linux_old1/drivers/net/sfc/net_driver.h

1001 lines
30 KiB
C
Raw Normal View History

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
/* Common definitions for all Efx net driver code */
#ifndef EFX_NET_DRIVER_H
#define EFX_NET_DRIVER_H
#include <linux/version.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/timer.h>
#include <linux/mii.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/highmem.h>
#include <linux/workqueue.h>
#include <linux/inet_lro.h>
#include <linux/i2c.h>
#include "enum.h"
#include "bitfield.h"
#define EFX_MAX_LRO_DESCRIPTORS 8
#define EFX_MAX_LRO_AGGR MAX_SKB_FRAGS
/**************************************************************************
*
* Build definitions
*
**************************************************************************/
#ifndef EFX_DRIVER_NAME
#define EFX_DRIVER_NAME "sfc"
#endif
#define EFX_DRIVER_VERSION "2.2"
#ifdef EFX_ENABLE_DEBUG
#define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
#else
#define EFX_BUG_ON_PARANOID(x) do {} while (0)
#define EFX_WARN_ON_PARANOID(x) do {} while (0)
#endif
/* Un-rate-limited logging */
#define EFX_ERR(efx, fmt, args...) \
dev_err(&((efx)->pci_dev->dev), "ERR: %s " fmt, efx_dev_name(efx), ##args)
#define EFX_INFO(efx, fmt, args...) \
dev_info(&((efx)->pci_dev->dev), "INFO: %s " fmt, efx_dev_name(efx), ##args)
#ifdef EFX_ENABLE_DEBUG
#define EFX_LOG(efx, fmt, args...) \
dev_info(&((efx)->pci_dev->dev), "DBG: %s " fmt, efx_dev_name(efx), ##args)
#else
#define EFX_LOG(efx, fmt, args...) \
dev_dbg(&((efx)->pci_dev->dev), "DBG: %s " fmt, efx_dev_name(efx), ##args)
#endif
#define EFX_TRACE(efx, fmt, args...) do {} while (0)
#define EFX_REGDUMP(efx, fmt, args...) do {} while (0)
/* Rate-limited logging */
#define EFX_ERR_RL(efx, fmt, args...) \
do {if (net_ratelimit()) EFX_ERR(efx, fmt, ##args); } while (0)
#define EFX_INFO_RL(efx, fmt, args...) \
do {if (net_ratelimit()) EFX_INFO(efx, fmt, ##args); } while (0)
#define EFX_LOG_RL(efx, fmt, args...) \
do {if (net_ratelimit()) EFX_LOG(efx, fmt, ##args); } while (0)
/**************************************************************************
*
* Efx data structures
*
**************************************************************************/
#define EFX_MAX_CHANNELS 32
#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
#define EFX_TX_QUEUE_OFFLOAD_CSUM 0
#define EFX_TX_QUEUE_NO_CSUM 1
#define EFX_TX_QUEUE_COUNT 2
/**
* struct efx_special_buffer - An Efx special buffer
* @addr: CPU base address of the buffer
* @dma_addr: DMA base address of the buffer
* @len: Buffer length, in bytes
* @index: Buffer index within controller;s buffer table
* @entries: Number of buffer table entries
*
* Special buffers are used for the event queues and the TX and RX
* descriptor queues for each channel. They are *not* used for the
* actual transmit and receive buffers.
*
* Note that for Falcon, TX and RX descriptor queues live in host memory.
* Allocation and freeing procedures must take this into account.
*/
struct efx_special_buffer {
void *addr;
dma_addr_t dma_addr;
unsigned int len;
int index;
int entries;
};
/**
* struct efx_tx_buffer - An Efx TX buffer
* @skb: The associated socket buffer.
* Set only on the final fragment of a packet; %NULL for all other
* fragments. When this fragment completes, then we can free this
* skb.
* @tsoh: The associated TSO header structure, or %NULL if this
* buffer is not a TSO header.
* @dma_addr: DMA address of the fragment.
* @len: Length of this fragment.
* This field is zero when the queue slot is empty.
* @continuation: True if this fragment is not the end of a packet.
* @unmap_single: True if pci_unmap_single should be used.
* @unmap_len: Length of this fragment to unmap
*/
struct efx_tx_buffer {
const struct sk_buff *skb;
struct efx_tso_header *tsoh;
dma_addr_t dma_addr;
unsigned short len;
bool continuation;
bool unmap_single;
unsigned short unmap_len;
};
/**
* struct efx_tx_queue - An Efx TX queue
*
* This is a ring buffer of TX fragments.
* Since the TX completion path always executes on the same
* CPU and the xmit path can operate on different CPUs,
* performance is increased by ensuring that the completion
* path and the xmit path operate on different cache lines.
* This is particularly important if the xmit path is always
* executing on one CPU which is different from the completion
* path. There is also a cache line for members which are
* read but not written on the fast path.
*
* @efx: The associated Efx NIC
* @queue: DMA queue number
* @channel: The associated channel
* @buffer: The software buffer ring
* @txd: The hardware descriptor ring
* @flushed: Used when handling queue flushing
* @read_count: Current read pointer.
* This is the number of buffers that have been removed from both rings.
* @stopped: Stopped count.
* Set if this TX queue is currently stopping its port.
* @insert_count: Current insert pointer
* This is the number of buffers that have been added to the
* software ring.
* @write_count: Current write pointer
* This is the number of buffers that have been added to the
* hardware ring.
* @old_read_count: The value of read_count when last checked.
* This is here for performance reasons. The xmit path will
* only get the up-to-date value of read_count if this
* variable indicates that the queue is full. This is to
* avoid cache-line ping-pong between the xmit path and the
* completion path.
* @tso_headers_free: A list of TSO headers allocated for this TX queue
* that are not in use, and so available for new TSO sends. The list
* is protected by the TX queue lock.
* @tso_bursts: Number of times TSO xmit invoked by kernel
* @tso_long_headers: Number of packets with headers too long for standard
* blocks
* @tso_packets: Number of packets via the TSO xmit path
*/
struct efx_tx_queue {
/* Members which don't change on the fast path */
struct efx_nic *efx ____cacheline_aligned_in_smp;
int queue;
struct efx_channel *channel;
struct efx_nic *nic;
struct efx_tx_buffer *buffer;
struct efx_special_buffer txd;
bool flushed;
/* Members used mainly on the completion path */
unsigned int read_count ____cacheline_aligned_in_smp;
int stopped;
/* Members used only on the xmit path */
unsigned int insert_count ____cacheline_aligned_in_smp;
unsigned int write_count;
unsigned int old_read_count;
struct efx_tso_header *tso_headers_free;
unsigned int tso_bursts;
unsigned int tso_long_headers;
unsigned int tso_packets;
};
/**
* struct efx_rx_buffer - An Efx RX data buffer
* @dma_addr: DMA base address of the buffer
* @skb: The associated socket buffer, if any.
* If both this and page are %NULL, the buffer slot is currently free.
* @page: The associated page buffer, if any.
* If both this and skb are %NULL, the buffer slot is currently free.
* @data: Pointer to ethernet header
* @len: Buffer length, in bytes.
* @unmap_addr: DMA address to unmap
*/
struct efx_rx_buffer {
dma_addr_t dma_addr;
struct sk_buff *skb;
struct page *page;
char *data;
unsigned int len;
dma_addr_t unmap_addr;
};
/**
* struct efx_rx_queue - An Efx RX queue
* @efx: The associated Efx NIC
* @queue: DMA queue number
* @channel: The associated channel
* @buffer: The software buffer ring
* @rxd: The hardware descriptor ring
* @added_count: Number of buffers added to the receive queue.
* @notified_count: Number of buffers given to NIC (<= @added_count).
* @removed_count: Number of buffers removed from the receive queue.
* @add_lock: Receive queue descriptor add spin lock.
* This lock must be held in order to add buffers to the RX
* descriptor ring (rxd and buffer) and to update added_count (but
* not removed_count).
* @max_fill: RX descriptor maximum fill level (<= ring size)
* @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
* (<= @max_fill)
* @fast_fill_limit: The level to which a fast fill will fill
* (@fast_fill_trigger <= @fast_fill_limit <= @max_fill)
* @min_fill: RX descriptor minimum non-zero fill level.
* This records the minimum fill level observed when a ring
* refill was triggered.
* @min_overfill: RX descriptor minimum overflow fill level.
* This records the minimum fill level at which RX queue
* overflow was observed. It should never be set.
* @alloc_page_count: RX allocation strategy counter.
* @alloc_skb_count: RX allocation strategy counter.
* @work: Descriptor push work thread
* @buf_page: Page for next RX buffer.
* We can use a single page for multiple RX buffers. This tracks
* the remaining space in the allocation.
* @buf_dma_addr: Page's DMA address.
* @buf_data: Page's host address.
* @flushed: Use when handling queue flushing
*/
struct efx_rx_queue {
struct efx_nic *efx;
int queue;
struct efx_channel *channel;
struct efx_rx_buffer *buffer;
struct efx_special_buffer rxd;
int added_count;
int notified_count;
int removed_count;
spinlock_t add_lock;
unsigned int max_fill;
unsigned int fast_fill_trigger;
unsigned int fast_fill_limit;
unsigned int min_fill;
unsigned int min_overfill;
unsigned int alloc_page_count;
unsigned int alloc_skb_count;
struct delayed_work work;
unsigned int slow_fill_count;
struct page *buf_page;
dma_addr_t buf_dma_addr;
char *buf_data;
bool flushed;
};
/**
* struct efx_buffer - An Efx general-purpose buffer
* @addr: host base address of the buffer
* @dma_addr: DMA base address of the buffer
* @len: Buffer length, in bytes
*
* Falcon uses these buffers for its interrupt status registers and
* MAC stats dumps.
*/
struct efx_buffer {
void *addr;
dma_addr_t dma_addr;
unsigned int len;
};
/* Flags for channel->used_flags */
#define EFX_USED_BY_RX 1
#define EFX_USED_BY_TX 2
#define EFX_USED_BY_RX_TX (EFX_USED_BY_RX | EFX_USED_BY_TX)
enum efx_rx_alloc_method {
RX_ALLOC_METHOD_AUTO = 0,
RX_ALLOC_METHOD_SKB = 1,
RX_ALLOC_METHOD_PAGE = 2,
};
/**
* struct efx_channel - An Efx channel
*
* A channel comprises an event queue, at least one TX queue, at least
* one RX queue, and an associated tasklet for processing the event
* queue.
*
* @efx: Associated Efx NIC
* @channel: Channel instance number
* @name: Name for channel and IRQ
* @used_flags: Channel is used by net driver
* @enabled: Channel enabled indicator
* @irq: IRQ number (MSI and MSI-X only)
* @irq_moderation: IRQ moderation value (in us)
* @napi_dev: Net device used with NAPI
* @napi_str: NAPI control structure
* @reset_work: Scheduled reset work thread
* @work_pending: Is work pending via NAPI?
* @eventq: Event queue buffer
* @eventq_read_ptr: Event queue read pointer
* @last_eventq_read_ptr: Last event queue read pointer value.
* @eventq_magic: Event queue magic value for driver-generated test events
* @lro_mgr: LRO state
* @rx_alloc_level: Watermark based heuristic counter for pushing descriptors
* and diagnostic counters
* @rx_alloc_push_pages: RX allocation method currently in use for pushing
* descriptors
* @rx_alloc_pop_pages: RX allocation method currently in use for popping
* descriptors
* @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
* @n_rx_ip_frag_err: Count of RX IP fragment errors
* @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
* @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
* @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
* @n_rx_overlength: Count of RX_OVERLENGTH errors
* @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
*/
struct efx_channel {
struct efx_nic *efx;
int channel;
char name[IFNAMSIZ + 6];
int used_flags;
bool enabled;
int irq;
unsigned int irq_moderation;
struct net_device *napi_dev;
struct napi_struct napi_str;
bool work_pending;
struct efx_special_buffer eventq;
unsigned int eventq_read_ptr;
unsigned int last_eventq_read_ptr;
unsigned int eventq_magic;
struct net_lro_mgr lro_mgr;
int rx_alloc_level;
int rx_alloc_push_pages;
int rx_alloc_pop_pages;
unsigned n_rx_tobe_disc;
unsigned n_rx_ip_frag_err;
unsigned n_rx_ip_hdr_chksum_err;
unsigned n_rx_tcp_udp_chksum_err;
unsigned n_rx_frm_trunc;
unsigned n_rx_overlength;
unsigned n_skbuff_leaks;
/* Used to pipeline received packets in order to optimise memory
* access with prefetches.
*/
struct efx_rx_buffer *rx_pkt;
bool rx_pkt_csummed;
};
/**
* struct efx_blinker - S/W LED blinking context
* @led_num: LED ID (board-specific meaning)
* @state: Current state - on or off
* @resubmit: Timer resubmission flag
* @timer: Control timer for blinking
*/
struct efx_blinker {
int led_num;
bool state;
bool resubmit;
struct timer_list timer;
};
/**
* struct efx_board - board information
* @type: Board model type
* @major: Major rev. ('A', 'B' ...)
* @minor: Minor rev. (0, 1, ...)
* @init: Initialisation function
* @init_leds: Sets up board LEDs
* @set_fault_led: Turns the fault LED on or off
* @blink: Starts/stops blinking
* @monitor: Board-specific health check function
* @fini: Cleanup function
* @blinker: used to blink LEDs in software
* @hwmon_client: I2C client for hardware monitor
* @ioexp_client: I2C client for power/port control
*/
struct efx_board {
int type;
int major;
int minor;
int (*init) (struct efx_nic *nic);
/* As the LEDs are typically attached to the PHY, LEDs
* have a separate init callback that happens later than
* board init. */
int (*init_leds)(struct efx_nic *efx);
int (*monitor) (struct efx_nic *nic);
void (*set_fault_led) (struct efx_nic *efx, bool state);
void (*blink) (struct efx_nic *efx, bool start);
void (*fini) (struct efx_nic *nic);
struct efx_blinker blinker;
struct i2c_client *hwmon_client, *ioexp_client;
};
#define STRING_TABLE_LOOKUP(val, member) \
member ## _names[val]
enum efx_int_mode {
/* Be careful if altering to correct macro below */
EFX_INT_MODE_MSIX = 0,
EFX_INT_MODE_MSI = 1,
EFX_INT_MODE_LEGACY = 2,
EFX_INT_MODE_MAX /* Insert any new items before this */
};
#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
enum phy_type {
PHY_TYPE_NONE = 0,
PHY_TYPE_CX4_RTMR = 1,
PHY_TYPE_1G_ALASKA = 2,
PHY_TYPE_10XPRESS = 3,
PHY_TYPE_XFP = 4,
PHY_TYPE_PM8358 = 6,
PHY_TYPE_MAX /* Insert any new items before this */
};
#define PHY_ADDR_INVALID 0xff
#define EFX_IS10G(efx) ((efx)->link_speed == 10000)
enum nic_state {
STATE_INIT = 0,
STATE_RUNNING = 1,
STATE_FINI = 2,
STATE_DISABLED = 3,
STATE_MAX,
};
/*
* Alignment of page-allocated RX buffers
*
* Controls the number of bytes inserted at the start of an RX buffer.
* This is the equivalent of NET_IP_ALIGN [which controls the alignment
* of the skb->head for hardware DMA].
*/
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
#define EFX_PAGE_IP_ALIGN 0
#else
#define EFX_PAGE_IP_ALIGN NET_IP_ALIGN
#endif
/*
* Alignment of the skb->head which wraps a page-allocated RX buffer
*
* The skb allocated to wrap an rx_buffer can have this alignment. Since
* the data is memcpy'd from the rx_buf, it does not need to be equal to
* EFX_PAGE_IP_ALIGN.
*/
#define EFX_PAGE_SKB_ALIGN 2
/* Forward declaration */
struct efx_nic;
/* Pseudo bit-mask flow control field */
enum efx_fc_type {
EFX_FC_RX = 1,
EFX_FC_TX = 2,
EFX_FC_AUTO = 4,
};
/* Supported MAC bit-mask */
enum efx_mac_type {
EFX_GMAC = 1,
EFX_XMAC = 2,
};
static inline unsigned int efx_fc_advertise(enum efx_fc_type wanted_fc)
{
unsigned int adv = 0;
if (wanted_fc & EFX_FC_RX)
adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
if (wanted_fc & EFX_FC_TX)
adv ^= ADVERTISE_PAUSE_ASYM;
return adv;
}
static inline enum efx_fc_type efx_fc_resolve(enum efx_fc_type wanted_fc,
unsigned int lpa)
{
unsigned int adv = efx_fc_advertise(wanted_fc);
if (!(wanted_fc & EFX_FC_AUTO))
return wanted_fc;
if (adv & lpa & ADVERTISE_PAUSE_CAP)
return EFX_FC_RX | EFX_FC_TX;
if (adv & lpa & ADVERTISE_PAUSE_ASYM) {
if (adv & ADVERTISE_PAUSE_CAP)
return EFX_FC_RX;
if (lpa & ADVERTISE_PAUSE_CAP)
return EFX_FC_TX;
}
return 0;
}
/**
* struct efx_mac_operations - Efx MAC operations table
* @reconfigure: Reconfigure MAC. Serialised by the mac_lock
* @update_stats: Update statistics
* @check_hw: Check hardware. Serialised by the mac_lock
*/
struct efx_mac_operations {
void (*reconfigure) (struct efx_nic *efx);
void (*update_stats) (struct efx_nic *efx);
int (*check_hw) (struct efx_nic *efx);
};
/**
* struct efx_phy_operations - Efx PHY operations table
* @init: Initialise PHY
* @fini: Shut down PHY
* @reconfigure: Reconfigure PHY (e.g. for new link parameters)
* @clear_interrupt: Clear down interrupt
* @blink: Blink LEDs
* @check_hw: Check hardware
* @get_settings: Get ethtool settings. Serialised by the mac_lock.
* @set_settings: Set ethtool settings. Serialised by the mac_lock.
* @set_xnp_advertise: Set abilities advertised in Extended Next Page
* (only needed where AN bit is set in mmds)
* @mmds: MMD presence mask
* @loopbacks: Supported loopback modes mask
*/
struct efx_phy_operations {
enum efx_mac_type macs;
int (*init) (struct efx_nic *efx);
void (*fini) (struct efx_nic *efx);
void (*reconfigure) (struct efx_nic *efx);
void (*clear_interrupt) (struct efx_nic *efx);
int (*check_hw) (struct efx_nic *efx);
int (*test) (struct efx_nic *efx);
void (*get_settings) (struct efx_nic *efx,
struct ethtool_cmd *ecmd);
int (*set_settings) (struct efx_nic *efx,
struct ethtool_cmd *ecmd);
bool (*set_xnp_advertise) (struct efx_nic *efx, u32);
int mmds;
unsigned loopbacks;
};
/**
* @enum efx_phy_mode - PHY operating mode flags
* @PHY_MODE_NORMAL: on and should pass traffic
* @PHY_MODE_TX_DISABLED: on with TX disabled
* @PHY_MODE_LOW_POWER: set to low power through MDIO
* @PHY_MODE_OFF: switched off through external control
* @PHY_MODE_SPECIAL: on but will not pass traffic
*/
enum efx_phy_mode {
PHY_MODE_NORMAL = 0,
PHY_MODE_TX_DISABLED = 1,
PHY_MODE_LOW_POWER = 2,
PHY_MODE_OFF = 4,
PHY_MODE_SPECIAL = 8,
};
static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
{
return !!(mode & ~PHY_MODE_TX_DISABLED);
}
/*
* Efx extended statistics
*
* Not all statistics are provided by all supported MACs. The purpose
* is this structure is to contain the raw statistics provided by each
* MAC.
*/
struct efx_mac_stats {
u64 tx_bytes;
u64 tx_good_bytes;
u64 tx_bad_bytes;
unsigned long tx_packets;
unsigned long tx_bad;
unsigned long tx_pause;
unsigned long tx_control;
unsigned long tx_unicast;
unsigned long tx_multicast;
unsigned long tx_broadcast;
unsigned long tx_lt64;
unsigned long tx_64;
unsigned long tx_65_to_127;
unsigned long tx_128_to_255;
unsigned long tx_256_to_511;
unsigned long tx_512_to_1023;
unsigned long tx_1024_to_15xx;
unsigned long tx_15xx_to_jumbo;
unsigned long tx_gtjumbo;
unsigned long tx_collision;
unsigned long tx_single_collision;
unsigned long tx_multiple_collision;
unsigned long tx_excessive_collision;
unsigned long tx_deferred;
unsigned long tx_late_collision;
unsigned long tx_excessive_deferred;
unsigned long tx_non_tcpudp;
unsigned long tx_mac_src_error;
unsigned long tx_ip_src_error;
u64 rx_bytes;
u64 rx_good_bytes;
u64 rx_bad_bytes;
unsigned long rx_packets;
unsigned long rx_good;
unsigned long rx_bad;
unsigned long rx_pause;
unsigned long rx_control;
unsigned long rx_unicast;
unsigned long rx_multicast;
unsigned long rx_broadcast;
unsigned long rx_lt64;
unsigned long rx_64;
unsigned long rx_65_to_127;
unsigned long rx_128_to_255;
unsigned long rx_256_to_511;
unsigned long rx_512_to_1023;
unsigned long rx_1024_to_15xx;
unsigned long rx_15xx_to_jumbo;
unsigned long rx_gtjumbo;
unsigned long rx_bad_lt64;
unsigned long rx_bad_64_to_15xx;
unsigned long rx_bad_15xx_to_jumbo;
unsigned long rx_bad_gtjumbo;
unsigned long rx_overflow;
unsigned long rx_missed;
unsigned long rx_false_carrier;
unsigned long rx_symbol_error;
unsigned long rx_align_error;
unsigned long rx_length_error;
unsigned long rx_internal_error;
unsigned long rx_good_lt64;
};
/* Number of bits used in a multicast filter hash address */
#define EFX_MCAST_HASH_BITS 8
/* Number of (single-bit) entries in a multicast filter hash */
#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
/* An Efx multicast filter hash */
union efx_multicast_hash {
u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
};
/**
* struct efx_nic - an Efx NIC
* @name: Device name (net device name or bus id before net device registered)
* @pci_dev: The PCI device
* @type: Controller type attributes
* @legacy_irq: IRQ number
* @workqueue: Workqueue for port reconfigures and the HW monitor.
* Work items do not hold and must not acquire RTNL.
* @reset_work: Scheduled reset workitem
* @monitor_work: Hardware monitor workitem
* @membase_phys: Memory BAR value as physical address
* @membase: Memory BAR value
* @biu_lock: BIU (bus interface unit) lock
* @interrupt_mode: Interrupt mode
* @i2c_adap: I2C adapter
* @board_info: Board-level information
* @state: Device state flag. Serialised by the rtnl_lock.
* @reset_pending: Pending reset method (normally RESET_TYPE_NONE)
* @tx_queue: TX DMA queues
* @rx_queue: RX DMA queues
* @channel: Channels
* @n_rx_queues: Number of RX queues
* @n_channels: Number of channels in use
* @rx_buffer_len: RX buffer length
* @rx_buffer_order: Order (log2) of number of pages for each RX buffer
* @irq_status: Interrupt status buffer
* @last_irq_cpu: Last CPU to handle interrupt.
* This register is written with the SMP processor ID whenever an
* interrupt is handled. It is used by falcon_test_interrupt()
* to verify that an interrupt has occurred.
* @spi_flash: SPI flash device
* This field will be %NULL if no flash device is present.
* @spi_eeprom: SPI EEPROM device
* This field will be %NULL if no EEPROM device is present.
* @spi_lock: SPI bus lock
* @n_rx_nodesc_drop_cnt: RX no descriptor drop count
* @nic_data: Hardware dependant state
* @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
* @port_inhibited, efx_monitor() and efx_reconfigure_port()
* @port_enabled: Port enabled indicator.
* Serialises efx_stop_all(), efx_start_all() and efx_monitor() and
* efx_reconfigure_work with kernel interfaces. Safe to read under any
* one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
* be held to modify it.
* @port_inhibited: If set, the netif_carrier is always off. Hold the mac_lock
* @port_initialized: Port initialized?
* @net_dev: Operating system network device. Consider holding the rtnl lock
* @rx_checksum_enabled: RX checksumming enabled
* @netif_stop_count: Port stop count
* @netif_stop_lock: Port stop lock
* @mac_stats: MAC statistics. These include all statistics the MACs
* can provide. Generic code converts these into a standard
* &struct net_device_stats.
* @stats_buffer: DMA buffer for statistics
* @stats_lock: Statistics update lock. Serialises statistics fetches
* @stats_enabled: Temporarily disable statistics fetches.
* Serialised by @stats_lock
* @mac_op: MAC interface
* @mac_address: Permanent MAC address
* @phy_type: PHY type
* @phy_lock: PHY access lock
* @phy_op: PHY interface
* @phy_data: PHY private data (including PHY-specific stats)
* @mii: PHY interface
* @phy_mode: PHY operating mode. Serialised by @mac_lock.
* @mac_up: MAC link state
* @link_up: Link status
* @link_fd: Link is full duplex
* @link_fc: Actualy flow control flags
* @link_speed: Link speed (Mbps)
* @n_link_state_changes: Number of times the link has changed state
* @promiscuous: Promiscuous flag. Protected by netif_tx_lock.
* @multicast_hash: Multicast hash table
* @wanted_fc: Wanted flow control flags
* @reconfigure_work: work item for dealing with PHY events
* @loopback_mode: Loopback status
* @loopback_modes: Supported loopback mode bitmask
* @loopback_selftest: Offline self-test private state
*
* The @priv field of the corresponding &struct net_device points to
* this.
*/
struct efx_nic {
char name[IFNAMSIZ];
struct pci_dev *pci_dev;
const struct efx_nic_type *type;
int legacy_irq;
struct workqueue_struct *workqueue;
struct work_struct reset_work;
struct delayed_work monitor_work;
resource_size_t membase_phys;
void __iomem *membase;
spinlock_t biu_lock;
enum efx_int_mode interrupt_mode;
struct i2c_adapter i2c_adap;
struct efx_board board_info;
enum nic_state state;
enum reset_type reset_pending;
struct efx_tx_queue tx_queue[EFX_TX_QUEUE_COUNT];
struct efx_rx_queue rx_queue[EFX_MAX_RX_QUEUES];
struct efx_channel channel[EFX_MAX_CHANNELS];
int n_rx_queues;
int n_channels;
unsigned int rx_buffer_len;
unsigned int rx_buffer_order;
struct efx_buffer irq_status;
volatile signed int last_irq_cpu;
struct efx_spi_device *spi_flash;
struct efx_spi_device *spi_eeprom;
struct mutex spi_lock;
unsigned n_rx_nodesc_drop_cnt;
struct falcon_nic_data *nic_data;
struct mutex mac_lock;
bool port_enabled;
bool port_inhibited;
bool port_initialized;
struct net_device *net_dev;
bool rx_checksum_enabled;
atomic_t netif_stop_count;
spinlock_t netif_stop_lock;
struct efx_mac_stats mac_stats;
struct efx_buffer stats_buffer;
spinlock_t stats_lock;
bool stats_enabled;
struct efx_mac_operations *mac_op;
unsigned char mac_address[ETH_ALEN];
enum phy_type phy_type;
spinlock_t phy_lock;
struct efx_phy_operations *phy_op;
void *phy_data;
struct mii_if_info mii;
enum efx_phy_mode phy_mode;
bool mac_up;
bool link_up;
bool link_fd;
enum efx_fc_type link_fc;
unsigned int link_speed;
unsigned int n_link_state_changes;
bool promiscuous;
union efx_multicast_hash multicast_hash;
enum efx_fc_type wanted_fc;
struct work_struct reconfigure_work;
atomic_t rx_reset;
enum efx_loopback_mode loopback_mode;
unsigned int loopback_modes;
void *loopback_selftest;
};
static inline int efx_dev_registered(struct efx_nic *efx)
{
return efx->net_dev->reg_state == NETREG_REGISTERED;
}
/* Net device name, for inclusion in log messages if it has been registered.
* Use efx->name not efx->net_dev->name so that races with (un)registration
* are harmless.
*/
static inline const char *efx_dev_name(struct efx_nic *efx)
{
return efx_dev_registered(efx) ? efx->name : "";
}
/**
* struct efx_nic_type - Efx device type definition
* @mem_bar: Memory BAR number
* @mem_map_size: Memory BAR mapped size
* @txd_ptr_tbl_base: TX descriptor ring base address
* @rxd_ptr_tbl_base: RX descriptor ring base address
* @buf_tbl_base: Buffer table base address
* @evq_ptr_tbl_base: Event queue pointer table base address
* @evq_rptr_tbl_base: Event queue read-pointer table base address
* @txd_ring_mask: TX descriptor ring size - 1 (must be a power of two - 1)
* @rxd_ring_mask: RX descriptor ring size - 1 (must be a power of two - 1)
* @evq_size: Event queue size (must be a power of two)
* @max_dma_mask: Maximum possible DMA mask
* @tx_dma_mask: TX DMA mask
* @bug5391_mask: Address mask for bug 5391 workaround
* @rx_xoff_thresh: RX FIFO XOFF watermark (bytes)
* @rx_xon_thresh: RX FIFO XON watermark (bytes)
* @rx_buffer_padding: Padding added to each RX buffer
* @max_interrupt_mode: Highest capability interrupt mode supported
* from &enum efx_init_mode.
* @phys_addr_channels: Number of channels with physically addressed
* descriptors
*/
struct efx_nic_type {
unsigned int mem_bar;
unsigned int mem_map_size;
unsigned int txd_ptr_tbl_base;
unsigned int rxd_ptr_tbl_base;
unsigned int buf_tbl_base;
unsigned int evq_ptr_tbl_base;
unsigned int evq_rptr_tbl_base;
unsigned int txd_ring_mask;
unsigned int rxd_ring_mask;
unsigned int evq_size;
u64 max_dma_mask;
unsigned int tx_dma_mask;
unsigned bug5391_mask;
int rx_xoff_thresh;
int rx_xon_thresh;
unsigned int rx_buffer_padding;
unsigned int max_interrupt_mode;
unsigned int phys_addr_channels;
};
/**************************************************************************
*
* Prototypes and inline functions
*
*************************************************************************/
/* Iterate over all used channels */
#define efx_for_each_channel(_channel, _efx) \
for (_channel = &_efx->channel[0]; \
_channel < &_efx->channel[EFX_MAX_CHANNELS]; \
_channel++) \
if (!_channel->used_flags) \
continue; \
else
/* Iterate over all used TX queues */
#define efx_for_each_tx_queue(_tx_queue, _efx) \
for (_tx_queue = &_efx->tx_queue[0]; \
_tx_queue < &_efx->tx_queue[EFX_TX_QUEUE_COUNT]; \
_tx_queue++)
/* Iterate over all TX queues belonging to a channel */
#define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
for (_tx_queue = &_channel->efx->tx_queue[0]; \
_tx_queue < &_channel->efx->tx_queue[EFX_TX_QUEUE_COUNT]; \
_tx_queue++) \
if (_tx_queue->channel != _channel) \
continue; \
else
/* Iterate over all used RX queues */
#define efx_for_each_rx_queue(_rx_queue, _efx) \
for (_rx_queue = &_efx->rx_queue[0]; \
_rx_queue < &_efx->rx_queue[_efx->n_rx_queues]; \
_rx_queue++)
/* Iterate over all RX queues belonging to a channel */
#define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
for (_rx_queue = &_channel->efx->rx_queue[_channel->channel]; \
_rx_queue; \
_rx_queue = NULL) \
if (_rx_queue->channel != _channel) \
continue; \
else
/* Returns a pointer to the specified receive buffer in the RX
* descriptor queue.
*/
static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
unsigned int index)
{
return (&rx_queue->buffer[index]);
}
/* Set bit in a little-endian bitfield */
static inline void set_bit_le(unsigned nr, unsigned char *addr)
{
addr[nr / 8] |= (1 << (nr % 8));
}
/* Clear bit in a little-endian bitfield */
static inline void clear_bit_le(unsigned nr, unsigned char *addr)
{
addr[nr / 8] &= ~(1 << (nr % 8));
}
/**
* EFX_MAX_FRAME_LEN - calculate maximum frame length
*
* This calculates the maximum frame length that will be used for a
* given MTU. The frame length will be equal to the MTU plus a
* constant amount of header space and padding. This is the quantity
* that the net driver will program into the MAC as the maximum frame
* length.
*
* The 10G MAC used in Falcon requires 8-byte alignment on the frame
* length, so we round up to the nearest 8.
*/
#define EFX_MAX_FRAME_LEN(mtu) \
((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */) + 7) & ~7)
#endif /* EFX_NET_DRIVER_H */