry provides a function to write compound file directory
@ -1083,189 +843,175 @@ func (c *cfb) writeNoneDir() []byte {
// within a compound file is represented by a single directory entry. The
// space for the directory sectors that are holding the array is allocated
// from the FAT.
func (c *cfb) writeDirectoryEntry(propertyCount, customSectID, size int) []byte {
var storage cfb
if size < 0 {
size = 0
}
for _, entry := range [][]byte{
c.writeRootEntry(customSectID),
c.writeEncryptionInfo(),
c.writeEncryptedPackage(propertyCount, size),
c.writeDataSpaces(),
c.writeVersion(),
c.writeDataSpaceMap(),
c.writeDataSpaceInfo(),
c.writeStrongEncryptionDataSpace(),
c.writeTransformInfo(),
c.writeStrongEncryptionTransform(),
c.writePrimary(),
c.writeNoneDir(),
} {
storage.writeBytes(entry)
}
return storage.stream
}
// writeMSAT provides a function to write compound file master sector allocation
// table.
func (c *cfb) writeMSAT(MSATBlocks, SATBlocks int, MSAT []int) []int {
if MSATBlocks > 0 {
cnt, MSATIdx := MSATBlocks*128+109, 0
for i := 0; i < cnt; i++ {
if i < SATBlocks {
bufferSize := i - 109
if bufferSize > 0 && bufferSize%0x80 == 0 {
MSATIdx++
MSAT = append(MSAT, MSATIdx)
}
MSAT = append(MSAT, i+MSATBlocks)
continue
}
MSAT = append(MSAT, -1)
func (c *cfb) writeDirectoryEntry(location []int) {
var sector sector
var j, sectorSize int
for i := 0; i < location[4]<<2; i++ {
var path string
if i < len(c.paths) {
path = c.paths[i]
}
return MSAT
}
for i := 0; i < 109; i++ {
if i < SATBlocks {
MSAT = append(MSAT, i)
if i >= len(c.paths) || len(path) == 0 {
for j = 0; j < 17; j++ {
c.writeUint32(0)
}
for j = 0; j < 3; j++ {
c.writeUint32(-1)
}
for j = 0; j < 12; j++ {
c.writeUint32(0)
}
continue
}
MSAT = append(MSAT, -1)
sector = c.sectors[i]
if i == 0 {
if sector.size > 0 {
sector.start = sector.start - 1
} else {
sector.start = endOfChain
}
}
name := sector.name
sectorSize = 2 * (len(name) + 1)
c.writeStrings(name)
c.position += 64 - 2*(len(name))
c.writeUint16(sectorSize)
c.writeBytes([]byte(string(rune(sector.typeID))))
c.writeBytes([]byte(string(rune(sector.color))))
c.writeUint32(sector.L)
c.writeUint32(sector.R)
c.writeUint32(sector.C)
if len(sector.clsID) == 0 {
for j = 0; j < 4; j++ {
c.writeUint32(0)
}
} else {
c.writeBytes(sector.clsID)
}
c.writeUint32(sector.state)
c.writeUint32(0)
c.writeUint32(0)
c.writeUint32(0)
c.writeUint32(0)
c.writeUint32(sector.start)
c.writeUint32(sector.size)
c.writeUint32(0)
}
return MSAT
}
// writeSAT provides a function to write compound file sector allocation
// table.
func (c *cfb) writeSAT(MSATBlocks, SATBlocks, SSATBlocks, directoryBlocks, fileBlocks, streamBlocks int, SAT []int) (int, []int) {
var blocks int
if SATBlocks > 0 {
for i := 1; i <= MSATBlocks; i++ {
SAT = append(SAT, -4)
// writeSectorChains provides a function to write compound file sector chains.
func (c *cfb) writeSectorChains(location []int) sector {
var i, j, offset, sectorSize int
writeSectorChain := func(head, offset int) int {
for offset += head; i < offset-1; i++ {
c.writeUint32(i + 1)
}
blocks = MSATBlocks
for i := 1; i <= SATBlocks; i++ {
SAT = append(SAT, -3)
if head != 0 {
i++
c.writeUint32(endOfChain)
}
blocks += SATBlocks
for i := 1; i < SSATBlocks; i++ {
SAT = append(SAT, i)
}
SAT = append(SAT, -2)
blocks += SSATBlocks
for i := 1; i < directoryBlocks; i++ {
SAT = append(SAT, i+blocks)
}
SAT = append(SAT, -2)
blocks += directoryBlocks
for i := 1; i < fileBlocks; i++ {
SAT = append(SAT, i+blocks)
}
SAT = append(SAT, -2)
blocks += fileBlocks
for i := 1; i < streamBlocks; i++ {
SAT = append(SAT, i+blocks)
}
SAT = append(SAT, -2)
return offset
}
return blocks, SAT
}
// Writer provides a function to create compound file with given info stream
// and package stream.
//
// MSAT - The master sector allocation table
// SSAT - The short sector allocation table
// SAT - The sector allocation table
func (c *cfb) Writer(encryptionInfoBuffer, encryptedPackage []byte) []byte {
var (
storage cfb
MSAT, SAT, SSAT []int
directoryBlocks, fileBlocks, SSATBlocks = 3, 2, 1
size = int(math.Max(float64(len(encryptedPackage)), float64(packageEncryptionChunkSize)))
streamBlocks = len(encryptedPackage) / 0x200
)
if len(encryptedPackage)%0x200 > 0 {
streamBlocks++
for offset += location[1]; i < offset; i++ {
c.writeUint32(difSect)
}
propertyBlocks := directoryBlocks + fileBlocks + SSATBlocks
blockSize := (streamBlocks + propertyBlocks) * 4
SATBlocks := blockSize / 0x200
if blockSize%0x200 > 0 {
SATBlocks++
for offset += location[2]; i < offset; i++ {
c.writeUint32(fatSect)
}
MSATBlocks, blocksChanged := 0, true
for blocksChanged {
var SATCap, MSATCap int
blocksChanged = false
blockSize = (streamBlocks + propertyBlocks + SATBlocks + MSATBlocks) * 4
SATCap = blockSize / 0x200
if blockSize%0x200 > 0 {
SATCap++
}
if SATCap > SATBlocks {
SATBlocks, blocksChanged = SATCap, true
offset = writeSectorChain(location[3], offset)
offset = writeSectorChain(location[4], offset)
sector := c.sectors[0]
for ; j < len(c.sectors); j++ {
if sector = c.sectors[j]; len(sector.content) == 0 {
continue
}
if SATBlocks > 109 {
blockRemains := (SATBlocks - 109) * 4
blockBuffer := blockRemains % 0x200
MSATCap = blockRemains / 0x200
if blockBuffer > 0 {
MSATCap++
}
if blockBuffer+(4*MSATCap) > 0x200 {
MSATCap++
}
if MSATCap > MSATBlocks {
MSATBlocks, blocksChanged = MSATCap, true
}
if sectorSize = len(sector.content); sectorSize < 0x1000 {
continue
}
c.sectors[j].start = offset
offset = writeSectorChain((sectorSize+0x01FF)>>9, offset)
}
MSAT = c.writeMSAT(MSATBlocks, SATBlocks, MSAT)
blocks, SAT := c.writeSAT(MSATBlocks, SATBlocks, SSATBlocks, directoryBlocks, fileBlocks, streamBlocks, SAT)
for i := 0; i < 8; i++ {
storage.writeBytes([]byte{oleIdentifier[i]})
writeSectorChain((location[6]+7)>>3, offset)
for c.position&0x1FF != 0 {
c.writeUint32(endOfChain)
}
storage.writeBytes(make([]byte, 16))
storage.writeUint16(0x003E)
storage.writeUint16(0x0003)
storage.writeUint16(-2)
storage.writeUint16(9)
storage.writeUint32(6)
storage.writeUint32(0)
storage.writeUint32(0)
storage.writeUint32(SATBlocks)
storage.writeUint32(MSATBlocks + SATBlocks + SSATBlocks)
storage.writeUint32(0)
storage.writeUint32(0x00001000)
storage.writeUint32(SATBlocks + MSATBlocks)
storage.writeUint32(SSATBlocks)
if MSATBlocks > 0 {
storage.writeUint32(0)
storage.writeUint32(MSATBlocks)
i, offset = 0, 0
for j = 0; j < len(c.sectors); j++ {
if sector = c.sectors[j]; len(sector.content) == 0 {
continue
}
if sectorSize = len(sector.content); sectorSize == 0 || sectorSize >= 0x1000 {
continue
}
sector.start = offset
offset = writeSectorChain((sectorSize+0x3F)>>6, offset)
}
for c.position&0x1FF != 0 {
c.writeUint32(endOfChain)
}
return sector
}
// write provides a function to create compound file package stream.
func (c *cfb) write() []byte {
c.prepare()
location := c.locate()
c.stream = make([]byte, location[7]<<9)
var i, j int
for i = 0; i < 8; i++ {
c.writeBytes([]byte{oleIdentifier[i]})
}
c.writeBytes(make([]byte, 16))
c.writeUint16(0x003E)
c.writeUint16(0x0003)
c.writeUint16(0xFFFE)
c.writeUint16(0x0009)
c.writeUint16(0x0006)
c.writeBytes(make([]byte, 10))
c.writeUint32(location[2])
c.writeUint32(location[0] + location[1] + location[2] + location[3] - 1)
c.writeUint32(0)
c.writeUint32(1 << 12)
if location[3] != 0 {
c.writeUint32(location[0] + location[1] + location[2] - 1)
} else {
storage.writeUint32(-2)
storage.writeUint32(0)
c.writeUint32(endOfChain)
}
for _, block := range MSAT {
storage.writeUint32(block)
c.writeUint32(location[3])
if location[1] != 0 {
c.writeUint32(location[0] - 1)
} else {
c.writeUint32(endOfChain)
}
for i := 0; i < SATBlocks*128; i++ {
if i < len(SAT) {
storage.writeUint32(SAT[i])
continue
c.writeUint32(location[1])
c.writeMSAT(location)
sector := c.writeSectorChains(location)
c.writeDirectoryEntry(location)
for i = 1; i < len(c.sectors); i++ {
sector = c.sectors[i]
if sector.size >= 0x1000 {
c.position = (sector.start + 1) << 9
for j = 0; j < sector.size; j++ {
c.writeBytes([]byte{sector.content[j]})
}
for ; j&0x1FF != 0; j++ {
c.writeBytes([]byte{0})
}
}
storage.writeUint32(-1)
}
fileStream, SSATStream := c.writeFileStream(encryptionInfoBuffer, SSAT)
for _, block := range SSATStream {
storage.writeUint32(block)
for i = 1; i < len(c.sectors); i++ {
sector = c.sectors[i]
if sector.size > 0 && sector.size < 0x1000 {
for j = 0; j < sector.size; j++ {
c.writeBytes([]byte{sector.content[j]})
}
for ; j&0x3F != 0; j++ {
c.writeBytes([]byte{0})
}
}
}
directoryEntry := c.writeDirectoryEntry(blocks, blocks-fileBlocks, size)
storage.writeBytes(directoryEntry)
storage.writeBytes(fileStream)
storage.writeBytes(encryptedPackage)
return storage.stream
for c.position < len(c.stream) {
c.writeBytes([]byte{0})
}
return c.stream
}

View File

@ -59,11 +59,6 @@ func TestEncryptionMechanism(t *testing.T) {
assert.EqualError(t, err, ErrUnknownEncryptMechanism.Error())
}
func TestEncryptionWriteDirectoryEntry(t *testing.T) {
cfb := cfb{}
assert.Equal(t, 1536, len(cfb.writeDirectoryEntry(0, 0, -1)))
}
func TestHashing(t *testing.T) {
assert.Equal(t, hashing("unsupportedHashAlgorithm", []byte{}), []byte(nil))
}