linux_old1/Documentation/driver-api/usb/dma.rst

137 lines
6.0 KiB
ReStructuredText
Raw Normal View History

USB DMA
~~~~~~~
In Linux 2.5 kernels (and later), USB device drivers have additional control
over how DMA may be used to perform I/O operations. The APIs are detailed
in the kernel usb programming guide (kerneldoc, from the source code).
API overview
============
The big picture is that USB drivers can continue to ignore most DMA issues,
though they still must provide DMA-ready buffers (see
``Documentation/DMA-API-HOWTO.txt``). That's how they've worked through
the 2.4 (and earlier) kernels, or they can now be DMA-aware.
DMA-aware usb drivers:
- New calls enable DMA-aware drivers, letting them allocate dma buffers and
manage dma mappings for existing dma-ready buffers (see below).
- URBs have an additional "transfer_dma" field, as well as a transfer_flags
bit saying if it's valid. (Control requests also have "setup_dma", but
drivers must not use it.)
- "usbcore" will map this DMA address, if a DMA-aware driver didn't do
it first and set ``URB_NO_TRANSFER_DMA_MAP``. HCDs
don't manage dma mappings for URBs.
- There's a new "generic DMA API", parts of which are usable by USB device
drivers. Never use dma_set_mask() on any USB interface or device; that
would potentially break all devices sharing that bus.
Eliminating copies
==================
It's good to avoid making CPUs copy data needlessly. The costs can add up,
and effects like cache-trashing can impose subtle penalties.
- If you're doing lots of small data transfers from the same buffer all
the time, that can really burn up resources on systems which use an
IOMMU to manage the DMA mappings. It can cost MUCH more to set up and
tear down the IOMMU mappings with each request than perform the I/O!
For those specific cases, USB has primitives to allocate less expensive
memory. They work like kmalloc and kfree versions that give you the right
kind of addresses to store in urb->transfer_buffer and urb->transfer_dma.
You'd also set ``URB_NO_TRANSFER_DMA_MAP`` in urb->transfer_flags::
void *usb_alloc_coherent (struct usb_device *dev, size_t size,
int mem_flags, dma_addr_t *dma);
void usb_free_coherent (struct usb_device *dev, size_t size,
void *addr, dma_addr_t dma);
Most drivers should **NOT** be using these primitives; they don't need
to use this type of memory ("dma-coherent"), and memory returned from
:c:func:`kmalloc` will work just fine.
The memory buffer returned is "dma-coherent"; sometimes you might need to
force a consistent memory access ordering by using memory barriers. It's
not using a streaming DMA mapping, so it's good for small transfers on
systems where the I/O would otherwise thrash an IOMMU mapping. (See
``Documentation/DMA-API-HOWTO.txt`` for definitions of "coherent" and
"streaming" DMA mappings.)
Asking for 1/Nth of a page (as well as asking for N pages) is reasonably
space-efficient.
On most systems the memory returned will be uncached, because the
semantics of dma-coherent memory require either bypassing CPU caches
or using cache hardware with bus-snooping support. While x86 hardware
has such bus-snooping, many other systems use software to flush cache
lines to prevent DMA conflicts.
- Devices on some EHCI controllers could handle DMA to/from high memory.
Unfortunately, the current Linux DMA infrastructure doesn't have a sane
way to expose these capabilities ... and in any case, HIGHMEM is mostly a
design wart specific to x86_32. So your best bet is to ensure you never
pass a highmem buffer into a USB driver. That's easy; it's the default
behavior. Just don't override it; e.g. with ``NETIF_F_HIGHDMA``.
This may force your callers to do some bounce buffering, copying from
high memory to "normal" DMA memory. If you can come up with a good way
to fix this issue (for x86_32 machines with over 1 GByte of memory),
feel free to submit patches.
Working with existing buffers
=============================
Existing buffers aren't usable for DMA without first being mapped into the
DMA address space of the device. However, most buffers passed to your
driver can safely be used with such DMA mapping. (See the first section
of Documentation/DMA-API-HOWTO.txt, titled "What memory is DMA-able?")
- When you're using scatterlists, you can map everything at once. On some
systems, this kicks in an IOMMU and turns the scatterlists into single
DMA transactions::
int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
struct scatterlist *sg, int nents);
void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
struct scatterlist *sg, int n_hw_ents);
void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
struct scatterlist *sg, int n_hw_ents);
It's probably easier to use the new ``usb_sg_*()`` calls, which do the DMA
mapping and apply other tweaks to make scatterlist i/o be fast.
- Some drivers may prefer to work with the model that they're mapping large
buffers, synchronizing their safe re-use. (If there's no re-use, then let
usbcore do the map/unmap.) Large periodic transfers make good examples
here, since it's cheaper to just synchronize the buffer than to unmap it
each time an urb completes and then re-map it on during resubmission.
These calls all work with initialized urbs: ``urb->dev``, ``urb->pipe``,
``urb->transfer_buffer``, and ``urb->transfer_buffer_length`` must all be
valid when these calls are used (``urb->setup_packet`` must be valid too
if urb is a control request)::
struct urb *usb_buffer_map (struct urb *urb);
void usb_buffer_dmasync (struct urb *urb);
void usb_buffer_unmap (struct urb *urb);
The calls manage ``urb->transfer_dma`` for you, and set
``URB_NO_TRANSFER_DMA_MAP`` so that usbcore won't map or unmap the buffer.
They cannot be used for setup_packet buffers in control requests.
Note that several of those interfaces are currently commented out, since
they don't have current users. See the source code. Other than the dmasync
calls (where the underlying DMA primitives have changed), most of them can
easily be commented back in if you want to use them.