linux_old1/drivers/net/ethernet/sfc/nic.c

1963 lines
58 KiB
C
Raw Normal View History

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2011 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "nic.h"
#include "regs.h"
#include "io.h"
#include "workarounds.h"
/**************************************************************************
*
* Configurable values
*
**************************************************************************
*/
/* This is set to 16 for a good reason. In summary, if larger than
* 16, the descriptor cache holds more than a default socket
* buffer's worth of packets (for UDP we can only have at most one
* socket buffer's worth outstanding). This combined with the fact
* that we only get 1 TX event per descriptor cache means the NIC
* goes idle.
*/
#define TX_DC_ENTRIES 16
#define TX_DC_ENTRIES_ORDER 1
#define RX_DC_ENTRIES 64
#define RX_DC_ENTRIES_ORDER 3
/* If EFX_MAX_INT_ERRORS internal errors occur within
* EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
* disable it.
*/
#define EFX_INT_ERROR_EXPIRE 3600
#define EFX_MAX_INT_ERRORS 5
/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
*/
#define EFX_FLUSH_INTERVAL 10
#define EFX_FLUSH_POLL_COUNT 100
/* Size and alignment of special buffers (4KB) */
#define EFX_BUF_SIZE 4096
/* Depth of RX flush request fifo */
#define EFX_RX_FLUSH_COUNT 4
/* Generated event code for efx_generate_test_event() */
#define EFX_CHANNEL_MAGIC_TEST(_channel) \
(0x00010100 + (_channel)->channel)
/* Generated event code for efx_generate_fill_event() */
#define EFX_CHANNEL_MAGIC_FILL(_channel) \
(0x00010200 + (_channel)->channel)
/**************************************************************************
*
* Solarstorm hardware access
*
**************************************************************************/
static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
unsigned int index)
{
efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
value, index);
}
/* Read the current event from the event queue */
static inline efx_qword_t *efx_event(struct efx_channel *channel,
unsigned int index)
{
sfc: Do not use efx_process_channel_now() in online self-test During self-tests we use efx_process_channel_now() to handle completion and other events synchronously. This disables interrupts and NAPI processing for the channel in question, but it may still be interrupted by another channel. A single socket may receive packets from multiple net devices or even multiple channels of the same net device, so this can result in deadlock on a socket lock. Receiving packets in process context will also result in incorrect classification by the network cgroup classifier. Therefore, we must only use efx_process_channel_now() in the offline loopback tests (which never deliver packets up the stack) and not for the online interrupt and event tests. For the interrupt test, there is no reason to process events. We only care that an interrupt is raised. For the event test, we want to know whether events have been received, and there may be many events ahead of the one we inject. Therefore remove efx_channel::magic_count and instead test whether efx_channel::eventq_read_ptr advances. This is currently an event queue index and might wrap around to exactly the same value, resulting in a false negative. Therefore move the masking to efx_event() and efx_nic_eventq_read_ack() so that it cannot wrap within the time of the test. The event test also tries to diagnose failures by checking whether an event was delivered without causing an interrupt. Add and use a helper function that only does this. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2011-04-04 21:22:11 +08:00
return ((efx_qword_t *) (channel->eventq.addr)) +
(index & channel->eventq_mask);
}
/* See if an event is present
*
* We check both the high and low dword of the event for all ones. We
* wrote all ones when we cleared the event, and no valid event can
* have all ones in either its high or low dwords. This approach is
* robust against reordering.
*
* Note that using a single 64-bit comparison is incorrect; even
* though the CPU read will be atomic, the DMA write may not be.
*/
static inline int efx_event_present(efx_qword_t *event)
{
return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
EFX_DWORD_IS_ALL_ONES(event->dword[1]));
}
static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
const efx_oword_t *mask)
{
return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}
int efx_nic_test_registers(struct efx_nic *efx,
const struct efx_nic_register_test *regs,
size_t n_regs)
{
unsigned address = 0, i, j;
efx_oword_t mask, imask, original, reg, buf;
/* Falcon should be in loopback to isolate the XMAC from the PHY */
WARN_ON(!LOOPBACK_INTERNAL(efx));
for (i = 0; i < n_regs; ++i) {
address = regs[i].address;
mask = imask = regs[i].mask;
EFX_INVERT_OWORD(imask);
efx_reado(efx, &original, address);
/* bit sweep on and off */
for (j = 0; j < 128; j++) {
if (!EFX_EXTRACT_OWORD32(mask, j, j))
continue;
/* Test this testable bit can be set in isolation */
EFX_AND_OWORD(reg, original, mask);
EFX_SET_OWORD32(reg, j, j, 1);
efx_writeo(efx, &reg, address);
efx_reado(efx, &buf, address);
if (efx_masked_compare_oword(&reg, &buf, &mask))
goto fail;
/* Test this testable bit can be cleared in isolation */
EFX_OR_OWORD(reg, original, mask);
EFX_SET_OWORD32(reg, j, j, 0);
efx_writeo(efx, &reg, address);
efx_reado(efx, &buf, address);
if (efx_masked_compare_oword(&reg, &buf, &mask))
goto fail;
}
efx_writeo(efx, &original, address);
}
return 0;
fail:
netif_err(efx, hw, efx->net_dev,
"wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
return -EIO;
}
/**************************************************************************
*
* Special buffer handling
* Special buffers are used for event queues and the TX and RX
* descriptor rings.
*
*************************************************************************/
/*
* Initialise a special buffer
*
* This will define a buffer (previously allocated via
* efx_alloc_special_buffer()) in the buffer table, allowing
* it to be used for event queues, descriptor rings etc.
*/
static void
efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
efx_qword_t buf_desc;
int index;
dma_addr_t dma_addr;
int i;
EFX_BUG_ON_PARANOID(!buffer->addr);
/* Write buffer descriptors to NIC */
for (i = 0; i < buffer->entries; i++) {
index = buffer->index + i;
dma_addr = buffer->dma_addr + (i * 4096);
netif_dbg(efx, probe, efx->net_dev,
"mapping special buffer %d at %llx\n",
index, (unsigned long long)dma_addr);
EFX_POPULATE_QWORD_3(buf_desc,
FRF_AZ_BUF_ADR_REGION, 0,
FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
FRF_AZ_BUF_OWNER_ID_FBUF, 0);
efx_write_buf_tbl(efx, &buf_desc, index);
}
}
/* Unmaps a buffer and clears the buffer table entries */
static void
efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
efx_oword_t buf_tbl_upd;
unsigned int start = buffer->index;
unsigned int end = (buffer->index + buffer->entries - 1);
if (!buffer->entries)
return;
netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
buffer->index, buffer->index + buffer->entries - 1);
EFX_POPULATE_OWORD_4(buf_tbl_upd,
FRF_AZ_BUF_UPD_CMD, 0,
FRF_AZ_BUF_CLR_CMD, 1,
FRF_AZ_BUF_CLR_END_ID, end,
FRF_AZ_BUF_CLR_START_ID, start);
efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
}
/*
* Allocate a new special buffer
*
* This allocates memory for a new buffer, clears it and allocates a
* new buffer ID range. It does not write into the buffer table.
*
* This call will allocate 4KB buffers, since 8KB buffers can't be
* used for event queues and descriptor rings.
*/
static int efx_alloc_special_buffer(struct efx_nic *efx,
struct efx_special_buffer *buffer,
unsigned int len)
{
len = ALIGN(len, EFX_BUF_SIZE);
buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
&buffer->dma_addr, GFP_KERNEL);
if (!buffer->addr)
return -ENOMEM;
buffer->len = len;
buffer->entries = len / EFX_BUF_SIZE;
BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
/* All zeros is a potentially valid event so memset to 0xff */
memset(buffer->addr, 0xff, len);
/* Select new buffer ID */
buffer->index = efx->next_buffer_table;
efx->next_buffer_table += buffer->entries;
netif_dbg(efx, probe, efx->net_dev,
"allocating special buffers %d-%d at %llx+%x "
"(virt %p phys %llx)\n", buffer->index,
buffer->index + buffer->entries - 1,
(u64)buffer->dma_addr, len,
buffer->addr, (u64)virt_to_phys(buffer->addr));
return 0;
}
static void
efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
if (!buffer->addr)
return;
netif_dbg(efx, hw, efx->net_dev,
"deallocating special buffers %d-%d at %llx+%x "
"(virt %p phys %llx)\n", buffer->index,
buffer->index + buffer->entries - 1,
(u64)buffer->dma_addr, buffer->len,
buffer->addr, (u64)virt_to_phys(buffer->addr));
dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
buffer->dma_addr);
buffer->addr = NULL;
buffer->entries = 0;
}
/**************************************************************************
*
* Generic buffer handling
* These buffers are used for interrupt status and MAC stats
*
**************************************************************************/
int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
unsigned int len)
{
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
&buffer->dma_addr);
if (!buffer->addr)
return -ENOMEM;
buffer->len = len;
memset(buffer->addr, 0, len);
return 0;
}
void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
if (buffer->addr) {
pci_free_consistent(efx->pci_dev, buffer->len,
buffer->addr, buffer->dma_addr);
buffer->addr = NULL;
}
}
/**************************************************************************
*
* TX path
*
**************************************************************************/
/* Returns a pointer to the specified transmit descriptor in the TX
* descriptor queue belonging to the specified channel.
*/
static inline efx_qword_t *
efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
{
return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
}
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
unsigned write_ptr;
efx_dword_t reg;
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
efx_writed_page(tx_queue->efx, &reg,
FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
}
sfc: Use TX push whenever adding descriptors to an empty queue Whenever we add DMA descriptors to a TX ring and update the ring pointer, the TX DMA engine must first read the new DMA descriptors and then start reading packet data. However, all released Solarflare 10G controllers have a 'TX push' feature that allows us to reduce latency by writing the first new DMA descriptor along with the pointer update. This is only useful when the queue is empty. The hardware should ignore the pushed descriptor if the queue is not empty, but this check is buggy, so we must do it in software. In order to tell whether a TX queue is empty, we need to compare the previous transmission count (write_count) and completion count (read_count). However, if we do that every time we update the ring pointer then read_count may ping-pong between the caches of two CPUs running the transmission and completion paths for the queue. Therefore, we split the check for an empty queue between the completion path and the transmission path: - Add an empty_read_count field representing a point at which the completion path saw the TX queue as empty. - Add an old_write_count field for use on the completion path. - On the completion path, whenever read_count reaches or passes old_write_count the TX queue may be empty. We then read write_count, set empty_read_count if read_count == write_count, and update old_write_count. - On the transmission path, we read empty_read_count. If it's set, we compare it with the value of write_count before the current set of descriptors was added. If they match, the queue really is empty and we can use TX push. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-16 07:53:11 +08:00
/* Write pointer and first descriptor for TX descriptor ring */
static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
const efx_qword_t *txd)
{
unsigned write_ptr;
efx_oword_t reg;
BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
FRF_AZ_TX_DESC_WPTR, write_ptr);
reg.qword[0] = *txd;
efx_writeo_page(tx_queue->efx, &reg,
FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
}
static inline bool
efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
{
unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
if (empty_read_count == 0)
return false;
tx_queue->empty_read_count = 0;
return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
}
/* For each entry inserted into the software descriptor ring, create a
* descriptor in the hardware TX descriptor ring (in host memory), and
* write a doorbell.
*/
void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer;
efx_qword_t *txd;
unsigned write_ptr;
sfc: Use TX push whenever adding descriptors to an empty queue Whenever we add DMA descriptors to a TX ring and update the ring pointer, the TX DMA engine must first read the new DMA descriptors and then start reading packet data. However, all released Solarflare 10G controllers have a 'TX push' feature that allows us to reduce latency by writing the first new DMA descriptor along with the pointer update. This is only useful when the queue is empty. The hardware should ignore the pushed descriptor if the queue is not empty, but this check is buggy, so we must do it in software. In order to tell whether a TX queue is empty, we need to compare the previous transmission count (write_count) and completion count (read_count). However, if we do that every time we update the ring pointer then read_count may ping-pong between the caches of two CPUs running the transmission and completion paths for the queue. Therefore, we split the check for an empty queue between the completion path and the transmission path: - Add an empty_read_count field representing a point at which the completion path saw the TX queue as empty. - Add an old_write_count field for use on the completion path. - On the completion path, whenever read_count reaches or passes old_write_count the TX queue may be empty. We then read write_count, set empty_read_count if read_count == write_count, and update old_write_count. - On the transmission path, we read empty_read_count. If it's set, we compare it with the value of write_count before the current set of descriptors was added. If they match, the queue really is empty and we can use TX push. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-16 07:53:11 +08:00
unsigned old_write_count = tx_queue->write_count;
BUG_ON(tx_queue->write_count == tx_queue->insert_count);
do {
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
buffer = &tx_queue->buffer[write_ptr];
txd = efx_tx_desc(tx_queue, write_ptr);
++tx_queue->write_count;
/* Create TX descriptor ring entry */
EFX_POPULATE_QWORD_4(*txd,
FSF_AZ_TX_KER_CONT, buffer->continuation,
FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
FSF_AZ_TX_KER_BUF_REGION, 0,
FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
} while (tx_queue->write_count != tx_queue->insert_count);
wmb(); /* Ensure descriptors are written before they are fetched */
sfc: Use TX push whenever adding descriptors to an empty queue Whenever we add DMA descriptors to a TX ring and update the ring pointer, the TX DMA engine must first read the new DMA descriptors and then start reading packet data. However, all released Solarflare 10G controllers have a 'TX push' feature that allows us to reduce latency by writing the first new DMA descriptor along with the pointer update. This is only useful when the queue is empty. The hardware should ignore the pushed descriptor if the queue is not empty, but this check is buggy, so we must do it in software. In order to tell whether a TX queue is empty, we need to compare the previous transmission count (write_count) and completion count (read_count). However, if we do that every time we update the ring pointer then read_count may ping-pong between the caches of two CPUs running the transmission and completion paths for the queue. Therefore, we split the check for an empty queue between the completion path and the transmission path: - Add an empty_read_count field representing a point at which the completion path saw the TX queue as empty. - Add an old_write_count field for use on the completion path. - On the completion path, whenever read_count reaches or passes old_write_count the TX queue may be empty. We then read write_count, set empty_read_count if read_count == write_count, and update old_write_count. - On the transmission path, we read empty_read_count. If it's set, we compare it with the value of write_count before the current set of descriptors was added. If they match, the queue really is empty and we can use TX push. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-16 07:53:11 +08:00
if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
txd = efx_tx_desc(tx_queue,
old_write_count & tx_queue->ptr_mask);
efx_push_tx_desc(tx_queue, txd);
++tx_queue->pushes;
} else {
efx_notify_tx_desc(tx_queue);
}
}
/* Allocate hardware resources for a TX queue */
int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
unsigned entries;
entries = tx_queue->ptr_mask + 1;
return efx_alloc_special_buffer(efx, &tx_queue->txd,
entries * sizeof(efx_qword_t));
}
void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
efx_oword_t reg;
tx_queue->flushed = FLUSH_NONE;
/* Pin TX descriptor ring */
efx_init_special_buffer(efx, &tx_queue->txd);
/* Push TX descriptor ring to card */
EFX_POPULATE_OWORD_10(reg,
FRF_AZ_TX_DESCQ_EN, 1,
FRF_AZ_TX_ISCSI_DDIG_EN, 0,
FRF_AZ_TX_ISCSI_HDIG_EN, 0,
FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
FRF_AZ_TX_DESCQ_EVQ_ID,
tx_queue->channel->channel,
FRF_AZ_TX_DESCQ_OWNER_ID, 0,
FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
FRF_AZ_TX_DESCQ_SIZE,
__ffs(tx_queue->txd.entries),
FRF_AZ_TX_DESCQ_TYPE, 0,
FRF_BZ_TX_NON_IP_DROP_DIS, 1);
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
!csum);
}
efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
tx_queue->queue);
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
/* Only 128 bits in this register */
BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
clear_bit_le(tx_queue->queue, (void *)&reg);
else
set_bit_le(tx_queue->queue, (void *)&reg);
efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
}
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
EFX_POPULATE_OWORD_1(reg,
FRF_BZ_TX_PACE,
(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
FFE_BZ_TX_PACE_OFF :
FFE_BZ_TX_PACE_RESERVED);
efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
tx_queue->queue);
}
}
static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
efx_oword_t tx_flush_descq;
tx_queue->flushed = FLUSH_PENDING;
/* Post a flush command */
EFX_POPULATE_OWORD_2(tx_flush_descq,
FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
}
void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
efx_oword_t tx_desc_ptr;
/* The queue should have been flushed */
WARN_ON(tx_queue->flushed != FLUSH_DONE);
/* Remove TX descriptor ring from card */
EFX_ZERO_OWORD(tx_desc_ptr);
efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
tx_queue->queue);
/* Unpin TX descriptor ring */
efx_fini_special_buffer(efx, &tx_queue->txd);
}
/* Free buffers backing TX queue */
void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
{
efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}
/**************************************************************************
*
* RX path
*
**************************************************************************/
/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *
efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
}
/* This creates an entry in the RX descriptor queue */
static inline void
efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
{
struct efx_rx_buffer *rx_buf;
efx_qword_t *rxd;
rxd = efx_rx_desc(rx_queue, index);
rx_buf = efx_rx_buffer(rx_queue, index);
EFX_POPULATE_QWORD_3(*rxd,
FSF_AZ_RX_KER_BUF_SIZE,
rx_buf->len -
rx_queue->efx->type->rx_buffer_padding,
FSF_AZ_RX_KER_BUF_REGION, 0,
FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}
/* This writes to the RX_DESC_WPTR register for the specified receive
* descriptor ring.
*/
void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
efx_dword_t reg;
unsigned write_ptr;
while (rx_queue->notified_count != rx_queue->added_count) {
efx_build_rx_desc(
rx_queue,
rx_queue->notified_count & rx_queue->ptr_mask);
++rx_queue->notified_count;
}
wmb();
write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
efx_rx_queue_index(rx_queue));
}
int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned entries;
entries = rx_queue->ptr_mask + 1;
return efx_alloc_special_buffer(efx, &rx_queue->rxd,
entries * sizeof(efx_qword_t));
}
void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
{
efx_oword_t rx_desc_ptr;
struct efx_nic *efx = rx_queue->efx;
bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
bool iscsi_digest_en = is_b0;
netif_dbg(efx, hw, efx->net_dev,
"RX queue %d ring in special buffers %d-%d\n",
efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
rx_queue->rxd.index + rx_queue->rxd.entries - 1);
rx_queue->flushed = FLUSH_NONE;
/* Pin RX descriptor ring */
efx_init_special_buffer(efx, &rx_queue->rxd);
/* Push RX descriptor ring to card */
EFX_POPULATE_OWORD_10(rx_desc_ptr,
FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
FRF_AZ_RX_DESCQ_EVQ_ID,
efx_rx_queue_channel(rx_queue)->channel,
FRF_AZ_RX_DESCQ_OWNER_ID, 0,
FRF_AZ_RX_DESCQ_LABEL,
efx_rx_queue_index(rx_queue),
FRF_AZ_RX_DESCQ_SIZE,
__ffs(rx_queue->rxd.entries),
FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
/* For >=B0 this is scatter so disable */
FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
FRF_AZ_RX_DESCQ_EN, 1);
efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
efx_rx_queue_index(rx_queue));
}
static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
efx_oword_t rx_flush_descq;
rx_queue->flushed = FLUSH_PENDING;
/* Post a flush command */
EFX_POPULATE_OWORD_2(rx_flush_descq,
FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
FRF_AZ_RX_FLUSH_DESCQ,
efx_rx_queue_index(rx_queue));
efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
}
void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
{
efx_oword_t rx_desc_ptr;
struct efx_nic *efx = rx_queue->efx;
/* The queue should already have been flushed */
WARN_ON(rx_queue->flushed != FLUSH_DONE);
/* Remove RX descriptor ring from card */
EFX_ZERO_OWORD(rx_desc_ptr);
efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
efx_rx_queue_index(rx_queue));
/* Unpin RX descriptor ring */
efx_fini_special_buffer(efx, &rx_queue->rxd);
}
/* Free buffers backing RX queue */
void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
{
efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}
/**************************************************************************
*
* Event queue processing
* Event queues are processed by per-channel tasklets.
*
**************************************************************************/
/* Update a channel's event queue's read pointer (RPTR) register
*
* This writes the EVQ_RPTR_REG register for the specified channel's
* event queue.
*/
void efx_nic_eventq_read_ack(struct efx_channel *channel)
{
efx_dword_t reg;
struct efx_nic *efx = channel->efx;
sfc: Do not use efx_process_channel_now() in online self-test During self-tests we use efx_process_channel_now() to handle completion and other events synchronously. This disables interrupts and NAPI processing for the channel in question, but it may still be interrupted by another channel. A single socket may receive packets from multiple net devices or even multiple channels of the same net device, so this can result in deadlock on a socket lock. Receiving packets in process context will also result in incorrect classification by the network cgroup classifier. Therefore, we must only use efx_process_channel_now() in the offline loopback tests (which never deliver packets up the stack) and not for the online interrupt and event tests. For the interrupt test, there is no reason to process events. We only care that an interrupt is raised. For the event test, we want to know whether events have been received, and there may be many events ahead of the one we inject. Therefore remove efx_channel::magic_count and instead test whether efx_channel::eventq_read_ptr advances. This is currently an event queue index and might wrap around to exactly the same value, resulting in a false negative. Therefore move the masking to efx_event() and efx_nic_eventq_read_ack() so that it cannot wrap within the time of the test. The event test also tries to diagnose failures by checking whether an event was delivered without causing an interrupt. Add and use a helper function that only does this. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2011-04-04 21:22:11 +08:00
EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
channel->eventq_read_ptr & channel->eventq_mask);
efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
channel->channel);
}
/* Use HW to insert a SW defined event */
static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
{
efx_oword_t drv_ev_reg;
BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
FRF_AZ_DRV_EV_DATA_WIDTH != 64);
drv_ev_reg.u32[0] = event->u32[0];
drv_ev_reg.u32[1] = event->u32[1];
drv_ev_reg.u32[2] = 0;
drv_ev_reg.u32[3] = 0;
EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
}
/* Handle a transmit completion event
*
* The NIC batches TX completion events; the message we receive is of
* the form "complete all TX events up to this index".
*/
static int
efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
unsigned int tx_ev_desc_ptr;
unsigned int tx_ev_q_label;
struct efx_tx_queue *tx_queue;
struct efx_nic *efx = channel->efx;
int tx_packets = 0;
if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
/* Transmit completion */
tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
tx_queue = efx_channel_get_tx_queue(
channel, tx_ev_q_label % EFX_TXQ_TYPES);
tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
tx_queue->ptr_mask);
channel->irq_mod_score += tx_packets;
efx_xmit_done(tx_queue, tx_ev_desc_ptr);
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
/* Rewrite the FIFO write pointer */
tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
tx_queue = efx_channel_get_tx_queue(
channel, tx_ev_q_label % EFX_TXQ_TYPES);
if (efx_dev_registered(efx))
netif_tx_lock(efx->net_dev);
efx_notify_tx_desc(tx_queue);
if (efx_dev_registered(efx))
netif_tx_unlock(efx->net_dev);
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
EFX_WORKAROUND_10727(efx)) {
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
} else {
netif_err(efx, tx_err, efx->net_dev,
"channel %d unexpected TX event "
EFX_QWORD_FMT"\n", channel->channel,
EFX_QWORD_VAL(*event));
}
return tx_packets;
}
/* Detect errors included in the rx_evt_pkt_ok bit. */
static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
const efx_qword_t *event,
bool *rx_ev_pkt_ok,
bool *discard)
{
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
struct efx_nic *efx = rx_queue->efx;
bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
bool rx_ev_other_err, rx_ev_pause_frm;
bool rx_ev_hdr_type, rx_ev_mcast_pkt;
unsigned rx_ev_pkt_type;
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
/* Every error apart from tobe_disc and pause_frm */
rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
/* Count errors that are not in MAC stats. Ignore expected
* checksum errors during self-test. */
if (rx_ev_frm_trunc)
++channel->n_rx_frm_trunc;
else if (rx_ev_tobe_disc)
++channel->n_rx_tobe_disc;
else if (!efx->loopback_selftest) {
if (rx_ev_ip_hdr_chksum_err)
++channel->n_rx_ip_hdr_chksum_err;
else if (rx_ev_tcp_udp_chksum_err)
++channel->n_rx_tcp_udp_chksum_err;
}
/* The frame must be discarded if any of these are true. */
*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
rx_ev_tobe_disc | rx_ev_pause_frm);
/* TOBE_DISC is expected on unicast mismatches; don't print out an
* error message. FRM_TRUNC indicates RXDP dropped the packet due
* to a FIFO overflow.
*/
#ifdef EFX_ENABLE_DEBUG
if (rx_ev_other_err && net_ratelimit()) {
netif_dbg(efx, rx_err, efx->net_dev,
" RX queue %d unexpected RX event "
EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
rx_ev_ip_hdr_chksum_err ?
" [IP_HDR_CHKSUM_ERR]" : "",
rx_ev_tcp_udp_chksum_err ?
" [TCP_UDP_CHKSUM_ERR]" : "",
rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
rx_ev_drib_nib ? " [DRIB_NIB]" : "",
rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
rx_ev_pause_frm ? " [PAUSE]" : "");
}
#endif
}
/* Handle receive events that are not in-order. */
static void
efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
{
struct efx_nic *efx = rx_queue->efx;
unsigned expected, dropped;
expected = rx_queue->removed_count & rx_queue->ptr_mask;
dropped = (index - expected) & rx_queue->ptr_mask;
netif_info(efx, rx_err, efx->net_dev,
"dropped %d events (index=%d expected=%d)\n",
dropped, index, expected);
efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
}
/* Handle a packet received event
*
* The NIC gives a "discard" flag if it's a unicast packet with the
* wrong destination address
* Also "is multicast" and "matches multicast filter" flags can be used to
* discard non-matching multicast packets.
*/
static void
efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
{
unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
unsigned expected_ptr;
bool rx_ev_pkt_ok, discard = false, checksummed;
struct efx_rx_queue *rx_queue;
/* Basic packet information */
rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
channel->channel);
rx_queue = efx_channel_get_rx_queue(channel);
rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
if (unlikely(rx_ev_desc_ptr != expected_ptr))
efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
if (likely(rx_ev_pkt_ok)) {
/* If packet is marked as OK and packet type is TCP/IP or
* UDP/IP, then we can rely on the hardware checksum.
*/
checksummed =
rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP;
} else {
efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
checksummed = false;
}
/* Detect multicast packets that didn't match the filter */
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
if (rx_ev_mcast_pkt) {
unsigned int rx_ev_mcast_hash_match =
EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
if (unlikely(!rx_ev_mcast_hash_match)) {
++channel->n_rx_mcast_mismatch;
discard = true;
}
}
channel->irq_mod_score += 2;
/* Handle received packet */
efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
checksummed, discard);
}
static void
efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
unsigned code;
code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
if (code == EFX_CHANNEL_MAGIC_TEST(channel))
sfc: Do not use efx_process_channel_now() in online self-test During self-tests we use efx_process_channel_now() to handle completion and other events synchronously. This disables interrupts and NAPI processing for the channel in question, but it may still be interrupted by another channel. A single socket may receive packets from multiple net devices or even multiple channels of the same net device, so this can result in deadlock on a socket lock. Receiving packets in process context will also result in incorrect classification by the network cgroup classifier. Therefore, we must only use efx_process_channel_now() in the offline loopback tests (which never deliver packets up the stack) and not for the online interrupt and event tests. For the interrupt test, there is no reason to process events. We only care that an interrupt is raised. For the event test, we want to know whether events have been received, and there may be many events ahead of the one we inject. Therefore remove efx_channel::magic_count and instead test whether efx_channel::eventq_read_ptr advances. This is currently an event queue index and might wrap around to exactly the same value, resulting in a false negative. Therefore move the masking to efx_event() and efx_nic_eventq_read_ack() so that it cannot wrap within the time of the test. The event test also tries to diagnose failures by checking whether an event was delivered without causing an interrupt. Add and use a helper function that only does this. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2011-04-04 21:22:11 +08:00
; /* ignore */
else if (code == EFX_CHANNEL_MAGIC_FILL(channel))
/* The queue must be empty, so we won't receive any rx
* events, so efx_process_channel() won't refill the
* queue. Refill it here */
efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
else
netif_dbg(efx, hw, efx->net_dev, "channel %d received "
"generated event "EFX_QWORD_FMT"\n",
channel->channel, EFX_QWORD_VAL(*event));
}
static void
efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
unsigned int ev_sub_code;
unsigned int ev_sub_data;
ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
switch (ev_sub_code) {
case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
channel->channel, ev_sub_data);
break;
case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
channel->channel, ev_sub_data);
break;
case FSE_AZ_EVQ_INIT_DONE_EV:
netif_dbg(efx, hw, efx->net_dev,
"channel %d EVQ %d initialised\n",
channel->channel, ev_sub_data);
break;
case FSE_AZ_SRM_UPD_DONE_EV:
netif_vdbg(efx, hw, efx->net_dev,
"channel %d SRAM update done\n", channel->channel);
break;
case FSE_AZ_WAKE_UP_EV:
netif_vdbg(efx, hw, efx->net_dev,
"channel %d RXQ %d wakeup event\n",
channel->channel, ev_sub_data);
break;
case FSE_AZ_TIMER_EV:
netif_vdbg(efx, hw, efx->net_dev,
"channel %d RX queue %d timer expired\n",
channel->channel, ev_sub_data);
break;
case FSE_AA_RX_RECOVER_EV:
netif_err(efx, rx_err, efx->net_dev,
"channel %d seen DRIVER RX_RESET event. "
"Resetting.\n", channel->channel);
atomic_inc(&efx->rx_reset);
efx_schedule_reset(efx,
EFX_WORKAROUND_6555(efx) ?
RESET_TYPE_RX_RECOVERY :
RESET_TYPE_DISABLE);
break;
case FSE_BZ_RX_DSC_ERROR_EV:
netif_err(efx, rx_err, efx->net_dev,
"RX DMA Q %d reports descriptor fetch error."
" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
break;
case FSE_BZ_TX_DSC_ERROR_EV:
netif_err(efx, tx_err, efx->net_dev,
"TX DMA Q %d reports descriptor fetch error."
" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
break;
default:
netif_vdbg(efx, hw, efx->net_dev,
"channel %d unknown driver event code %d "
"data %04x\n", channel->channel, ev_sub_code,
ev_sub_data);
break;
}
}
int efx_nic_process_eventq(struct efx_channel *channel, int budget)
{
struct efx_nic *efx = channel->efx;
unsigned int read_ptr;
efx_qword_t event, *p_event;
int ev_code;
int tx_packets = 0;
int spent = 0;
read_ptr = channel->eventq_read_ptr;
for (;;) {
p_event = efx_event(channel, read_ptr);
event = *p_event;
if (!efx_event_present(&event))
/* End of events */
break;
netif_vdbg(channel->efx, intr, channel->efx->net_dev,
"channel %d event is "EFX_QWORD_FMT"\n",
channel->channel, EFX_QWORD_VAL(event));
/* Clear this event by marking it all ones */
EFX_SET_QWORD(*p_event);
sfc: Do not use efx_process_channel_now() in online self-test During self-tests we use efx_process_channel_now() to handle completion and other events synchronously. This disables interrupts and NAPI processing for the channel in question, but it may still be interrupted by another channel. A single socket may receive packets from multiple net devices or even multiple channels of the same net device, so this can result in deadlock on a socket lock. Receiving packets in process context will also result in incorrect classification by the network cgroup classifier. Therefore, we must only use efx_process_channel_now() in the offline loopback tests (which never deliver packets up the stack) and not for the online interrupt and event tests. For the interrupt test, there is no reason to process events. We only care that an interrupt is raised. For the event test, we want to know whether events have been received, and there may be many events ahead of the one we inject. Therefore remove efx_channel::magic_count and instead test whether efx_channel::eventq_read_ptr advances. This is currently an event queue index and might wrap around to exactly the same value, resulting in a false negative. Therefore move the masking to efx_event() and efx_nic_eventq_read_ack() so that it cannot wrap within the time of the test. The event test also tries to diagnose failures by checking whether an event was delivered without causing an interrupt. Add and use a helper function that only does this. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2011-04-04 21:22:11 +08:00
++read_ptr;
ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
switch (ev_code) {
case FSE_AZ_EV_CODE_RX_EV:
efx_handle_rx_event(channel, &event);
if (++spent == budget)
goto out;
break;
case FSE_AZ_EV_CODE_TX_EV:
tx_packets += efx_handle_tx_event(channel, &event);
if (tx_packets > efx->txq_entries) {
spent = budget;
goto out;
}
break;
case FSE_AZ_EV_CODE_DRV_GEN_EV:
efx_handle_generated_event(channel, &event);
break;
case FSE_AZ_EV_CODE_DRIVER_EV:
efx_handle_driver_event(channel, &event);
break;
case FSE_CZ_EV_CODE_MCDI_EV:
efx_mcdi_process_event(channel, &event);
break;
case FSE_AZ_EV_CODE_GLOBAL_EV:
if (efx->type->handle_global_event &&
efx->type->handle_global_event(channel, &event))
break;
/* else fall through */
default:
netif_err(channel->efx, hw, channel->efx->net_dev,
"channel %d unknown event type %d (data "
EFX_QWORD_FMT ")\n", channel->channel,
ev_code, EFX_QWORD_VAL(event));
}
}
out:
channel->eventq_read_ptr = read_ptr;
return spent;
}
sfc: Do not use efx_process_channel_now() in online self-test During self-tests we use efx_process_channel_now() to handle completion and other events synchronously. This disables interrupts and NAPI processing for the channel in question, but it may still be interrupted by another channel. A single socket may receive packets from multiple net devices or even multiple channels of the same net device, so this can result in deadlock on a socket lock. Receiving packets in process context will also result in incorrect classification by the network cgroup classifier. Therefore, we must only use efx_process_channel_now() in the offline loopback tests (which never deliver packets up the stack) and not for the online interrupt and event tests. For the interrupt test, there is no reason to process events. We only care that an interrupt is raised. For the event test, we want to know whether events have been received, and there may be many events ahead of the one we inject. Therefore remove efx_channel::magic_count and instead test whether efx_channel::eventq_read_ptr advances. This is currently an event queue index and might wrap around to exactly the same value, resulting in a false negative. Therefore move the masking to efx_event() and efx_nic_eventq_read_ack() so that it cannot wrap within the time of the test. The event test also tries to diagnose failures by checking whether an event was delivered without causing an interrupt. Add and use a helper function that only does this. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2011-04-04 21:22:11 +08:00
/* Check whether an event is present in the eventq at the current
* read pointer. Only useful for self-test.
*/
bool efx_nic_event_present(struct efx_channel *channel)
{
return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
}
/* Allocate buffer table entries for event queue */
int efx_nic_probe_eventq(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
unsigned entries;
entries = channel->eventq_mask + 1;
return efx_alloc_special_buffer(efx, &channel->eventq,
entries * sizeof(efx_qword_t));
}
void efx_nic_init_eventq(struct efx_channel *channel)
{
efx_oword_t reg;
struct efx_nic *efx = channel->efx;
netif_dbg(efx, hw, efx->net_dev,
"channel %d event queue in special buffers %d-%d\n",
channel->channel, channel->eventq.index,
channel->eventq.index + channel->eventq.entries - 1);
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
EFX_POPULATE_OWORD_3(reg,
FRF_CZ_TIMER_Q_EN, 1,
FRF_CZ_HOST_NOTIFY_MODE, 0,
FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
}
/* Pin event queue buffer */
efx_init_special_buffer(efx, &channel->eventq);
/* Fill event queue with all ones (i.e. empty events) */
memset(channel->eventq.addr, 0xff, channel->eventq.len);
/* Push event queue to card */
EFX_POPULATE_OWORD_3(reg,
FRF_AZ_EVQ_EN, 1,
FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
channel->channel);
efx->type->push_irq_moderation(channel);
}
void efx_nic_fini_eventq(struct efx_channel *channel)
{
efx_oword_t reg;
struct efx_nic *efx = channel->efx;
/* Remove event queue from card */
EFX_ZERO_OWORD(reg);
efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
channel->channel);
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
/* Unpin event queue */
efx_fini_special_buffer(efx, &channel->eventq);
}
/* Free buffers backing event queue */
void efx_nic_remove_eventq(struct efx_channel *channel)
{
efx_free_special_buffer(channel->efx, &channel->eventq);
}
void efx_nic_generate_test_event(struct efx_channel *channel)
{
unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel);
efx_qword_t test_event;
EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
FSE_AZ_EV_CODE_DRV_GEN_EV,
FSF_AZ_DRV_GEN_EV_MAGIC, magic);
efx_generate_event(channel, &test_event);
}
void efx_nic_generate_fill_event(struct efx_channel *channel)
{
unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel);
efx_qword_t test_event;
EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
FSE_AZ_EV_CODE_DRV_GEN_EV,
FSF_AZ_DRV_GEN_EV_MAGIC, magic);
efx_generate_event(channel, &test_event);
}
/**************************************************************************
*
* Flush handling
*
**************************************************************************/
static void efx_poll_flush_events(struct efx_nic *efx)
{
struct efx_channel *channel = efx_get_channel(efx, 0);
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
unsigned int read_ptr = channel->eventq_read_ptr;
sfc: Do not use efx_process_channel_now() in online self-test During self-tests we use efx_process_channel_now() to handle completion and other events synchronously. This disables interrupts and NAPI processing for the channel in question, but it may still be interrupted by another channel. A single socket may receive packets from multiple net devices or even multiple channels of the same net device, so this can result in deadlock on a socket lock. Receiving packets in process context will also result in incorrect classification by the network cgroup classifier. Therefore, we must only use efx_process_channel_now() in the offline loopback tests (which never deliver packets up the stack) and not for the online interrupt and event tests. For the interrupt test, there is no reason to process events. We only care that an interrupt is raised. For the event test, we want to know whether events have been received, and there may be many events ahead of the one we inject. Therefore remove efx_channel::magic_count and instead test whether efx_channel::eventq_read_ptr advances. This is currently an event queue index and might wrap around to exactly the same value, resulting in a false negative. Therefore move the masking to efx_event() and efx_nic_eventq_read_ack() so that it cannot wrap within the time of the test. The event test also tries to diagnose failures by checking whether an event was delivered without causing an interrupt. Add and use a helper function that only does this. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2011-04-04 21:22:11 +08:00
unsigned int end_ptr = read_ptr + channel->eventq_mask - 1;
do {
efx_qword_t *event = efx_event(channel, read_ptr);
int ev_code, ev_sub_code, ev_queue;
bool ev_failed;
if (!efx_event_present(event))
break;
ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
ev_sub_code = EFX_QWORD_FIELD(*event,
FSF_AZ_DRIVER_EV_SUBCODE);
if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
ev_queue = EFX_QWORD_FIELD(*event,
FSF_AZ_DRIVER_EV_SUBDATA);
if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
tx_queue = efx_get_tx_queue(
efx, ev_queue / EFX_TXQ_TYPES,
ev_queue % EFX_TXQ_TYPES);
tx_queue->flushed = FLUSH_DONE;
}
} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
ev_queue = EFX_QWORD_FIELD(
*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
ev_failed = EFX_QWORD_FIELD(
*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
if (ev_queue < efx->n_rx_channels) {
rx_queue = efx_get_rx_queue(efx, ev_queue);
rx_queue->flushed =
ev_failed ? FLUSH_FAILED : FLUSH_DONE;
}
}
/* We're about to destroy the queue anyway, so
* it's ok to throw away every non-flush event */
EFX_SET_QWORD(*event);
sfc: Do not use efx_process_channel_now() in online self-test During self-tests we use efx_process_channel_now() to handle completion and other events synchronously. This disables interrupts and NAPI processing for the channel in question, but it may still be interrupted by another channel. A single socket may receive packets from multiple net devices or even multiple channels of the same net device, so this can result in deadlock on a socket lock. Receiving packets in process context will also result in incorrect classification by the network cgroup classifier. Therefore, we must only use efx_process_channel_now() in the offline loopback tests (which never deliver packets up the stack) and not for the online interrupt and event tests. For the interrupt test, there is no reason to process events. We only care that an interrupt is raised. For the event test, we want to know whether events have been received, and there may be many events ahead of the one we inject. Therefore remove efx_channel::magic_count and instead test whether efx_channel::eventq_read_ptr advances. This is currently an event queue index and might wrap around to exactly the same value, resulting in a false negative. Therefore move the masking to efx_event() and efx_nic_eventq_read_ack() so that it cannot wrap within the time of the test. The event test also tries to diagnose failures by checking whether an event was delivered without causing an interrupt. Add and use a helper function that only does this. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2011-04-04 21:22:11 +08:00
++read_ptr;
} while (read_ptr != end_ptr);
channel->eventq_read_ptr = read_ptr;
}
/* Handle tx and rx flushes at the same time, since they run in
* parallel in the hardware and there's no reason for us to
* serialise them */
int efx_nic_flush_queues(struct efx_nic *efx)
{
struct efx_channel *channel;
struct efx_rx_queue *rx_queue;
struct efx_tx_queue *tx_queue;
int i, tx_pending, rx_pending;
/* If necessary prepare the hardware for flushing */
efx->type->prepare_flush(efx);
/* Flush all tx queues in parallel */
efx_for_each_channel(channel, efx) {
efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
if (tx_queue->initialised)
efx_flush_tx_queue(tx_queue);
}
}
/* The hardware supports four concurrent rx flushes, each of which may
* need to be retried if there is an outstanding descriptor fetch */
for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
rx_pending = tx_pending = 0;
efx_for_each_channel(channel, efx) {
efx_for_each_channel_rx_queue(rx_queue, channel) {
if (rx_queue->flushed == FLUSH_PENDING)
++rx_pending;
}
}
efx_for_each_channel(channel, efx) {
efx_for_each_channel_rx_queue(rx_queue, channel) {
if (rx_pending == EFX_RX_FLUSH_COUNT)
break;
if (rx_queue->flushed == FLUSH_FAILED ||
rx_queue->flushed == FLUSH_NONE) {
efx_flush_rx_queue(rx_queue);
++rx_pending;
}
}
efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
if (tx_queue->initialised &&
tx_queue->flushed != FLUSH_DONE)
++tx_pending;
}
}
if (rx_pending == 0 && tx_pending == 0)
return 0;
msleep(EFX_FLUSH_INTERVAL);
efx_poll_flush_events(efx);
}
/* Mark the queues as all flushed. We're going to return failure
* leading to a reset, or fake up success anyway */
efx_for_each_channel(channel, efx) {
efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
if (tx_queue->initialised &&
tx_queue->flushed != FLUSH_DONE)
netif_err(efx, hw, efx->net_dev,
"tx queue %d flush command timed out\n",
tx_queue->queue);
tx_queue->flushed = FLUSH_DONE;
}
efx_for_each_channel_rx_queue(rx_queue, channel) {
if (rx_queue->flushed != FLUSH_DONE)
netif_err(efx, hw, efx->net_dev,
"rx queue %d flush command timed out\n",
efx_rx_queue_index(rx_queue));
rx_queue->flushed = FLUSH_DONE;
}
}
return -ETIMEDOUT;
}
/**************************************************************************
*
* Hardware interrupts
* The hardware interrupt handler does very little work; all the event
* queue processing is carried out by per-channel tasklets.
*
**************************************************************************/
/* Enable/disable/generate interrupts */
static inline void efx_nic_interrupts(struct efx_nic *efx,
bool enabled, bool force)
{
efx_oword_t int_en_reg_ker;
EFX_POPULATE_OWORD_3(int_en_reg_ker,
FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
FRF_AZ_KER_INT_KER, force,
FRF_AZ_DRV_INT_EN_KER, enabled);
efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
}
void efx_nic_enable_interrupts(struct efx_nic *efx)
{
struct efx_channel *channel;
EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
/* Enable interrupts */
efx_nic_interrupts(efx, true, false);
/* Force processing of all the channels to get the EVQ RPTRs up to
date */
efx_for_each_channel(channel, efx)
efx_schedule_channel(channel);
}
void efx_nic_disable_interrupts(struct efx_nic *efx)
{
/* Disable interrupts */
efx_nic_interrupts(efx, false, false);
}
/* Generate a test interrupt
* Interrupt must already have been enabled, otherwise nasty things
* may happen.
*/
void efx_nic_generate_interrupt(struct efx_nic *efx)
{
efx_nic_interrupts(efx, true, true);
}
/* Process a fatal interrupt
* Disable bus mastering ASAP and schedule a reset
*/
irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
efx_oword_t *int_ker = efx->irq_status.addr;
efx_oword_t fatal_intr;
int error, mem_perr;
efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
EFX_OWORD_VAL(fatal_intr),
error ? "disabling bus mastering" : "no recognised error");
/* If this is a memory parity error dump which blocks are offending */
mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
if (mem_perr) {
efx_oword_t reg;
efx_reado(efx, &reg, FR_AZ_MEM_STAT);
netif_err(efx, hw, efx->net_dev,
"SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
EFX_OWORD_VAL(reg));
}
/* Disable both devices */
pci_clear_master(efx->pci_dev);
if (efx_nic_is_dual_func(efx))
pci_clear_master(nic_data->pci_dev2);
efx_nic_disable_interrupts(efx);
/* Count errors and reset or disable the NIC accordingly */
if (efx->int_error_count == 0 ||
time_after(jiffies, efx->int_error_expire)) {
efx->int_error_count = 0;
efx->int_error_expire =
jiffies + EFX_INT_ERROR_EXPIRE * HZ;
}
if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
netif_err(efx, hw, efx->net_dev,
"SYSTEM ERROR - reset scheduled\n");
efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
} else {
netif_err(efx, hw, efx->net_dev,
"SYSTEM ERROR - max number of errors seen."
"NIC will be disabled\n");
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}
return IRQ_HANDLED;
}
/* Handle a legacy interrupt
* Acknowledges the interrupt and schedule event queue processing.
*/
static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
{
struct efx_nic *efx = dev_id;
efx_oword_t *int_ker = efx->irq_status.addr;
irqreturn_t result = IRQ_NONE;
struct efx_channel *channel;
efx_dword_t reg;
u32 queues;
int syserr;
/* Could this be ours? If interrupts are disabled then the
* channel state may not be valid.
*/
if (!efx->legacy_irq_enabled)
return result;
/* Read the ISR which also ACKs the interrupts */
efx_readd(efx, &reg, FR_BZ_INT_ISR0);
queues = EFX_EXTRACT_DWORD(reg, 0, 31);
/* Check to see if we have a serious error condition */
if (queues & (1U << efx->fatal_irq_level)) {
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
return efx_nic_fatal_interrupt(efx);
}
if (queues != 0) {
if (EFX_WORKAROUND_15783(efx))
efx->irq_zero_count = 0;
/* Schedule processing of any interrupting queues */
efx_for_each_channel(channel, efx) {
if (queues & 1)
efx_schedule_channel(channel);
queues >>= 1;
}
result = IRQ_HANDLED;
} else if (EFX_WORKAROUND_15783(efx)) {
efx_qword_t *event;
/* We can't return IRQ_HANDLED more than once on seeing ISR=0
* because this might be a shared interrupt. */
if (efx->irq_zero_count++ == 0)
result = IRQ_HANDLED;
/* Ensure we schedule or rearm all event queues */
efx_for_each_channel(channel, efx) {
event = efx_event(channel, channel->eventq_read_ptr);
if (efx_event_present(event))
efx_schedule_channel(channel);
else
efx_nic_eventq_read_ack(channel);
}
}
if (result == IRQ_HANDLED) {
efx->last_irq_cpu = raw_smp_processor_id();
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
}
return result;
}
/* Handle an MSI interrupt
*
* Handle an MSI hardware interrupt. This routine schedules event
* queue processing. No interrupt acknowledgement cycle is necessary.
* Also, we never need to check that the interrupt is for us, since
* MSI interrupts cannot be shared.
*/
static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
{
struct efx_channel *channel = *(struct efx_channel **)dev_id;
struct efx_nic *efx = channel->efx;
efx_oword_t *int_ker = efx->irq_status.addr;
int syserr;
efx->last_irq_cpu = raw_smp_processor_id();
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
/* Check to see if we have a serious error condition */
if (channel->channel == efx->fatal_irq_level) {
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
return efx_nic_fatal_interrupt(efx);
}
/* Schedule processing of the channel */
efx_schedule_channel(channel);
return IRQ_HANDLED;
}
/* Setup RSS indirection table.
* This maps from the hash value of the packet to RXQ
*/
void efx_nic_push_rx_indir_table(struct efx_nic *efx)
{
size_t i = 0;
efx_dword_t dword;
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
return;
BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
FR_BZ_RX_INDIRECTION_TBL_ROWS);
for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
efx->rx_indir_table[i]);
efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
}
}
/* Hook interrupt handler(s)
* Try MSI and then legacy interrupts.
*/
int efx_nic_init_interrupt(struct efx_nic *efx)
{
struct efx_channel *channel;
int rc;
if (!EFX_INT_MODE_USE_MSI(efx)) {
irq_handler_t handler;
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
handler = efx_legacy_interrupt;
else
handler = falcon_legacy_interrupt_a1;
rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
efx->name, efx);
if (rc) {
netif_err(efx, drv, efx->net_dev,
"failed to hook legacy IRQ %d\n",
efx->pci_dev->irq);
goto fail1;
}
return 0;
}
/* Hook MSI or MSI-X interrupt */
efx_for_each_channel(channel, efx) {
rc = request_irq(channel->irq, efx_msi_interrupt,
IRQF_PROBE_SHARED, /* Not shared */
efx->channel_name[channel->channel],
&efx->channel[channel->channel]);
if (rc) {
netif_err(efx, drv, efx->net_dev,
"failed to hook IRQ %d\n", channel->irq);
goto fail2;
}
}
return 0;
fail2:
efx_for_each_channel(channel, efx)
free_irq(channel->irq, &efx->channel[channel->channel]);
fail1:
return rc;
}
void efx_nic_fini_interrupt(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_oword_t reg;
/* Disable MSI/MSI-X interrupts */
efx_for_each_channel(channel, efx) {
if (channel->irq)
free_irq(channel->irq, &efx->channel[channel->channel]);
}
/* ACK legacy interrupt */
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
efx_reado(efx, &reg, FR_BZ_INT_ISR0);
else
falcon_irq_ack_a1(efx);
/* Disable legacy interrupt */
if (efx->legacy_irq)
free_irq(efx->legacy_irq, efx);
}
u32 efx_nic_fpga_ver(struct efx_nic *efx)
{
efx_oword_t altera_build;
efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
}
void efx_nic_init_common(struct efx_nic *efx)
{
efx_oword_t temp;
/* Set positions of descriptor caches in SRAM. */
EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
efx->type->tx_dc_base / 8);
efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
efx->type->rx_dc_base / 8);
efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
/* Set TX descriptor cache size. */
BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
/* Set RX descriptor cache size. Set low watermark to size-8, as
* this allows most efficient prefetching.
*/
BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
/* Program INT_KER address */
EFX_POPULATE_OWORD_2(temp,
FRF_AZ_NORM_INT_VEC_DIS_KER,
EFX_INT_MODE_USE_MSI(efx),
FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
/* Use an interrupt level unused by event queues */
efx->fatal_irq_level = 0x1f;
else
/* Use a valid MSI-X vector */
efx->fatal_irq_level = 0;
/* Enable all the genuinely fatal interrupts. (They are still
* masked by the overall interrupt mask, controlled by
* falcon_interrupts()).
*
* Note: All other fatal interrupts are enabled
*/
EFX_POPULATE_OWORD_3(temp,
FRF_AZ_ILL_ADR_INT_KER_EN, 1,
FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
EFX_INVERT_OWORD(temp);
efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
efx_nic_push_rx_indir_table(efx);
/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
* controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
*/
efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
sfc: Use TX push whenever adding descriptors to an empty queue Whenever we add DMA descriptors to a TX ring and update the ring pointer, the TX DMA engine must first read the new DMA descriptors and then start reading packet data. However, all released Solarflare 10G controllers have a 'TX push' feature that allows us to reduce latency by writing the first new DMA descriptor along with the pointer update. This is only useful when the queue is empty. The hardware should ignore the pushed descriptor if the queue is not empty, but this check is buggy, so we must do it in software. In order to tell whether a TX queue is empty, we need to compare the previous transmission count (write_count) and completion count (read_count). However, if we do that every time we update the ring pointer then read_count may ping-pong between the caches of two CPUs running the transmission and completion paths for the queue. Therefore, we split the check for an empty queue between the completion path and the transmission path: - Add an empty_read_count field representing a point at which the completion path saw the TX queue as empty. - Add an old_write_count field for use on the completion path. - On the completion path, whenever read_count reaches or passes old_write_count the TX queue may be empty. We then read write_count, set empty_read_count if read_count == write_count, and update old_write_count. - On the transmission path, we read empty_read_count. If it's set, we compare it with the value of write_count before the current set of descriptors was added. If they match, the queue really is empty and we can use TX push. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-16 07:53:11 +08:00
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
/* Enable SW_EV to inherit in char driver - assume harmless here */
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
/* Prefetch threshold 2 => fetch when descriptor cache half empty */
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
/* Disable hardware watchdog which can misfire */
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
/* Squash TX of packets of 16 bytes or less */
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
EFX_POPULATE_OWORD_4(temp,
/* Default values */
FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
FRF_BZ_TX_PACE_SB_AF, 0xb,
FRF_BZ_TX_PACE_FB_BASE, 0,
/* Allow large pace values in the
* fast bin. */
FRF_BZ_TX_PACE_BIN_TH,
FFE_BZ_TX_PACE_RESERVED);
efx_writeo(efx, &temp, FR_BZ_TX_PACE);
}
}
/* Register dump */
#define REGISTER_REVISION_A 1
#define REGISTER_REVISION_B 2
#define REGISTER_REVISION_C 3
#define REGISTER_REVISION_Z 3 /* latest revision */
struct efx_nic_reg {
u32 offset:24;
u32 min_revision:2, max_revision:2;
};
#define REGISTER(name, min_rev, max_rev) { \
FR_ ## min_rev ## max_rev ## _ ## name, \
REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
}
#define REGISTER_AA(name) REGISTER(name, A, A)
#define REGISTER_AB(name) REGISTER(name, A, B)
#define REGISTER_AZ(name) REGISTER(name, A, Z)
#define REGISTER_BB(name) REGISTER(name, B, B)
#define REGISTER_BZ(name) REGISTER(name, B, Z)
#define REGISTER_CZ(name) REGISTER(name, C, Z)
static const struct efx_nic_reg efx_nic_regs[] = {
REGISTER_AZ(ADR_REGION),
REGISTER_AZ(INT_EN_KER),
REGISTER_BZ(INT_EN_CHAR),
REGISTER_AZ(INT_ADR_KER),
REGISTER_BZ(INT_ADR_CHAR),
/* INT_ACK_KER is WO */
/* INT_ISR0 is RC */
REGISTER_AZ(HW_INIT),
REGISTER_CZ(USR_EV_CFG),
REGISTER_AB(EE_SPI_HCMD),
REGISTER_AB(EE_SPI_HADR),
REGISTER_AB(EE_SPI_HDATA),
REGISTER_AB(EE_BASE_PAGE),
REGISTER_AB(EE_VPD_CFG0),
/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
/* PCIE_CORE_INDIRECT is indirect */
REGISTER_AB(NIC_STAT),
REGISTER_AB(GPIO_CTL),
REGISTER_AB(GLB_CTL),
/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
REGISTER_BZ(DP_CTRL),
REGISTER_AZ(MEM_STAT),
REGISTER_AZ(CS_DEBUG),
REGISTER_AZ(ALTERA_BUILD),
REGISTER_AZ(CSR_SPARE),
REGISTER_AB(PCIE_SD_CTL0123),
REGISTER_AB(PCIE_SD_CTL45),
REGISTER_AB(PCIE_PCS_CTL_STAT),
/* DEBUG_DATA_OUT is not used */
/* DRV_EV is WO */
REGISTER_AZ(EVQ_CTL),
REGISTER_AZ(EVQ_CNT1),
REGISTER_AZ(EVQ_CNT2),
REGISTER_AZ(BUF_TBL_CFG),
REGISTER_AZ(SRM_RX_DC_CFG),
REGISTER_AZ(SRM_TX_DC_CFG),
REGISTER_AZ(SRM_CFG),
/* BUF_TBL_UPD is WO */
REGISTER_AZ(SRM_UPD_EVQ),
REGISTER_AZ(SRAM_PARITY),
REGISTER_AZ(RX_CFG),
REGISTER_BZ(RX_FILTER_CTL),
/* RX_FLUSH_DESCQ is WO */
REGISTER_AZ(RX_DC_CFG),
REGISTER_AZ(RX_DC_PF_WM),
REGISTER_BZ(RX_RSS_TKEY),
/* RX_NODESC_DROP is RC */
REGISTER_AA(RX_SELF_RST),
/* RX_DEBUG, RX_PUSH_DROP are not used */
REGISTER_CZ(RX_RSS_IPV6_REG1),
REGISTER_CZ(RX_RSS_IPV6_REG2),
REGISTER_CZ(RX_RSS_IPV6_REG3),
/* TX_FLUSH_DESCQ is WO */
REGISTER_AZ(TX_DC_CFG),
REGISTER_AA(TX_CHKSM_CFG),
REGISTER_AZ(TX_CFG),
/* TX_PUSH_DROP is not used */
REGISTER_AZ(TX_RESERVED),
REGISTER_BZ(TX_PACE),
/* TX_PACE_DROP_QID is RC */
REGISTER_BB(TX_VLAN),
REGISTER_BZ(TX_IPFIL_PORTEN),
REGISTER_AB(MD_TXD),
REGISTER_AB(MD_RXD),
REGISTER_AB(MD_CS),
REGISTER_AB(MD_PHY_ADR),
REGISTER_AB(MD_ID),
/* MD_STAT is RC */
REGISTER_AB(MAC_STAT_DMA),
REGISTER_AB(MAC_CTRL),
REGISTER_BB(GEN_MODE),
REGISTER_AB(MAC_MC_HASH_REG0),
REGISTER_AB(MAC_MC_HASH_REG1),
REGISTER_AB(GM_CFG1),
REGISTER_AB(GM_CFG2),
/* GM_IPG and GM_HD are not used */
REGISTER_AB(GM_MAX_FLEN),
/* GM_TEST is not used */
REGISTER_AB(GM_ADR1),
REGISTER_AB(GM_ADR2),
REGISTER_AB(GMF_CFG0),
REGISTER_AB(GMF_CFG1),
REGISTER_AB(GMF_CFG2),
REGISTER_AB(GMF_CFG3),
REGISTER_AB(GMF_CFG4),
REGISTER_AB(GMF_CFG5),
REGISTER_BB(TX_SRC_MAC_CTL),
REGISTER_AB(XM_ADR_LO),
REGISTER_AB(XM_ADR_HI),
REGISTER_AB(XM_GLB_CFG),
REGISTER_AB(XM_TX_CFG),
REGISTER_AB(XM_RX_CFG),
REGISTER_AB(XM_MGT_INT_MASK),
REGISTER_AB(XM_FC),
REGISTER_AB(XM_PAUSE_TIME),
REGISTER_AB(XM_TX_PARAM),
REGISTER_AB(XM_RX_PARAM),
/* XM_MGT_INT_MSK (note no 'A') is RC */
REGISTER_AB(XX_PWR_RST),
REGISTER_AB(XX_SD_CTL),
REGISTER_AB(XX_TXDRV_CTL),
/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
/* XX_CORE_STAT is partly RC */
};
struct efx_nic_reg_table {
u32 offset:24;
u32 min_revision:2, max_revision:2;
u32 step:6, rows:21;
};
#define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
offset, \
REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
step, rows \
}
#define REGISTER_TABLE(name, min_rev, max_rev) \
REGISTER_TABLE_DIMENSIONS( \
name, FR_ ## min_rev ## max_rev ## _ ## name, \
min_rev, max_rev, \
FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
#define REGISTER_TABLE_BB_CZ(name) \
REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
FR_BZ_ ## name ## _STEP, \
FR_BB_ ## name ## _ROWS), \
REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
FR_BZ_ ## name ## _STEP, \
FR_CZ_ ## name ## _ROWS)
#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
/* DRIVER is not used */
/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
REGISTER_TABLE_BB(TX_IPFIL_TBL),
REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
/* We can't reasonably read all of the buffer table (up to 8MB!).
* However this driver will only use a few entries. Reading
* 1K entries allows for some expansion of queue count and
* size before we need to change the version. */
REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
A, A, 8, 1024),
REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
B, Z, 8, 1024),
REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
REGISTER_TABLE_BB_CZ(TIMER_TBL),
REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
/* TX_FILTER_TBL0 is huge and not used by this driver */
REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
REGISTER_TABLE_CZ(MC_TREG_SMEM),
/* MSIX_PBA_TABLE is not mapped */
/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
REGISTER_TABLE_BZ(RX_FILTER_TBL0),
};
size_t efx_nic_get_regs_len(struct efx_nic *efx)
{
const struct efx_nic_reg *reg;
const struct efx_nic_reg_table *table;
size_t len = 0;
for (reg = efx_nic_regs;
reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
reg++)
if (efx->type->revision >= reg->min_revision &&
efx->type->revision <= reg->max_revision)
len += sizeof(efx_oword_t);
for (table = efx_nic_reg_tables;
table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
table++)
if (efx->type->revision >= table->min_revision &&
efx->type->revision <= table->max_revision)
len += table->rows * min_t(size_t, table->step, 16);
return len;
}
void efx_nic_get_regs(struct efx_nic *efx, void *buf)
{
const struct efx_nic_reg *reg;
const struct efx_nic_reg_table *table;
for (reg = efx_nic_regs;
reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
reg++) {
if (efx->type->revision >= reg->min_revision &&
efx->type->revision <= reg->max_revision) {
efx_reado(efx, (efx_oword_t *)buf, reg->offset);
buf += sizeof(efx_oword_t);
}
}
for (table = efx_nic_reg_tables;
table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
table++) {
size_t size, i;
if (!(efx->type->revision >= table->min_revision &&
efx->type->revision <= table->max_revision))
continue;
size = min_t(size_t, table->step, 16);
for (i = 0; i < table->rows; i++) {
switch (table->step) {
case 4: /* 32-bit register or SRAM */
efx_readd_table(efx, buf, table->offset, i);
break;
case 8: /* 64-bit SRAM */
efx_sram_readq(efx,
efx->membase + table->offset,
buf, i);
break;
case 16: /* 128-bit register */
efx_reado_table(efx, buf, table->offset, i);
break;
case 32: /* 128-bit register, interleaved */
efx_reado_table(efx, buf, table->offset, 2 * i);
break;
default:
WARN_ON(1);
return;
}
buf += size;
}
}
}