linux_old1/drivers/vme/vme_bridge.h

191 lines
5.1 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _VME_BRIDGE_H_
#define _VME_BRIDGE_H_
#include <linux/vme.h>
#define VME_CRCSR_BUF_SIZE (508*1024)
/*
* Resource structures
*/
struct vme_master_resource {
struct list_head list;
struct vme_bridge *parent;
/*
* We are likely to need to access the VME bus in interrupt context, so
* protect master routines with a spinlock rather than a mutex.
*/
spinlock_t lock;
int locked;
int number;
u32 address_attr;
u32 cycle_attr;
u32 width_attr;
struct resource bus_resource;
void __iomem *kern_base;
};
struct vme_slave_resource {
struct list_head list;
struct vme_bridge *parent;
struct mutex mtx;
int locked;
int number;
u32 address_attr;
u32 cycle_attr;
};
struct vme_dma_pattern {
u32 pattern;
u32 type;
};
struct vme_dma_pci {
dma_addr_t address;
};
struct vme_dma_vme {
unsigned long long address;
u32 aspace;
u32 cycle;
u32 dwidth;
};
struct vme_dma_list {
struct list_head list;
struct vme_dma_resource *parent;
struct list_head entries;
struct mutex mtx;
};
struct vme_dma_resource {
struct list_head list;
struct vme_bridge *parent;
struct mutex mtx;
int locked;
int number;
struct list_head pending;
struct list_head running;
u32 route_attr;
};
struct vme_lm_resource {
struct list_head list;
struct vme_bridge *parent;
struct mutex mtx;
int locked;
int number;
int monitors;
};
struct vme_error_handler {
struct list_head list;
unsigned long long start; /* Beginning of error window */
unsigned long long end; /* End of error window */
unsigned long long first_error; /* Address of the first error */
u32 aspace; /* Address space of error window*/
unsigned num_errors; /* Number of errors */
};
struct vme_callback {
void (*func)(int, int, void*);
void *priv_data;
};
struct vme_irq {
int count;
struct vme_callback callback[VME_NUM_STATUSID];
};
/* Allow 16 characters for name (including null character) */
#define VMENAMSIZ 16
/* This structure stores all the information about one bridge
* The structure should be dynamically allocated by the driver and one instance
* of the structure should be present for each VME chip present in the system.
*/
struct vme_bridge {
char name[VMENAMSIZ];
int num;
struct list_head master_resources;
struct list_head slave_resources;
struct list_head dma_resources;
struct list_head lm_resources;
/* List for registered errors handlers */
struct list_head vme_error_handlers;
/* List of devices on this bridge */
struct list_head devices;
/* Bridge Info - XXX Move to private structure? */
struct device *parent; /* Parent device (eg. pdev->dev for PCI) */
void *driver_priv; /* Private pointer for the bridge driver */
struct list_head bus_list; /* list of VME buses */
/* Interrupt callbacks */
struct vme_irq irq[7];
/* Locking for VME irq callback configuration */
struct mutex irq_mtx;
/* Slave Functions */
int (*slave_get) (struct vme_slave_resource *, int *,
unsigned long long *, unsigned long long *, dma_addr_t *,
u32 *, u32 *);
int (*slave_set) (struct vme_slave_resource *, int, unsigned long long,
unsigned long long, dma_addr_t, u32, u32);
/* Master Functions */
int (*master_get) (struct vme_master_resource *, int *,
unsigned long long *, unsigned long long *, u32 *, u32 *,
u32 *);
int (*master_set) (struct vme_master_resource *, int,
unsigned long long, unsigned long long, u32, u32, u32);
ssize_t (*master_read) (struct vme_master_resource *, void *, size_t,
loff_t);
ssize_t (*master_write) (struct vme_master_resource *, void *, size_t,
loff_t);
unsigned int (*master_rmw) (struct vme_master_resource *, unsigned int,
unsigned int, unsigned int, loff_t);
/* DMA Functions */
int (*dma_list_add) (struct vme_dma_list *, struct vme_dma_attr *,
struct vme_dma_attr *, size_t);
int (*dma_list_exec) (struct vme_dma_list *);
int (*dma_list_empty) (struct vme_dma_list *);
/* Interrupt Functions */
void (*irq_set) (struct vme_bridge *, int, int, int);
int (*irq_generate) (struct vme_bridge *, int, int);
/* Location monitor functions */
int (*lm_set) (struct vme_lm_resource *, unsigned long long, u32, u32);
int (*lm_get) (struct vme_lm_resource *, unsigned long long *, u32 *,
u32 *);
int (*lm_attach)(struct vme_lm_resource *, int,
void (*callback)(void *), void *);
int (*lm_detach) (struct vme_lm_resource *, int);
/* CR/CSR space functions */
int (*slot_get) (struct vme_bridge *);
/* Bridge parent interface */
void *(*alloc_consistent)(struct device *dev, size_t size,
dma_addr_t *dma);
void (*free_consistent)(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma);
};
void vme_bus_error_handler(struct vme_bridge *bridge,
unsigned long long address, int am);
void vme_irq_handler(struct vme_bridge *, int, int);
struct vme_bridge *vme_init_bridge(struct vme_bridge *);
int vme_register_bridge(struct vme_bridge *);
void vme_unregister_bridge(struct vme_bridge *);
struct vme_error_handler *vme_register_error_handler(
struct vme_bridge *bridge, u32 aspace,
unsigned long long address, size_t len);
void vme_unregister_error_handler(struct vme_error_handler *handler);
#endif /* _VME_BRIDGE_H_ */