2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* net/sched/ematch.c Extended Match API
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version
|
|
|
|
* 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* Authors: Thomas Graf <tgraf@suug.ch>
|
|
|
|
*
|
|
|
|
* ==========================================================================
|
|
|
|
*
|
|
|
|
* An extended match (ematch) is a small classification tool not worth
|
|
|
|
* writing a full classifier for. Ematches can be interconnected to form
|
|
|
|
* a logic expression and get attached to classifiers to extend their
|
|
|
|
* functionatlity.
|
|
|
|
*
|
|
|
|
* The userspace part transforms the logic expressions into an array
|
|
|
|
* consisting of multiple sequences of interconnected ematches separated
|
|
|
|
* by markers. Precedence is implemented by a special ematch kind
|
|
|
|
* referencing a sequence beyond the marker of the current sequence
|
|
|
|
* causing the current position in the sequence to be pushed onto a stack
|
|
|
|
* to allow the current position to be overwritten by the position referenced
|
|
|
|
* in the special ematch. Matching continues in the new sequence until a
|
|
|
|
* marker is reached causing the position to be restored from the stack.
|
|
|
|
*
|
|
|
|
* Example:
|
|
|
|
* A AND (B1 OR B2) AND C AND D
|
|
|
|
*
|
|
|
|
* ------->-PUSH-------
|
|
|
|
* -->-- / -->-- \ -->--
|
|
|
|
* / \ / / \ \ / \
|
|
|
|
* +-------+-------+-------+-------+-------+--------+
|
|
|
|
* | A AND | B AND | C AND | D END | B1 OR | B2 END |
|
|
|
|
* +-------+-------+-------+-------+-------+--------+
|
|
|
|
* \ /
|
|
|
|
* --------<-POP---------
|
|
|
|
*
|
|
|
|
* where B is a virtual ematch referencing to sequence starting with B1.
|
2007-02-09 22:25:16 +08:00
|
|
|
*
|
2005-04-17 06:20:36 +08:00
|
|
|
* ==========================================================================
|
|
|
|
*
|
|
|
|
* How to write an ematch in 60 seconds
|
|
|
|
* ------------------------------------
|
2007-02-09 22:25:16 +08:00
|
|
|
*
|
2005-04-17 06:20:36 +08:00
|
|
|
* 1) Provide a matcher function:
|
|
|
|
* static int my_match(struct sk_buff *skb, struct tcf_ematch *m,
|
|
|
|
* struct tcf_pkt_info *info)
|
|
|
|
* {
|
|
|
|
* struct mydata *d = (struct mydata *) m->data;
|
|
|
|
*
|
|
|
|
* if (...matching goes here...)
|
|
|
|
* return 1;
|
|
|
|
* else
|
|
|
|
* return 0;
|
|
|
|
* }
|
|
|
|
*
|
|
|
|
* 2) Fill out a struct tcf_ematch_ops:
|
|
|
|
* static struct tcf_ematch_ops my_ops = {
|
|
|
|
* .kind = unique id,
|
|
|
|
* .datalen = sizeof(struct mydata),
|
|
|
|
* .match = my_match,
|
|
|
|
* .owner = THIS_MODULE,
|
|
|
|
* };
|
|
|
|
*
|
|
|
|
* 3) Register/Unregister your ematch:
|
|
|
|
* static int __init init_my_ematch(void)
|
|
|
|
* {
|
|
|
|
* return tcf_em_register(&my_ops);
|
|
|
|
* }
|
|
|
|
*
|
|
|
|
* static void __exit exit_my_ematch(void)
|
|
|
|
* {
|
|
|
|
* return tcf_em_unregister(&my_ops);
|
|
|
|
* }
|
|
|
|
*
|
|
|
|
* module_init(init_my_ematch);
|
|
|
|
* module_exit(exit_my_ematch);
|
|
|
|
*
|
|
|
|
* 4) By now you should have two more seconds left, barely enough to
|
|
|
|
* open up a beer to watch the compilation going.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/rtnetlink.h>
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <net/pkt_cls.h>
|
|
|
|
|
|
|
|
static LIST_HEAD(ematch_ops);
|
|
|
|
static DEFINE_RWLOCK(ematch_mod_lock);
|
|
|
|
|
|
|
|
static inline struct tcf_ematch_ops * tcf_em_lookup(u16 kind)
|
|
|
|
{
|
|
|
|
struct tcf_ematch_ops *e = NULL;
|
|
|
|
|
|
|
|
read_lock(&ematch_mod_lock);
|
|
|
|
list_for_each_entry(e, &ematch_ops, link) {
|
|
|
|
if (kind == e->kind) {
|
|
|
|
if (!try_module_get(e->owner))
|
|
|
|
e = NULL;
|
|
|
|
read_unlock(&ematch_mod_lock);
|
|
|
|
return e;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
read_unlock(&ematch_mod_lock);
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcf_em_register - register an extended match
|
2007-02-09 22:25:16 +08:00
|
|
|
*
|
2005-04-17 06:20:36 +08:00
|
|
|
* @ops: ematch operations lookup table
|
|
|
|
*
|
|
|
|
* This function must be called by ematches to announce their presence.
|
|
|
|
* The given @ops must have kind set to a unique identifier and the
|
|
|
|
* callback match() must be implemented. All other callbacks are optional
|
|
|
|
* and a fallback implementation is used instead.
|
|
|
|
*
|
|
|
|
* Returns -EEXISTS if an ematch of the same kind has already registered.
|
|
|
|
*/
|
|
|
|
int tcf_em_register(struct tcf_ematch_ops *ops)
|
|
|
|
{
|
|
|
|
int err = -EEXIST;
|
|
|
|
struct tcf_ematch_ops *e;
|
|
|
|
|
|
|
|
if (ops->match == NULL)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
write_lock(&ematch_mod_lock);
|
|
|
|
list_for_each_entry(e, &ematch_ops, link)
|
|
|
|
if (ops->kind == e->kind)
|
|
|
|
goto errout;
|
|
|
|
|
|
|
|
list_add_tail(&ops->link, &ematch_ops);
|
|
|
|
err = 0;
|
|
|
|
errout:
|
|
|
|
write_unlock(&ematch_mod_lock);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcf_em_unregister - unregster and extended match
|
|
|
|
*
|
|
|
|
* @ops: ematch operations lookup table
|
|
|
|
*
|
|
|
|
* This function must be called by ematches to announce their disappearance
|
|
|
|
* for examples when the module gets unloaded. The @ops parameter must be
|
|
|
|
* the same as the one used for registration.
|
|
|
|
*
|
|
|
|
* Returns -ENOENT if no matching ematch was found.
|
|
|
|
*/
|
|
|
|
int tcf_em_unregister(struct tcf_ematch_ops *ops)
|
|
|
|
{
|
|
|
|
int err = 0;
|
|
|
|
struct tcf_ematch_ops *e;
|
|
|
|
|
|
|
|
write_lock(&ematch_mod_lock);
|
|
|
|
list_for_each_entry(e, &ematch_ops, link) {
|
|
|
|
if (e == ops) {
|
|
|
|
list_del(&e->link);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
err = -ENOENT;
|
|
|
|
out:
|
|
|
|
write_unlock(&ematch_mod_lock);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct tcf_ematch * tcf_em_get_match(struct tcf_ematch_tree *tree,
|
|
|
|
int index)
|
|
|
|
{
|
|
|
|
return &tree->matches[index];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int tcf_em_validate(struct tcf_proto *tp,
|
|
|
|
struct tcf_ematch_tree_hdr *tree_hdr,
|
|
|
|
struct tcf_ematch *em, struct rtattr *rta, int idx)
|
|
|
|
{
|
|
|
|
int err = -EINVAL;
|
|
|
|
struct tcf_ematch_hdr *em_hdr = RTA_DATA(rta);
|
|
|
|
int data_len = RTA_PAYLOAD(rta) - sizeof(*em_hdr);
|
|
|
|
void *data = (void *) em_hdr + sizeof(*em_hdr);
|
|
|
|
|
|
|
|
if (!TCF_EM_REL_VALID(em_hdr->flags))
|
|
|
|
goto errout;
|
|
|
|
|
|
|
|
if (em_hdr->kind == TCF_EM_CONTAINER) {
|
|
|
|
/* Special ematch called "container", carries an index
|
|
|
|
* referencing an external ematch sequence. */
|
|
|
|
u32 ref;
|
|
|
|
|
|
|
|
if (data_len < sizeof(ref))
|
|
|
|
goto errout;
|
|
|
|
ref = *(u32 *) data;
|
|
|
|
|
|
|
|
if (ref >= tree_hdr->nmatches)
|
|
|
|
goto errout;
|
|
|
|
|
|
|
|
/* We do not allow backward jumps to avoid loops and jumps
|
|
|
|
* to our own position are of course illegal. */
|
|
|
|
if (ref <= idx)
|
|
|
|
goto errout;
|
|
|
|
|
2007-02-09 22:25:16 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
em->data = ref;
|
|
|
|
} else {
|
|
|
|
/* Note: This lookup will increase the module refcnt
|
|
|
|
* of the ematch module referenced. In case of a failure,
|
|
|
|
* a destroy function is called by the underlying layer
|
|
|
|
* which automatically releases the reference again, therefore
|
|
|
|
* the module MUST not be given back under any circumstances
|
|
|
|
* here. Be aware, the destroy function assumes that the
|
|
|
|
* module is held if the ops field is non zero. */
|
|
|
|
em->ops = tcf_em_lookup(em_hdr->kind);
|
|
|
|
|
|
|
|
if (em->ops == NULL) {
|
|
|
|
err = -ENOENT;
|
|
|
|
goto errout;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ematch module provides expected length of data, so we
|
|
|
|
* can do a basic sanity check. */
|
|
|
|
if (em->ops->datalen && data_len < em->ops->datalen)
|
|
|
|
goto errout;
|
|
|
|
|
|
|
|
if (em->ops->change) {
|
|
|
|
err = em->ops->change(tp, data, data_len, em);
|
|
|
|
if (err < 0)
|
|
|
|
goto errout;
|
|
|
|
} else if (data_len > 0) {
|
|
|
|
/* ematch module doesn't provide an own change
|
|
|
|
* procedure and expects us to allocate and copy
|
|
|
|
* the ematch data.
|
|
|
|
*
|
|
|
|
* TCF_EM_SIMPLE may be specified stating that the
|
|
|
|
* data only consists of a u32 integer and the module
|
|
|
|
* does not expected a memory reference but rather
|
|
|
|
* the value carried. */
|
|
|
|
if (em_hdr->flags & TCF_EM_SIMPLE) {
|
|
|
|
if (data_len < sizeof(u32))
|
|
|
|
goto errout;
|
|
|
|
em->data = *(u32 *) data;
|
|
|
|
} else {
|
2006-11-21 11:19:40 +08:00
|
|
|
void *v = kmemdup(data, data_len, GFP_KERNEL);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (v == NULL) {
|
|
|
|
err = -ENOBUFS;
|
|
|
|
goto errout;
|
|
|
|
}
|
|
|
|
em->data = (unsigned long) v;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
em->matchid = em_hdr->matchid;
|
|
|
|
em->flags = em_hdr->flags;
|
|
|
|
em->datalen = data_len;
|
|
|
|
|
|
|
|
err = 0;
|
|
|
|
errout:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcf_em_tree_validate - validate ematch config TLV and build ematch tree
|
|
|
|
*
|
|
|
|
* @tp: classifier kind handle
|
|
|
|
* @rta: ematch tree configuration TLV
|
|
|
|
* @tree: destination ematch tree variable to store the resulting
|
|
|
|
* ematch tree.
|
|
|
|
*
|
|
|
|
* This function validates the given configuration TLV @rta and builds an
|
|
|
|
* ematch tree in @tree. The resulting tree must later be copied into
|
|
|
|
* the private classifier data using tcf_em_tree_change(). You MUST NOT
|
|
|
|
* provide the ematch tree variable of the private classifier data directly,
|
|
|
|
* the changes would not be locked properly.
|
|
|
|
*
|
|
|
|
* Returns a negative error code if the configuration TLV contains errors.
|
|
|
|
*/
|
|
|
|
int tcf_em_tree_validate(struct tcf_proto *tp, struct rtattr *rta,
|
|
|
|
struct tcf_ematch_tree *tree)
|
|
|
|
{
|
|
|
|
int idx, list_len, matches_len, err = -EINVAL;
|
|
|
|
struct rtattr *tb[TCA_EMATCH_TREE_MAX];
|
|
|
|
struct rtattr *rt_match, *rt_hdr, *rt_list;
|
|
|
|
struct tcf_ematch_tree_hdr *tree_hdr;
|
|
|
|
struct tcf_ematch *em;
|
|
|
|
|
2005-11-09 01:39:17 +08:00
|
|
|
if (!rta) {
|
|
|
|
memset(tree, 0, sizeof(*tree));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
if (rtattr_parse_nested(tb, TCA_EMATCH_TREE_MAX, rta) < 0)
|
|
|
|
goto errout;
|
|
|
|
|
|
|
|
rt_hdr = tb[TCA_EMATCH_TREE_HDR-1];
|
|
|
|
rt_list = tb[TCA_EMATCH_TREE_LIST-1];
|
|
|
|
|
|
|
|
if (rt_hdr == NULL || rt_list == NULL)
|
|
|
|
goto errout;
|
|
|
|
|
|
|
|
if (RTA_PAYLOAD(rt_hdr) < sizeof(*tree_hdr) ||
|
|
|
|
RTA_PAYLOAD(rt_list) < sizeof(*rt_match))
|
|
|
|
goto errout;
|
|
|
|
|
|
|
|
tree_hdr = RTA_DATA(rt_hdr);
|
|
|
|
memcpy(&tree->hdr, tree_hdr, sizeof(*tree_hdr));
|
|
|
|
|
|
|
|
rt_match = RTA_DATA(rt_list);
|
|
|
|
list_len = RTA_PAYLOAD(rt_list);
|
|
|
|
matches_len = tree_hdr->nmatches * sizeof(*em);
|
|
|
|
|
2006-07-22 05:51:30 +08:00
|
|
|
tree->matches = kzalloc(matches_len, GFP_KERNEL);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (tree->matches == NULL)
|
|
|
|
goto errout;
|
|
|
|
|
|
|
|
/* We do not use rtattr_parse_nested here because the maximum
|
|
|
|
* number of attributes is unknown. This saves us the allocation
|
|
|
|
* for a tb buffer which would serve no purpose at all.
|
2007-02-09 22:25:16 +08:00
|
|
|
*
|
2005-04-17 06:20:36 +08:00
|
|
|
* The array of rt attributes is parsed in the order as they are
|
|
|
|
* provided, their type must be incremental from 1 to n. Even
|
|
|
|
* if it does not serve any real purpose, a failure of sticking
|
|
|
|
* to this policy will result in parsing failure. */
|
|
|
|
for (idx = 0; RTA_OK(rt_match, list_len); idx++) {
|
|
|
|
err = -EINVAL;
|
|
|
|
|
|
|
|
if (rt_match->rta_type != (idx + 1))
|
|
|
|
goto errout_abort;
|
|
|
|
|
|
|
|
if (idx >= tree_hdr->nmatches)
|
|
|
|
goto errout_abort;
|
|
|
|
|
|
|
|
if (RTA_PAYLOAD(rt_match) < sizeof(struct tcf_ematch_hdr))
|
|
|
|
goto errout_abort;
|
|
|
|
|
|
|
|
em = tcf_em_get_match(tree, idx);
|
|
|
|
|
|
|
|
err = tcf_em_validate(tp, tree_hdr, em, rt_match, idx);
|
|
|
|
if (err < 0)
|
|
|
|
goto errout_abort;
|
|
|
|
|
|
|
|
rt_match = RTA_NEXT(rt_match, list_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if the number of matches provided by userspace actually
|
|
|
|
* complies with the array of matches. The number was used for
|
|
|
|
* the validation of references and a mismatch could lead to
|
|
|
|
* undefined references during the matching process. */
|
|
|
|
if (idx != tree_hdr->nmatches) {
|
|
|
|
err = -EINVAL;
|
|
|
|
goto errout_abort;
|
|
|
|
}
|
|
|
|
|
|
|
|
err = 0;
|
|
|
|
errout:
|
|
|
|
return err;
|
|
|
|
|
|
|
|
errout_abort:
|
|
|
|
tcf_em_tree_destroy(tp, tree);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcf_em_tree_destroy - destroy an ematch tree
|
|
|
|
*
|
|
|
|
* @tp: classifier kind handle
|
|
|
|
* @tree: ematch tree to be deleted
|
|
|
|
*
|
|
|
|
* This functions destroys an ematch tree previously created by
|
|
|
|
* tcf_em_tree_validate()/tcf_em_tree_change(). You must ensure that
|
|
|
|
* the ematch tree is not in use before calling this function.
|
|
|
|
*/
|
|
|
|
void tcf_em_tree_destroy(struct tcf_proto *tp, struct tcf_ematch_tree *tree)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (tree->matches == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (i = 0; i < tree->hdr.nmatches; i++) {
|
|
|
|
struct tcf_ematch *em = tcf_em_get_match(tree, i);
|
|
|
|
|
|
|
|
if (em->ops) {
|
|
|
|
if (em->ops->destroy)
|
|
|
|
em->ops->destroy(tp, em);
|
|
|
|
else if (!tcf_em_is_simple(em) && em->data)
|
|
|
|
kfree((void *) em->data);
|
|
|
|
module_put(em->ops->owner);
|
|
|
|
}
|
|
|
|
}
|
2007-02-09 22:25:16 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
tree->hdr.nmatches = 0;
|
|
|
|
kfree(tree->matches);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tcf_em_tree_dump - dump ematch tree into a rtnl message
|
|
|
|
*
|
|
|
|
* @skb: skb holding the rtnl message
|
|
|
|
* @t: ematch tree to be dumped
|
|
|
|
* @tlv: TLV type to be used to encapsulate the tree
|
|
|
|
*
|
|
|
|
* This function dumps a ematch tree into a rtnl message. It is valid to
|
|
|
|
* call this function while the ematch tree is in use.
|
|
|
|
*
|
|
|
|
* Returns -1 if the skb tailroom is insufficient.
|
|
|
|
*/
|
|
|
|
int tcf_em_tree_dump(struct sk_buff *skb, struct tcf_ematch_tree *tree, int tlv)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct rtattr * top_start = (struct rtattr*) skb->tail;
|
|
|
|
struct rtattr * list_start;
|
|
|
|
|
|
|
|
RTA_PUT(skb, tlv, 0, NULL);
|
|
|
|
RTA_PUT(skb, TCA_EMATCH_TREE_HDR, sizeof(tree->hdr), &tree->hdr);
|
|
|
|
|
|
|
|
list_start = (struct rtattr *) skb->tail;
|
|
|
|
RTA_PUT(skb, TCA_EMATCH_TREE_LIST, 0, NULL);
|
|
|
|
|
|
|
|
for (i = 0; i < tree->hdr.nmatches; i++) {
|
|
|
|
struct rtattr *match_start = (struct rtattr*) skb->tail;
|
|
|
|
struct tcf_ematch *em = tcf_em_get_match(tree, i);
|
|
|
|
struct tcf_ematch_hdr em_hdr = {
|
|
|
|
.kind = em->ops ? em->ops->kind : TCF_EM_CONTAINER,
|
|
|
|
.matchid = em->matchid,
|
|
|
|
.flags = em->flags
|
|
|
|
};
|
|
|
|
|
|
|
|
RTA_PUT(skb, i+1, sizeof(em_hdr), &em_hdr);
|
|
|
|
|
|
|
|
if (em->ops && em->ops->dump) {
|
|
|
|
if (em->ops->dump(skb, em) < 0)
|
|
|
|
goto rtattr_failure;
|
|
|
|
} else if (tcf_em_is_container(em) || tcf_em_is_simple(em)) {
|
|
|
|
u32 u = em->data;
|
|
|
|
RTA_PUT_NOHDR(skb, sizeof(u), &u);
|
|
|
|
} else if (em->datalen > 0)
|
|
|
|
RTA_PUT_NOHDR(skb, em->datalen, (void *) em->data);
|
|
|
|
|
|
|
|
match_start->rta_len = skb->tail - (u8*) match_start;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_start->rta_len = skb->tail - (u8 *) list_start;
|
|
|
|
top_start->rta_len = skb->tail - (u8 *) top_start;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
rtattr_failure:
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int tcf_em_match(struct sk_buff *skb, struct tcf_ematch *em,
|
|
|
|
struct tcf_pkt_info *info)
|
|
|
|
{
|
|
|
|
int r = em->ops->match(skb, em, info);
|
|
|
|
return tcf_em_is_inverted(em) ? !r : r;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Do not use this function directly, use tcf_em_tree_match instead */
|
|
|
|
int __tcf_em_tree_match(struct sk_buff *skb, struct tcf_ematch_tree *tree,
|
|
|
|
struct tcf_pkt_info *info)
|
|
|
|
{
|
|
|
|
int stackp = 0, match_idx = 0, res = 0;
|
|
|
|
struct tcf_ematch *cur_match;
|
|
|
|
int stack[CONFIG_NET_EMATCH_STACK];
|
|
|
|
|
|
|
|
proceed:
|
|
|
|
while (match_idx < tree->hdr.nmatches) {
|
|
|
|
cur_match = tcf_em_get_match(tree, match_idx);
|
|
|
|
|
|
|
|
if (tcf_em_is_container(cur_match)) {
|
|
|
|
if (unlikely(stackp >= CONFIG_NET_EMATCH_STACK))
|
|
|
|
goto stack_overflow;
|
|
|
|
|
|
|
|
stack[stackp++] = match_idx;
|
|
|
|
match_idx = cur_match->data;
|
|
|
|
goto proceed;
|
|
|
|
}
|
|
|
|
|
|
|
|
res = tcf_em_match(skb, cur_match, info);
|
|
|
|
|
|
|
|
if (tcf_em_early_end(cur_match, res))
|
|
|
|
break;
|
|
|
|
|
|
|
|
match_idx++;
|
|
|
|
}
|
|
|
|
|
|
|
|
pop_stack:
|
|
|
|
if (stackp > 0) {
|
|
|
|
match_idx = stack[--stackp];
|
|
|
|
cur_match = tcf_em_get_match(tree, match_idx);
|
|
|
|
|
|
|
|
if (tcf_em_early_end(cur_match, res))
|
|
|
|
goto pop_stack;
|
|
|
|
else {
|
|
|
|
match_idx++;
|
|
|
|
goto proceed;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return res;
|
|
|
|
|
|
|
|
stack_overflow:
|
|
|
|
if (net_ratelimit())
|
|
|
|
printk("Local stack overflow, increase NET_EMATCH_STACK\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(tcf_em_register);
|
|
|
|
EXPORT_SYMBOL(tcf_em_unregister);
|
|
|
|
EXPORT_SYMBOL(tcf_em_tree_validate);
|
|
|
|
EXPORT_SYMBOL(tcf_em_tree_destroy);
|
|
|
|
EXPORT_SYMBOL(tcf_em_tree_dump);
|
|
|
|
EXPORT_SYMBOL(__tcf_em_tree_match);
|