excelize/calc.go

1160 lines
30 KiB
Go

// Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
// this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
//
// Package excelize providing a set of functions that allow you to write to
// and read from XLSX / XLSM / XLTM files. Supports reading and writing
// spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
// complex components by high compatibility, and provided streaming API for
// generating or reading data from a worksheet with huge amounts of data. This
// library needs Go version 1.10 or later.
package excelize
import (
"container/list"
"errors"
"fmt"
"math"
"reflect"
"strconv"
"strings"
"github.com/xuri/efp"
)
// Excel formula errors
const (
formulaErrorDIV = "#DIV/0!"
formulaErrorNAME = "#NAME?"
formulaErrorNA = "#N/A"
formulaErrorNUM = "#NUM!"
formulaErrorVALUE = "#VALUE!"
formulaErrorREF = "#REF!"
formulaErrorNULL = "#NULL"
formulaErrorSPILL = "#SPILL!"
formulaErrorCALC = "#CALC!"
formulaErrorGETTINGDATA = "#GETTING_DATA"
)
// cellRef defines the structure of a cell reference
type cellRef struct {
Col int
Row int
Sheet string
}
// cellRef defines the structure of a cell range
type cellRange struct {
From cellRef
To cellRef
}
type formulaFuncs struct{}
// CalcCellValue provides a function to get calculated cell value. This
// feature is currently in beta. Array formula, table formula and some other
// formulas are not supported currently.
func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
var (
formula string
token efp.Token
)
if formula, err = f.GetCellFormula(sheet, cell); err != nil {
return
}
ps := efp.ExcelParser()
tokens := ps.Parse(formula)
if tokens == nil {
return
}
if token, err = f.evalInfixExp(sheet, tokens); err != nil {
return
}
result = token.TValue
return
}
// getPriority calculate arithmetic operator priority.
func getPriority(token efp.Token) (pri int) {
var priority = map[string]int{
"*": 2,
"/": 2,
"+": 1,
"-": 1,
}
pri, _ = priority[token.TValue]
if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
pri = 3
}
if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
pri = 0
}
return
}
// evalInfixExp evaluate syntax analysis by given infix expression after
// lexical analysis. Evaluate an infix expression containing formulas by
// stacks:
//
// opd - Operand
// opt - Operator
// opf - Operation formula
// opfd - Operand of the operation formula
// opft - Operator of the operation formula
//
// Evaluate arguments of the operation formula by list:
//
// args - Arguments of the operation formula
//
// TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
//
func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
var err error
opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
argsList := list.New()
for i := 0; i < len(tokens); i++ {
token := tokens[i]
// out of function stack
if opfStack.Len() == 0 {
if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
return efp.Token{}, err
}
}
// function start
if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
opfStack.Push(token)
continue
}
// in function stack, walk 2 token at once
if opfStack.Len() > 0 {
var nextToken efp.Token
if i+1 < len(tokens) {
nextToken = tokens[i+1]
}
// current token is args or range, skip next token, order required: parse reference first
if token.TSubType == efp.TokenSubTypeRange {
if !opftStack.Empty() {
// parse reference: must reference at here
result, err := f.parseReference(sheet, token.TValue)
if err != nil {
return efp.Token{TValue: formulaErrorNAME}, err
}
if len(result) != 1 {
return efp.Token{}, errors.New(formulaErrorVALUE)
}
opfdStack.Push(efp.Token{
TType: efp.TokenTypeOperand,
TSubType: efp.TokenSubTypeNumber,
TValue: result[0],
})
continue
}
if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
// parse reference: reference or range at here
result, err := f.parseReference(sheet, token.TValue)
if err != nil {
return efp.Token{TValue: formulaErrorNAME}, err
}
for _, val := range result {
argsList.PushBack(efp.Token{
TType: efp.TokenTypeOperand,
TSubType: efp.TokenSubTypeNumber,
TValue: val,
})
}
if len(result) == 0 {
return efp.Token{}, errors.New(formulaErrorVALUE)
}
continue
}
}
// check current token is opft
if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
return efp.Token{}, err
}
// current token is arg
if token.TType == efp.TokenTypeArgument {
for !opftStack.Empty() {
// calculate trigger
topOpt := opftStack.Peek().(efp.Token)
if err := calculate(opfdStack, topOpt); err != nil {
return efp.Token{}, err
}
opftStack.Pop()
}
if !opfdStack.Empty() {
argsList.PushBack(opfdStack.Pop())
}
continue
}
// current token is logical
if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
}
// current token is text
if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
argsList.PushBack(token)
}
// current token is function stop
if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
for !opftStack.Empty() {
// calculate trigger
topOpt := opftStack.Peek().(efp.Token)
if err := calculate(opfdStack, topOpt); err != nil {
return efp.Token{}, err
}
opftStack.Pop()
}
// push opfd to args
if opfdStack.Len() > 0 {
argsList.PushBack(opfdStack.Pop())
}
// call formula function to evaluate
result, err := callFuncByName(&formulaFuncs{}, strings.NewReplacer(
"_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue),
[]reflect.Value{reflect.ValueOf(argsList)})
if err != nil {
return efp.Token{}, err
}
argsList.Init()
opfStack.Pop()
if opfStack.Len() > 0 { // still in function stack
opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
} else {
opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
}
}
}
}
for optStack.Len() != 0 {
topOpt := optStack.Peek().(efp.Token)
if err = calculate(opdStack, topOpt); err != nil {
return efp.Token{}, err
}
optStack.Pop()
}
return opdStack.Peek().(efp.Token), err
}
// calculate evaluate basic arithmetic operations.
func calculate(opdStack *Stack, opt efp.Token) error {
if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
opd := opdStack.Pop().(efp.Token)
opdVal, err := strconv.ParseFloat(opd.TValue, 64)
if err != nil {
return err
}
result := 0 - opdVal
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
}
if opt.TValue == "+" {
rOpd := opdStack.Pop().(efp.Token)
lOpd := opdStack.Pop().(efp.Token)
lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
if err != nil {
return err
}
rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
if err != nil {
return err
}
result := lOpdVal + rOpdVal
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
}
if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
rOpd := opdStack.Pop().(efp.Token)
lOpd := opdStack.Pop().(efp.Token)
lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
if err != nil {
return err
}
rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
if err != nil {
return err
}
result := lOpdVal - rOpdVal
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
}
if opt.TValue == "*" {
rOpd := opdStack.Pop().(efp.Token)
lOpd := opdStack.Pop().(efp.Token)
lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
if err != nil {
return err
}
rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
if err != nil {
return err
}
result := lOpdVal * rOpdVal
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
}
if opt.TValue == "/" {
rOpd := opdStack.Pop().(efp.Token)
lOpd := opdStack.Pop().(efp.Token)
lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
if err != nil {
return err
}
rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
if err != nil {
return err
}
result := lOpdVal / rOpdVal
if rOpdVal == 0 {
return errors.New(formulaErrorDIV)
}
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
}
return nil
}
// parseToken parse basic arithmetic operator priority and evaluate based on
// operators and operands.
func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
// parse reference: must reference at here
if token.TSubType == efp.TokenSubTypeRange {
result, err := f.parseReference(sheet, token.TValue)
if err != nil {
return errors.New(formulaErrorNAME)
}
if len(result) != 1 {
return errors.New(formulaErrorVALUE)
}
token.TValue = result[0]
token.TType = efp.TokenTypeOperand
token.TSubType = efp.TokenSubTypeNumber
}
if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" {
if optStack.Len() == 0 {
optStack.Push(token)
} else {
tokenPriority := getPriority(token)
topOpt := optStack.Peek().(efp.Token)
topOptPriority := getPriority(topOpt)
if tokenPriority > topOptPriority {
optStack.Push(token)
} else {
for tokenPriority <= topOptPriority {
optStack.Pop()
if err := calculate(opdStack, topOpt); err != nil {
return err
}
if optStack.Len() > 0 {
topOpt = optStack.Peek().(efp.Token)
topOptPriority = getPriority(topOpt)
continue
}
break
}
optStack.Push(token)
}
}
}
if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
optStack.Push(token)
}
if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
topOpt := optStack.Peek().(efp.Token)
if err := calculate(opdStack, topOpt); err != nil {
return err
}
optStack.Pop()
}
optStack.Pop()
}
// opd
if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
opdStack.Push(token)
}
return nil
}
// parseReference parse reference and extract values by given reference
// characters and default sheet name.
func (f *File) parseReference(sheet, reference string) (result []string, err error) {
reference = strings.Replace(reference, "$", "", -1)
refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
for _, ref := range strings.Split(reference, ":") {
tokens := strings.Split(ref, "!")
cr := cellRef{}
if len(tokens) == 2 { // have a worksheet name
cr.Sheet = tokens[0]
if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
return
}
if refs.Len() > 0 {
e := refs.Back()
cellRefs.PushBack(e.Value.(cellRef))
refs.Remove(e)
}
refs.PushBack(cr)
continue
}
if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
return
}
e := refs.Back()
if e == nil {
cr.Sheet = sheet
refs.PushBack(cr)
continue
}
cellRanges.PushBack(cellRange{
From: e.Value.(cellRef),
To: cr,
})
refs.Remove(e)
}
if refs.Len() > 0 {
e := refs.Back()
cellRefs.PushBack(e.Value.(cellRef))
refs.Remove(e)
}
result, err = f.rangeResolver(cellRefs, cellRanges)
return
}
// rangeResolver extract value as string from given reference and range list.
// This function will not ignore the empty cell. Note that the result of 3D
// range references may be different from Excel in some cases, for example,
// A1:A2:A2:B3 in Excel will include B1, but we wont.
func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (result []string, err error) {
filter := map[string]string{}
// extract value from ranges
for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
cr := temp.Value.(cellRange)
if cr.From.Sheet != cr.To.Sheet {
err = errors.New(formulaErrorVALUE)
}
rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
sortCoordinates(rng)
for col := rng[0]; col <= rng[2]; col++ {
for row := rng[1]; row <= rng[3]; row++ {
var cell string
if cell, err = CoordinatesToCellName(col, row); err != nil {
return
}
if filter[cell], err = f.GetCellValue(cr.From.Sheet, cell); err != nil {
return
}
}
}
}
// extract value from references
for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
cr := temp.Value.(cellRef)
var cell string
if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
return
}
if filter[cell], err = f.GetCellValue(cr.Sheet, cell); err != nil {
return
}
}
for _, val := range filter {
result = append(result, val)
}
return
}
// callFuncByName calls the no error or only error return function with
// reflect by given receiver, name and parameters.
func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
function := reflect.ValueOf(receiver).MethodByName(name)
if function.IsValid() {
rt := function.Call(params)
if len(rt) == 0 {
return
}
if !rt[1].IsNil() {
err = rt[1].Interface().(error)
return
}
result = rt[0].Interface().(string)
return
}
err = fmt.Errorf("not support %s function", name)
return
}
// Math and Trigonometric functions
// ABS function returns the absolute value of any supplied number. The syntax
// of the function is:
//
// ABS(number)
//
func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ABS requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Abs(val))
return
}
// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
// number, and returns an angle, in radians, between 0 and π. The syntax of
// the function is:
//
// ACOS(number)
//
func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ACOS requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Acos(val))
return
}
// ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
// of the function is:
//
// ACOSH(number)
//
func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ACOSH requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Acosh(val))
return
}
// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
// given number, and returns an angle, in radians, between 0 and π. The syntax
// of the function is:
//
// ACOT(number)
//
func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ACOT requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
return
}
// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
// value. The syntax of the function is:
//
// ACOTH(number)
//
func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ACOTH requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Atanh(1/val))
return
}
// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
// of the function is:
//
// ARABIC(text)
//
func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ARABIC requires 1 numeric arguments")
return
}
val, last, prefix := 0.0, 0.0, 1.0
for _, char := range argsList.Front().Value.(efp.Token).TValue {
digit := 0.0
switch char {
case '-':
prefix = -1
continue
case 'I':
digit = 1
case 'V':
digit = 5
case 'X':
digit = 10
case 'L':
digit = 50
case 'C':
digit = 100
case 'D':
digit = 500
case 'M':
digit = 1000
}
val += digit
switch {
case last == digit && (last == 5 || last == 50 || last == 500):
result = formulaErrorVALUE
return
case 2*last == digit:
result = formulaErrorVALUE
return
}
if last < digit {
val -= 2 * last
}
last = digit
}
result = fmt.Sprintf("%g", prefix*val)
return
}
// ASIN function calculates the arcsine (i.e. the inverse sine) of a given
// number, and returns an angle, in radians, between -π/2 and π/2. The syntax
// of the function is:
//
// ASIN(number)
//
func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ASIN requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Asin(val))
return
}
// ASINH function calculates the inverse hyperbolic sine of a supplied number.
// The syntax of the function is:
//
// ASINH(number)
//
func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ASINH requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Asinh(val))
return
}
// ATAN function calculates the arctangent (i.e. the inverse tangent) of a
// given number, and returns an angle, in radians, between -π/2 and +π/2. The
// syntax of the function is:
//
// ATAN(number)
//
func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ATAN requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Atan(val))
return
}
// ATANH function calculates the inverse hyperbolic tangent of a supplied
// number. The syntax of the function is:
//
// ATANH(number)
//
func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("ATANH requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Atanh(val))
return
}
// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
// given set of x and y coordinates, and returns an angle, in radians, between
// -π/2 and +π/2. The syntax of the function is:
//
// ATAN2(x_num,y_num)
//
func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
if argsList.Len() != 2 {
err = errors.New("ATAN2 requires 2 numeric arguments")
return
}
var x, y float64
x, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
y, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
result = fmt.Sprintf("%g", math.Atan2(x, y))
return
}
// gcd returns the greatest common divisor of two supplied integers.
func gcd(x, y float64) float64 {
x, y = math.Trunc(x), math.Trunc(y)
if x == 0 {
return y
}
if y == 0 {
return x
}
for x != y {
if x > y {
x = x - y
} else {
y = y - x
}
}
return x
}
// BASE function converts a number into a supplied base (radix), and returns a
// text representation of the calculated value. The syntax of the function is:
//
// BASE(number,radix,[min_length])
//
func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
if argsList.Len() < 2 {
err = errors.New("BASE requires at least 2 arguments")
return
}
if argsList.Len() > 3 {
err = errors.New("BASE allows at most 3 arguments")
return
}
var number float64
var radix, minLength int
number, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
radix, err = strconv.Atoi(argsList.Front().Next().Value.(efp.Token).TValue)
if err != nil {
return
}
if radix < 2 || radix > 36 {
err = errors.New("radix must be an integer ≥ 2 and ≤ 36")
return
}
if argsList.Len() > 2 {
minLength, err = strconv.Atoi(argsList.Back().Value.(efp.Token).TValue)
if err != nil {
return
}
}
result = strconv.FormatInt(int64(number), radix)
if len(result) < minLength {
result = strings.Repeat("0", minLength-len(result)) + result
}
result = strings.ToUpper(result)
return
}
// CEILING function rounds a supplied number away from zero, to the nearest
// multiple of a given number. The syntax of the function is:
//
// CEILING(number,significance)
//
func (fn *formulaFuncs) CEILING(argsList *list.List) (result string, err error) {
if argsList.Len() == 0 {
err = errors.New("CEILING requires at least 1 argument")
return
}
if argsList.Len() > 2 {
err = errors.New("CEILING allows at most 2 arguments")
return
}
var number, significance float64
number, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
significance = 1
if number < 0 {
significance = -1
}
if argsList.Len() > 1 {
significance, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
}
if significance < 0 && number > 0 {
err = errors.New("negative sig to CEILING invalid")
return
}
if argsList.Len() == 1 {
result = fmt.Sprintf("%g", math.Ceil(number))
return
}
number, res := math.Modf(number / significance)
if res > 0 {
number++
}
result = fmt.Sprintf("%g", number*significance)
return
}
// CEILINGMATH function rounds a supplied number up to a supplied multiple of
// significance. The syntax of the function is:
//
// CEILING.MATH(number,[significance],[mode])
//
func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) (result string, err error) {
if argsList.Len() == 0 {
err = errors.New("CEILING.MATH requires at least 1 argument")
return
}
if argsList.Len() > 3 {
err = errors.New("CEILING.MATH allows at most 3 arguments")
return
}
var number, significance, mode float64 = 0, 1, 1
number, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
if number < 0 {
significance = -1
}
if argsList.Len() > 1 {
significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
}
if argsList.Len() == 1 {
result = fmt.Sprintf("%g", math.Ceil(number))
return
}
if argsList.Len() > 2 {
mode, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
}
val, res := math.Modf(number / significance)
_, _ = res, mode
if res != 0 {
if number > 0 {
val++
} else if mode < 0 {
val--
}
}
result = fmt.Sprintf("%g", val*significance)
return
}
// GCD function returns the greatest common divisor of two or more supplied
// integers. The syntax of the function is:
//
// GCD(number1,[number2],...)
//
func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
if argsList.Len() == 0 {
err = errors.New("GCD requires at least 1 argument")
return
}
var (
val float64
nums = []float64{}
)
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(efp.Token)
if token.TValue == "" {
continue
}
val, err = strconv.ParseFloat(token.TValue, 64)
if err != nil {
return
}
nums = append(nums, val)
}
if nums[0] < 0 {
err = errors.New("GCD only accepts positive arguments")
return
}
if len(nums) == 1 {
result = fmt.Sprintf("%g", nums[0])
return
}
cd := nums[0]
for i := 1; i < len(nums); i++ {
if nums[i] < 0 {
err = errors.New("GCD only accepts positive arguments")
return
}
cd = gcd(cd, nums[i])
}
result = fmt.Sprintf("%g", cd)
return
}
// lcm returns the least common multiple of two supplied integers.
func lcm(a, b float64) float64 {
a = math.Trunc(a)
b = math.Trunc(b)
if a == 0 && b == 0 {
return 0
}
return a * b / gcd(a, b)
}
// LCM function returns the least common multiple of two or more supplied
// integers. The syntax of the function is:
//
// LCM(number1,[number2],...)
//
func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
if argsList.Len() == 0 {
err = errors.New("LCM requires at least 1 argument")
return
}
var (
val float64
nums = []float64{}
)
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(efp.Token)
if token.TValue == "" {
continue
}
val, err = strconv.ParseFloat(token.TValue, 64)
if err != nil {
return
}
nums = append(nums, val)
}
if nums[0] < 0 {
err = errors.New("LCM only accepts positive arguments")
return
}
if len(nums) == 1 {
result = fmt.Sprintf("%g", nums[0])
return
}
cm := nums[0]
for i := 1; i < len(nums); i++ {
if nums[i] < 0 {
err = errors.New("LCM only accepts positive arguments")
return
}
cm = lcm(cm, nums[i])
}
result = fmt.Sprintf("%g", cm)
return
}
// POWER function calculates a given number, raised to a supplied power.
// The syntax of the function is:
//
// POWER(number,power)
//
func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
if argsList.Len() != 2 {
err = errors.New("POWER requires 2 numeric arguments")
return
}
var x, y float64
x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
if x == 0 && y == 0 {
err = errors.New(formulaErrorNUM)
return
}
if x == 0 && y < 0 {
err = errors.New(formulaErrorDIV)
return
}
result = fmt.Sprintf("%g", math.Pow(x, y))
return
}
// PRODUCT function returns the product (multiplication) of a supplied set of
// numerical values. The syntax of the function is:
//
// PRODUCT(number1,[number2],...)
//
func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
var (
val float64
product float64 = 1
)
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(efp.Token)
if token.TValue == "" {
continue
}
val, err = strconv.ParseFloat(token.TValue, 64)
if err != nil {
return
}
product = product * val
}
result = fmt.Sprintf("%g", product)
return
}
// SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
// number. I.e. if the number is positive, the Sign function returns +1, if
// the number is negative, the function returns -1 and if the number is 0
// (zero), the function returns 0. The syntax of the function is:
//
// SIGN(number)
//
func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("SIGN requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
if val < 0 {
result = "-1"
return
}
if val > 0 {
result = "1"
return
}
result = "0"
return
}
// SQRT function calculates the positive square root of a supplied number. The
// syntax of the function is:
//
// SQRT(number)
//
func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
if argsList.Len() != 1 {
err = errors.New("SQRT requires 1 numeric arguments")
return
}
var val float64
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
if val < 0 {
err = errors.New(formulaErrorNUM)
return
}
result = fmt.Sprintf("%g", math.Sqrt(val))
return
}
// SUM function adds together a supplied set of numbers and returns the sum of
// these values. The syntax of the function is:
//
// SUM(number1,[number2],...)
//
func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
var val float64
var sum float64
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(efp.Token)
if token.TValue == "" {
continue
}
val, err = strconv.ParseFloat(token.TValue, 64)
if err != nil {
return
}
sum += val
}
result = fmt.Sprintf("%g", sum)
return
}
// QUOTIENT function returns the integer portion of a division between two
// supplied numbers. The syntax of the function is:
//
// QUOTIENT(numerator,denominator)
//
func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
if argsList.Len() != 2 {
err = errors.New("QUOTIENT requires 2 numeric arguments")
return
}
var x, y float64
x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
if err != nil {
return
}
if y == 0 {
err = errors.New(formulaErrorDIV)
return
}
result = fmt.Sprintf("%g", math.Trunc(x/y))
return
}