linux_old1/drivers/spi/spi_mpc8xxx.c

1426 lines
34 KiB
C
Raw Normal View History

/*
* MPC8xxx SPI controller driver.
*
* Maintainer: Kumar Gala
*
* Copyright (C) 2006 Polycom, Inc.
*
* CPM SPI and QE buffer descriptors mode support:
* Copyright (c) 2009 MontaVista Software, Inc.
* Author: Anton Vorontsov <avorontsov@ru.mvista.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/bug.h>
#include <linux/errno.h>
#include <linux/err.h>
spi_mpc83xx: fix checkpatch issues Checkpatch is spitting errors when seeing the rename patch, so fix the errors prior to moving. Following errors and warnings were fixed: WARNING: Use #include <linux/io.h> instead of <asm/io.h> #1027: FILE: drivers/spi/spi_mpc8xxx.c:37: +#include <asm/io.h> ERROR: "foo * bar" should be "foo *bar" #1111: FILE: drivers/spi/spi_mpc8xxx.c:121: +static inline void mpc83xx_spi_write_reg(__be32 __iomem * reg, u32 val) ERROR: "foo * bar" should be "foo *bar" #1116: FILE: drivers/spi/spi_mpc8xxx.c:126: +static inline u32 mpc83xx_spi_read_reg(__be32 __iomem * reg) ERROR: "foo * bar" should be "foo *bar" #1125: FILE: drivers/spi/spi_mpc8xxx.c:135: + type * rx = mpc83xx_spi->rx; \ ERROR: "foo * bar" should be "foo *bar" #1135: FILE: drivers/spi/spi_mpc8xxx.c:145: + const type * tx = mpc83xx_spi->tx; \ WARNING: suspect code indent for conditional statements (16, 25) #1504: FILE: drivers/spi/spi_mpc8xxx.c:514: + while (((event = [...] + cpu_relax(); Following warnings were left over, since fixing them will hurt the readability. We'd better fix them by lowering the indentation level by splitting mpc83xx_spi_work function into two parts. WARNING: line over 80 characters #1371: FILE: drivers/spi/spi_mpc8xxx.c:381: + status = mpc83xx_spi_setup_transfer(spi, t); WARNING: line over 80 characters #1392: FILE: drivers/spi/spi_mpc8xxx.c:402: + mpc83xx_spi_chipselect(spi, BITBANG_CS_INACTIVE); Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com> Cc: Kumar Gala <galak@gate.crashing.org> Cc: David Brownell <david-b@pacbell.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-19 07:49:05 +08:00
#include <linux/io.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/platform_device.h>
#include <linux/fsl_devices.h>
#include <linux/dma-mapping.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <sysdev/fsl_soc.h>
#include <asm/cpm.h>
#include <asm/qe.h>
#include <asm/irq.h>
/* CPM1 and CPM2 are mutually exclusive. */
#ifdef CONFIG_CPM1
#include <asm/cpm1.h>
#define CPM_SPI_CMD mk_cr_cmd(CPM_CR_CH_SPI, 0)
#else
#include <asm/cpm2.h>
#define CPM_SPI_CMD mk_cr_cmd(CPM_CR_SPI_PAGE, CPM_CR_SPI_SBLOCK, 0, 0)
#endif
/* SPI Controller registers */
struct mpc8xxx_spi_reg {
u8 res1[0x20];
__be32 mode;
__be32 event;
__be32 mask;
__be32 command;
__be32 transmit;
__be32 receive;
};
/* SPI Controller mode register definitions */
#define SPMODE_LOOP (1 << 30)
#define SPMODE_CI_INACTIVEHIGH (1 << 29)
#define SPMODE_CP_BEGIN_EDGECLK (1 << 28)
#define SPMODE_DIV16 (1 << 27)
#define SPMODE_REV (1 << 26)
#define SPMODE_MS (1 << 25)
#define SPMODE_ENABLE (1 << 24)
#define SPMODE_LEN(x) ((x) << 20)
#define SPMODE_PM(x) ((x) << 16)
#define SPMODE_OP (1 << 14)
#define SPMODE_CG(x) ((x) << 7)
/*
* Default for SPI Mode:
* SPI MODE 0 (inactive low, phase middle, MSB, 8-bit length, slow clk
*/
#define SPMODE_INIT_VAL (SPMODE_CI_INACTIVEHIGH | SPMODE_DIV16 | SPMODE_REV | \
SPMODE_MS | SPMODE_LEN(7) | SPMODE_PM(0xf))
/* SPIE register values */
#define SPIE_NE 0x00000200 /* Not empty */
#define SPIE_NF 0x00000100 /* Not full */
/* SPIM register values */
#define SPIM_NE 0x00000200 /* Not empty */
#define SPIM_NF 0x00000100 /* Not full */
#define SPIE_TXB 0x00000200 /* Last char is written to tx fifo */
#define SPIE_RXB 0x00000100 /* Last char is written to rx buf */
/* SPCOM register values */
#define SPCOM_STR (1 << 23) /* Start transmit */
#define SPI_PRAM_SIZE 0x100
#define SPI_MRBLR ((unsigned int)PAGE_SIZE)
/* SPI Controller driver's private data. */
struct mpc8xxx_spi {
struct device *dev;
struct mpc8xxx_spi_reg __iomem *base;
/* rx & tx bufs from the spi_transfer */
const void *tx;
void *rx;
int subblock;
struct spi_pram __iomem *pram;
struct cpm_buf_desc __iomem *tx_bd;
struct cpm_buf_desc __iomem *rx_bd;
struct spi_transfer *xfer_in_progress;
/* dma addresses for CPM transfers */
dma_addr_t tx_dma;
dma_addr_t rx_dma;
bool map_tx_dma;
bool map_rx_dma;
dma_addr_t dma_dummy_tx;
dma_addr_t dma_dummy_rx;
/* functions to deal with different sized buffers */
void (*get_rx) (u32 rx_data, struct mpc8xxx_spi *);
u32(*get_tx) (struct mpc8xxx_spi *);
unsigned int count;
unsigned int irq;
unsigned nsecs; /* (clock cycle time)/2 */
u32 spibrg; /* SPIBRG input clock */
u32 rx_shift; /* RX data reg shift when in qe mode */
u32 tx_shift; /* TX data reg shift when in qe mode */
unsigned int flags;
struct workqueue_struct *workqueue;
struct work_struct work;
struct list_head queue;
spinlock_t lock;
struct completion done;
};
static void *mpc8xxx_dummy_rx;
static DEFINE_MUTEX(mpc8xxx_dummy_rx_lock);
static int mpc8xxx_dummy_rx_refcnt;
struct spi_mpc8xxx_cs {
/* functions to deal with different sized buffers */
void (*get_rx) (u32 rx_data, struct mpc8xxx_spi *);
u32 (*get_tx) (struct mpc8xxx_spi *);
u32 rx_shift; /* RX data reg shift when in qe mode */
u32 tx_shift; /* TX data reg shift when in qe mode */
u32 hw_mode; /* Holds HW mode register settings */
};
static inline void mpc8xxx_spi_write_reg(__be32 __iomem *reg, u32 val)
{
out_be32(reg, val);
}
static inline u32 mpc8xxx_spi_read_reg(__be32 __iomem *reg)
{
return in_be32(reg);
}
#define MPC83XX_SPI_RX_BUF(type) \
spi_mpc83xx: fix sparse warnings The patch fixes following sparse warnings: CHECK spi_mpc83xx.c spi_mpc83xx.c:145:1: warning: symbol 'mpc83xx_spi_rx_buf_u8' was not declared. Should it be static? spi_mpc83xx.c:146:1: warning: symbol 'mpc83xx_spi_rx_buf_u16' was not declared. Should it be static? spi_mpc83xx.c:147:1: warning: symbol 'mpc83xx_spi_rx_buf_u32' was not declared. Should it be static? spi_mpc83xx.c:148:1: warning: symbol 'mpc83xx_spi_tx_buf_u8' was not declared. Should it be static? spi_mpc83xx.c:149:1: warning: symbol 'mpc83xx_spi_tx_buf_u16' was not declared. Should it be static? spi_mpc83xx.c:150:1: warning: symbol 'mpc83xx_spi_tx_buf_u32' was not declared. Should it be static? spi_mpc83xx.c:175:32: warning: incorrect type in initializer (different address spaces) spi_mpc83xx.c:175:32: expected void *tmp_ptr spi_mpc83xx.c:175:32: got unsigned int [noderef] <asn:2>*<noident> spi_mpc83xx.c:183:26: warning: incorrect type in argument 1 (different address spaces) spi_mpc83xx.c:183:26: expected unsigned int [noderef] [usertype] <asn:2>*reg spi_mpc83xx.c:183:26: got void *tmp_ptr spi_mpc83xx.c:184:26: warning: incorrect type in argument 1 (different address spaces) spi_mpc83xx.c:184:26: expected unsigned int [noderef] [usertype] <asn:2>*reg spi_mpc83xx.c:184:26: got void *tmp_ptr spi_mpc83xx.c:287:31: warning: incorrect type in initializer (different address spaces) spi_mpc83xx.c:287:31: expected void *tmp_ptr spi_mpc83xx.c:287:31: got unsigned int [noderef] <asn:2>*<noident> spi_mpc83xx.c:295:25: warning: incorrect type in argument 1 (different address spaces) spi_mpc83xx.c:295:25: expected unsigned int [noderef] [usertype] <asn:2>*reg spi_mpc83xx.c:295:25: got void *tmp_ptr spi_mpc83xx.c:296:25: warning: incorrect type in argument 1 (different address spaces) spi_mpc83xx.c:296:25: expected unsigned int [noderef] [usertype] <asn:2>*reg spi_mpc83xx.c:296:25: got void *tmp_ptr spi_mpc83xx.c:486:13: warning: symbol 'mpc83xx_spi_irq' was not declared. Should it be static? Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com> Cc: David Brownell <david-b@pacbell.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Kumar Gala <galak@gate.crashing.org> Cc: Grant Likely <grant.likely@secretlab.ca> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 06:24:35 +08:00
static \
void mpc8xxx_spi_rx_buf_##type(u32 data, struct mpc8xxx_spi *mpc8xxx_spi) \
{ \
type *rx = mpc8xxx_spi->rx; \
*rx++ = (type)(data >> mpc8xxx_spi->rx_shift); \
mpc8xxx_spi->rx = rx; \
}
#define MPC83XX_SPI_TX_BUF(type) \
spi_mpc83xx: fix sparse warnings The patch fixes following sparse warnings: CHECK spi_mpc83xx.c spi_mpc83xx.c:145:1: warning: symbol 'mpc83xx_spi_rx_buf_u8' was not declared. Should it be static? spi_mpc83xx.c:146:1: warning: symbol 'mpc83xx_spi_rx_buf_u16' was not declared. Should it be static? spi_mpc83xx.c:147:1: warning: symbol 'mpc83xx_spi_rx_buf_u32' was not declared. Should it be static? spi_mpc83xx.c:148:1: warning: symbol 'mpc83xx_spi_tx_buf_u8' was not declared. Should it be static? spi_mpc83xx.c:149:1: warning: symbol 'mpc83xx_spi_tx_buf_u16' was not declared. Should it be static? spi_mpc83xx.c:150:1: warning: symbol 'mpc83xx_spi_tx_buf_u32' was not declared. Should it be static? spi_mpc83xx.c:175:32: warning: incorrect type in initializer (different address spaces) spi_mpc83xx.c:175:32: expected void *tmp_ptr spi_mpc83xx.c:175:32: got unsigned int [noderef] <asn:2>*<noident> spi_mpc83xx.c:183:26: warning: incorrect type in argument 1 (different address spaces) spi_mpc83xx.c:183:26: expected unsigned int [noderef] [usertype] <asn:2>*reg spi_mpc83xx.c:183:26: got void *tmp_ptr spi_mpc83xx.c:184:26: warning: incorrect type in argument 1 (different address spaces) spi_mpc83xx.c:184:26: expected unsigned int [noderef] [usertype] <asn:2>*reg spi_mpc83xx.c:184:26: got void *tmp_ptr spi_mpc83xx.c:287:31: warning: incorrect type in initializer (different address spaces) spi_mpc83xx.c:287:31: expected void *tmp_ptr spi_mpc83xx.c:287:31: got unsigned int [noderef] <asn:2>*<noident> spi_mpc83xx.c:295:25: warning: incorrect type in argument 1 (different address spaces) spi_mpc83xx.c:295:25: expected unsigned int [noderef] [usertype] <asn:2>*reg spi_mpc83xx.c:295:25: got void *tmp_ptr spi_mpc83xx.c:296:25: warning: incorrect type in argument 1 (different address spaces) spi_mpc83xx.c:296:25: expected unsigned int [noderef] [usertype] <asn:2>*reg spi_mpc83xx.c:296:25: got void *tmp_ptr spi_mpc83xx.c:486:13: warning: symbol 'mpc83xx_spi_irq' was not declared. Should it be static? Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com> Cc: David Brownell <david-b@pacbell.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Kumar Gala <galak@gate.crashing.org> Cc: Grant Likely <grant.likely@secretlab.ca> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 06:24:35 +08:00
static \
u32 mpc8xxx_spi_tx_buf_##type(struct mpc8xxx_spi *mpc8xxx_spi) \
{ \
u32 data; \
const type *tx = mpc8xxx_spi->tx; \
if (!tx) \
return 0; \
data = *tx++ << mpc8xxx_spi->tx_shift; \
mpc8xxx_spi->tx = tx; \
return data; \
}
MPC83XX_SPI_RX_BUF(u8)
MPC83XX_SPI_RX_BUF(u16)
MPC83XX_SPI_RX_BUF(u32)
MPC83XX_SPI_TX_BUF(u8)
MPC83XX_SPI_TX_BUF(u16)
MPC83XX_SPI_TX_BUF(u32)
static void mpc8xxx_spi_change_mode(struct spi_device *spi)
{
struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
struct spi_mpc8xxx_cs *cs = spi->controller_state;
__be32 __iomem *mode = &mspi->base->mode;
unsigned long flags;
if (cs->hw_mode == mpc8xxx_spi_read_reg(mode))
return;
/* Turn off IRQs locally to minimize time that SPI is disabled. */
local_irq_save(flags);
/* Turn off SPI unit prior changing mode */
mpc8xxx_spi_write_reg(mode, cs->hw_mode & ~SPMODE_ENABLE);
/* When in CPM mode, we need to reinit tx and rx. */
if (mspi->flags & SPI_CPM_MODE) {
if (mspi->flags & SPI_QE) {
qe_issue_cmd(QE_INIT_TX_RX, mspi->subblock,
QE_CR_PROTOCOL_UNSPECIFIED, 0);
} else {
cpm_command(CPM_SPI_CMD, CPM_CR_INIT_TRX);
if (mspi->flags & SPI_CPM1) {
out_be16(&mspi->pram->rbptr,
in_be16(&mspi->pram->rbase));
out_be16(&mspi->pram->tbptr,
in_be16(&mspi->pram->tbase));
}
}
}
mpc8xxx_spi_write_reg(mode, cs->hw_mode);
local_irq_restore(flags);
}
static void mpc8xxx_spi_chipselect(struct spi_device *spi, int value)
{
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
struct fsl_spi_platform_data *pdata = spi->dev.parent->platform_data;
bool pol = spi->mode & SPI_CS_HIGH;
struct spi_mpc8xxx_cs *cs = spi->controller_state;
if (value == BITBANG_CS_INACTIVE) {
if (pdata->cs_control)
pdata->cs_control(spi, !pol);
}
if (value == BITBANG_CS_ACTIVE) {
mpc8xxx_spi->rx_shift = cs->rx_shift;
mpc8xxx_spi->tx_shift = cs->tx_shift;
mpc8xxx_spi->get_rx = cs->get_rx;
mpc8xxx_spi->get_tx = cs->get_tx;
mpc8xxx_spi_change_mode(spi);
if (pdata->cs_control)
pdata->cs_control(spi, pol);
}
}
static int
mspi_apply_cpu_mode_quirks(struct spi_mpc8xxx_cs *cs,
struct spi_device *spi,
struct mpc8xxx_spi *mpc8xxx_spi,
int bits_per_word)
{
cs->rx_shift = 0;
cs->tx_shift = 0;
if (bits_per_word <= 8) {
cs->get_rx = mpc8xxx_spi_rx_buf_u8;
cs->get_tx = mpc8xxx_spi_tx_buf_u8;
if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
cs->rx_shift = 16;
cs->tx_shift = 24;
}
} else if (bits_per_word <= 16) {
cs->get_rx = mpc8xxx_spi_rx_buf_u16;
cs->get_tx = mpc8xxx_spi_tx_buf_u16;
if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
cs->rx_shift = 16;
cs->tx_shift = 16;
}
} else if (bits_per_word <= 32) {
cs->get_rx = mpc8xxx_spi_rx_buf_u32;
cs->get_tx = mpc8xxx_spi_tx_buf_u32;
} else
return -EINVAL;
if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE &&
spi->mode & SPI_LSB_FIRST) {
cs->tx_shift = 0;
if (bits_per_word <= 8)
cs->rx_shift = 8;
else
cs->rx_shift = 0;
}
mpc8xxx_spi->rx_shift = cs->rx_shift;
mpc8xxx_spi->tx_shift = cs->tx_shift;
mpc8xxx_spi->get_rx = cs->get_rx;
mpc8xxx_spi->get_tx = cs->get_tx;
return bits_per_word;
}
static int
mspi_apply_qe_mode_quirks(struct spi_mpc8xxx_cs *cs,
struct spi_device *spi,
int bits_per_word)
{
/* QE uses Little Endian for words > 8
* so transform all words > 8 into 8 bits
* Unfortnatly that doesn't work for LSB so
* reject these for now */
/* Note: 32 bits word, LSB works iff
* tfcr/rfcr is set to CPMFCR_GBL */
if (spi->mode & SPI_LSB_FIRST &&
bits_per_word > 8)
return -EINVAL;
if (bits_per_word > 8)
return 8; /* pretend its 8 bits */
return bits_per_word;
}
static
int mpc8xxx_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
{
struct mpc8xxx_spi *mpc8xxx_spi;
int bits_per_word;
u8 pm;
u32 hz;
struct spi_mpc8xxx_cs *cs = spi->controller_state;
mpc8xxx_spi = spi_master_get_devdata(spi->master);
if (t) {
bits_per_word = t->bits_per_word;
hz = t->speed_hz;
} else {
bits_per_word = 0;
hz = 0;
}
/* spi_transfer level calls that work per-word */
if (!bits_per_word)
bits_per_word = spi->bits_per_word;
/* Make sure its a bit width we support [4..16, 32] */
if ((bits_per_word < 4)
|| ((bits_per_word > 16) && (bits_per_word != 32)))
return -EINVAL;
if (!hz)
hz = spi->max_speed_hz;
if (!(mpc8xxx_spi->flags & SPI_CPM_MODE))
bits_per_word = mspi_apply_cpu_mode_quirks(cs, spi,
mpc8xxx_spi,
bits_per_word);
else if (mpc8xxx_spi->flags & SPI_QE)
bits_per_word = mspi_apply_qe_mode_quirks(cs, spi,
bits_per_word);
if (bits_per_word < 0)
return bits_per_word;
if (bits_per_word == 32)
bits_per_word = 0;
else
bits_per_word = bits_per_word - 1;
/* mask out bits we are going to set */
cs->hw_mode &= ~(SPMODE_LEN(0xF) | SPMODE_DIV16
| SPMODE_PM(0xF));
cs->hw_mode |= SPMODE_LEN(bits_per_word);
if ((mpc8xxx_spi->spibrg / hz) > 64) {
cs->hw_mode |= SPMODE_DIV16;
spi: Correct SPI clock frequency setting in spi_mpc8xxx Correct SPI clock frequency division factor rounding, preventing clock rates higher than the maximum specified clock frequency being used. When specifying spi-max-frequency = <10000000> in the device tree, the resulting frequency was 11.1 MHz, with spibrg being 133333332. According to the freescale data sheet [1], the spi clock rate is spiclk = spibrg / (4 * (pm+1)) The existing code calculated pm = mpc8xxx_spi->spibrg / (hz * 4); pm--; resulting in pm = (int) (3.3333) - 1 = 2, resulting in spiclk = 133333332/(4*(2+1)) = 11111111 With the fix, pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1; pm--; resulting in pm = (int) (4.3333) - 1 = 3, resulting in spiclk = 133333332/(4*(3+1)) = 8333333 Without the fix, for every desired SPI frequency that is not exactly derivable from spibrg, pm will be too small due to rounding down, resulting in a too high SPI clock, so we need a pm which is one higher. For values that are exactly derivable, spibrg will be dividable by (hz*4) without remainder, and (int) ((spibrg-1)/(hz*4)) will be one lower than (int) (spibrg)/(hz*4), which is compensated by adding 1. For these values, the fixed version calculates the same pm as the unfixed version. For all values that are not exactly derivable, spibrg will be not dividable by (hz*4) without remainder, and (int) ((spibrg-1)/(hz*4)) will be the same as (int) (spibrg)/(hz*4), and the calculated pm will be one higher than calculated by the unfixed version. References: [1] http://www.freescale.com/files/32bit/doc/ref_manual/MPC8315ERM.pdf, page 22-10 -> 1398 Signed-off-by: Ernst Schwab <eschwab@online.de> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-02-17 12:02:57 +08:00
pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1;
WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. "
"Will use %d Hz instead.\n", dev_name(&spi->dev),
hz, mpc8xxx_spi->spibrg / 1024);
if (pm > 16)
pm = 16;
} else
spi: Correct SPI clock frequency setting in spi_mpc8xxx Correct SPI clock frequency division factor rounding, preventing clock rates higher than the maximum specified clock frequency being used. When specifying spi-max-frequency = <10000000> in the device tree, the resulting frequency was 11.1 MHz, with spibrg being 133333332. According to the freescale data sheet [1], the spi clock rate is spiclk = spibrg / (4 * (pm+1)) The existing code calculated pm = mpc8xxx_spi->spibrg / (hz * 4); pm--; resulting in pm = (int) (3.3333) - 1 = 2, resulting in spiclk = 133333332/(4*(2+1)) = 11111111 With the fix, pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1; pm--; resulting in pm = (int) (4.3333) - 1 = 3, resulting in spiclk = 133333332/(4*(3+1)) = 8333333 Without the fix, for every desired SPI frequency that is not exactly derivable from spibrg, pm will be too small due to rounding down, resulting in a too high SPI clock, so we need a pm which is one higher. For values that are exactly derivable, spibrg will be dividable by (hz*4) without remainder, and (int) ((spibrg-1)/(hz*4)) will be one lower than (int) (spibrg)/(hz*4), which is compensated by adding 1. For these values, the fixed version calculates the same pm as the unfixed version. For all values that are not exactly derivable, spibrg will be not dividable by (hz*4) without remainder, and (int) ((spibrg-1)/(hz*4)) will be the same as (int) (spibrg)/(hz*4), and the calculated pm will be one higher than calculated by the unfixed version. References: [1] http://www.freescale.com/files/32bit/doc/ref_manual/MPC8315ERM.pdf, page 22-10 -> 1398 Signed-off-by: Ernst Schwab <eschwab@online.de> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-02-17 12:02:57 +08:00
pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1;
if (pm)
pm--;
cs->hw_mode |= SPMODE_PM(pm);
mpc8xxx_spi_change_mode(spi);
return 0;
}
static void mpc8xxx_spi_cpm_bufs_start(struct mpc8xxx_spi *mspi)
{
struct cpm_buf_desc __iomem *tx_bd = mspi->tx_bd;
struct cpm_buf_desc __iomem *rx_bd = mspi->rx_bd;
unsigned int xfer_len = min(mspi->count, SPI_MRBLR);
unsigned int xfer_ofs;
xfer_ofs = mspi->xfer_in_progress->len - mspi->count;
if (mspi->rx_dma == mspi->dma_dummy_rx)
out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma);
else
out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma + xfer_ofs);
out_be16(&rx_bd->cbd_datlen, 0);
out_be16(&rx_bd->cbd_sc, BD_SC_EMPTY | BD_SC_INTRPT | BD_SC_WRAP);
if (mspi->tx_dma == mspi->dma_dummy_tx)
out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma);
else
out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma + xfer_ofs);
out_be16(&tx_bd->cbd_datlen, xfer_len);
out_be16(&tx_bd->cbd_sc, BD_SC_READY | BD_SC_INTRPT | BD_SC_WRAP |
BD_SC_LAST);
/* start transfer */
mpc8xxx_spi_write_reg(&mspi->base->command, SPCOM_STR);
}
static int mpc8xxx_spi_cpm_bufs(struct mpc8xxx_spi *mspi,
struct spi_transfer *t, bool is_dma_mapped)
{
struct device *dev = mspi->dev;
if (is_dma_mapped) {
mspi->map_tx_dma = 0;
mspi->map_rx_dma = 0;
} else {
mspi->map_tx_dma = 1;
mspi->map_rx_dma = 1;
}
if (!t->tx_buf) {
mspi->tx_dma = mspi->dma_dummy_tx;
mspi->map_tx_dma = 0;
}
if (!t->rx_buf) {
mspi->rx_dma = mspi->dma_dummy_rx;
mspi->map_rx_dma = 0;
}
if (mspi->map_tx_dma) {
void *nonconst_tx = (void *)mspi->tx; /* shut up gcc */
mspi->tx_dma = dma_map_single(dev, nonconst_tx, t->len,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, mspi->tx_dma)) {
dev_err(dev, "unable to map tx dma\n");
return -ENOMEM;
}
} else if (t->tx_buf) {
mspi->tx_dma = t->tx_dma;
}
if (mspi->map_rx_dma) {
mspi->rx_dma = dma_map_single(dev, mspi->rx, t->len,
DMA_FROM_DEVICE);
if (dma_mapping_error(dev, mspi->rx_dma)) {
dev_err(dev, "unable to map rx dma\n");
goto err_rx_dma;
}
} else if (t->rx_buf) {
mspi->rx_dma = t->rx_dma;
}
/* enable rx ints */
mpc8xxx_spi_write_reg(&mspi->base->mask, SPIE_RXB);
mspi->xfer_in_progress = t;
mspi->count = t->len;
/* start CPM transfers */
mpc8xxx_spi_cpm_bufs_start(mspi);
return 0;
err_rx_dma:
if (mspi->map_tx_dma)
dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
return -ENOMEM;
}
static void mpc8xxx_spi_cpm_bufs_complete(struct mpc8xxx_spi *mspi)
{
struct device *dev = mspi->dev;
struct spi_transfer *t = mspi->xfer_in_progress;
if (mspi->map_tx_dma)
dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
if (mspi->map_rx_dma)
dma_unmap_single(dev, mspi->rx_dma, t->len, DMA_FROM_DEVICE);
mspi->xfer_in_progress = NULL;
}
static int mpc8xxx_spi_cpu_bufs(struct mpc8xxx_spi *mspi,
struct spi_transfer *t, unsigned int len)
{
u32 word;
mspi->count = len;
/* enable rx ints */
mpc8xxx_spi_write_reg(&mspi->base->mask, SPIM_NE);
/* transmit word */
word = mspi->get_tx(mspi);
mpc8xxx_spi_write_reg(&mspi->base->transmit, word);
return 0;
}
static int mpc8xxx_spi_bufs(struct spi_device *spi, struct spi_transfer *t,
bool is_dma_mapped)
{
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
unsigned int len = t->len;
u8 bits_per_word;
int ret;
bits_per_word = spi->bits_per_word;
if (t->bits_per_word)
bits_per_word = t->bits_per_word;
if (bits_per_word > 8) {
/* invalid length? */
if (len & 1)
return -EINVAL;
len /= 2;
}
if (bits_per_word > 16) {
/* invalid length? */
if (len & 1)
return -EINVAL;
len /= 2;
}
mpc8xxx_spi->tx = t->tx_buf;
mpc8xxx_spi->rx = t->rx_buf;
INIT_COMPLETION(mpc8xxx_spi->done);
if (mpc8xxx_spi->flags & SPI_CPM_MODE)
ret = mpc8xxx_spi_cpm_bufs(mpc8xxx_spi, t, is_dma_mapped);
else
ret = mpc8xxx_spi_cpu_bufs(mpc8xxx_spi, t, len);
if (ret)
return ret;
wait_for_completion(&mpc8xxx_spi->done);
/* disable rx ints */
mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, 0);
if (mpc8xxx_spi->flags & SPI_CPM_MODE)
mpc8xxx_spi_cpm_bufs_complete(mpc8xxx_spi);
return mpc8xxx_spi->count;
}
static void mpc8xxx_spi_do_one_msg(struct spi_message *m)
{
struct spi_device *spi = m->spi;
struct spi_transfer *t;
unsigned int cs_change;
const int nsecs = 50;
int status;
cs_change = 1;
status = 0;
list_for_each_entry(t, &m->transfers, transfer_list) {
if (t->bits_per_word || t->speed_hz) {
/* Don't allow changes if CS is active */
status = -EINVAL;
if (cs_change)
status = mpc8xxx_spi_setup_transfer(spi, t);
if (status < 0)
break;
}
if (cs_change) {
mpc8xxx_spi_chipselect(spi, BITBANG_CS_ACTIVE);
ndelay(nsecs);
}
cs_change = t->cs_change;
if (t->len)
status = mpc8xxx_spi_bufs(spi, t, m->is_dma_mapped);
if (status) {
status = -EMSGSIZE;
break;
}
m->actual_length += t->len;
if (t->delay_usecs)
udelay(t->delay_usecs);
if (cs_change) {
ndelay(nsecs);
mpc8xxx_spi_chipselect(spi, BITBANG_CS_INACTIVE);
ndelay(nsecs);
}
}
m->status = status;
m->complete(m->context);
if (status || !cs_change) {
ndelay(nsecs);
mpc8xxx_spi_chipselect(spi, BITBANG_CS_INACTIVE);
}
mpc8xxx_spi_setup_transfer(spi, NULL);
}
static void mpc8xxx_spi_work(struct work_struct *work)
{
struct mpc8xxx_spi *mpc8xxx_spi = container_of(work, struct mpc8xxx_spi,
work);
spin_lock_irq(&mpc8xxx_spi->lock);
while (!list_empty(&mpc8xxx_spi->queue)) {
struct spi_message *m = container_of(mpc8xxx_spi->queue.next,
struct spi_message, queue);
list_del_init(&m->queue);
spin_unlock_irq(&mpc8xxx_spi->lock);
mpc8xxx_spi_do_one_msg(m);
spin_lock_irq(&mpc8xxx_spi->lock);
}
spin_unlock_irq(&mpc8xxx_spi->lock);
}
static int mpc8xxx_spi_setup(struct spi_device *spi)
{
struct mpc8xxx_spi *mpc8xxx_spi;
int retval;
u32 hw_mode;
struct spi_mpc8xxx_cs *cs = spi->controller_state;
if (!spi->max_speed_hz)
return -EINVAL;
if (!cs) {
cs = kzalloc(sizeof *cs, GFP_KERNEL);
if (!cs)
return -ENOMEM;
spi->controller_state = cs;
}
mpc8xxx_spi = spi_master_get_devdata(spi->master);
hw_mode = cs->hw_mode; /* Save original settings */
cs->hw_mode = mpc8xxx_spi_read_reg(&mpc8xxx_spi->base->mode);
/* mask out bits we are going to set */
cs->hw_mode &= ~(SPMODE_CP_BEGIN_EDGECLK | SPMODE_CI_INACTIVEHIGH
| SPMODE_REV | SPMODE_LOOP);
if (spi->mode & SPI_CPHA)
cs->hw_mode |= SPMODE_CP_BEGIN_EDGECLK;
if (spi->mode & SPI_CPOL)
cs->hw_mode |= SPMODE_CI_INACTIVEHIGH;
if (!(spi->mode & SPI_LSB_FIRST))
cs->hw_mode |= SPMODE_REV;
if (spi->mode & SPI_LOOP)
cs->hw_mode |= SPMODE_LOOP;
retval = mpc8xxx_spi_setup_transfer(spi, NULL);
if (retval < 0) {
cs->hw_mode = hw_mode; /* Restore settings */
return retval;
}
return 0;
}
static void mpc8xxx_spi_cpm_irq(struct mpc8xxx_spi *mspi, u32 events)
{
u16 len;
dev_dbg(mspi->dev, "%s: bd datlen %d, count %d\n", __func__,
in_be16(&mspi->rx_bd->cbd_datlen), mspi->count);
len = in_be16(&mspi->rx_bd->cbd_datlen);
if (len > mspi->count) {
WARN_ON(1);
len = mspi->count;
}
/* Clear the events */
mpc8xxx_spi_write_reg(&mspi->base->event, events);
mspi->count -= len;
if (mspi->count)
mpc8xxx_spi_cpm_bufs_start(mspi);
else
complete(&mspi->done);
}
static void mpc8xxx_spi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
{
/* We need handle RX first */
if (events & SPIE_NE) {
u32 rx_data = mpc8xxx_spi_read_reg(&mspi->base->receive);
if (mspi->rx)
mspi->get_rx(rx_data, mspi);
}
if ((events & SPIE_NF) == 0)
/* spin until TX is done */
while (((events =
mpc8xxx_spi_read_reg(&mspi->base->event)) &
SPIE_NF) == 0)
spi_mpc83xx: fix checkpatch issues Checkpatch is spitting errors when seeing the rename patch, so fix the errors prior to moving. Following errors and warnings were fixed: WARNING: Use #include <linux/io.h> instead of <asm/io.h> #1027: FILE: drivers/spi/spi_mpc8xxx.c:37: +#include <asm/io.h> ERROR: "foo * bar" should be "foo *bar" #1111: FILE: drivers/spi/spi_mpc8xxx.c:121: +static inline void mpc83xx_spi_write_reg(__be32 __iomem * reg, u32 val) ERROR: "foo * bar" should be "foo *bar" #1116: FILE: drivers/spi/spi_mpc8xxx.c:126: +static inline u32 mpc83xx_spi_read_reg(__be32 __iomem * reg) ERROR: "foo * bar" should be "foo *bar" #1125: FILE: drivers/spi/spi_mpc8xxx.c:135: + type * rx = mpc83xx_spi->rx; \ ERROR: "foo * bar" should be "foo *bar" #1135: FILE: drivers/spi/spi_mpc8xxx.c:145: + const type * tx = mpc83xx_spi->tx; \ WARNING: suspect code indent for conditional statements (16, 25) #1504: FILE: drivers/spi/spi_mpc8xxx.c:514: + while (((event = [...] + cpu_relax(); Following warnings were left over, since fixing them will hurt the readability. We'd better fix them by lowering the indentation level by splitting mpc83xx_spi_work function into two parts. WARNING: line over 80 characters #1371: FILE: drivers/spi/spi_mpc8xxx.c:381: + status = mpc83xx_spi_setup_transfer(spi, t); WARNING: line over 80 characters #1392: FILE: drivers/spi/spi_mpc8xxx.c:402: + mpc83xx_spi_chipselect(spi, BITBANG_CS_INACTIVE); Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com> Cc: Kumar Gala <galak@gate.crashing.org> Cc: David Brownell <david-b@pacbell.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-19 07:49:05 +08:00
cpu_relax();
/* Clear the events */
mpc8xxx_spi_write_reg(&mspi->base->event, events);
mspi->count -= 1;
if (mspi->count) {
u32 word = mspi->get_tx(mspi);
mpc8xxx_spi_write_reg(&mspi->base->transmit, word);
} else {
complete(&mspi->done);
}
}
static irqreturn_t mpc8xxx_spi_irq(s32 irq, void *context_data)
{
struct mpc8xxx_spi *mspi = context_data;
irqreturn_t ret = IRQ_NONE;
u32 events;
/* Get interrupt events(tx/rx) */
events = mpc8xxx_spi_read_reg(&mspi->base->event);
if (events)
ret = IRQ_HANDLED;
dev_dbg(mspi->dev, "%s: events %x\n", __func__, events);
if (mspi->flags & SPI_CPM_MODE)
mpc8xxx_spi_cpm_irq(mspi, events);
else
mpc8xxx_spi_cpu_irq(mspi, events);
return ret;
}
static int mpc8xxx_spi_transfer(struct spi_device *spi,
struct spi_message *m)
{
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
unsigned long flags;
m->actual_length = 0;
m->status = -EINPROGRESS;
spin_lock_irqsave(&mpc8xxx_spi->lock, flags);
list_add_tail(&m->queue, &mpc8xxx_spi->queue);
queue_work(mpc8xxx_spi->workqueue, &mpc8xxx_spi->work);
spin_unlock_irqrestore(&mpc8xxx_spi->lock, flags);
return 0;
}
static void mpc8xxx_spi_cleanup(struct spi_device *spi)
{
kfree(spi->controller_state);
}
static void *mpc8xxx_spi_alloc_dummy_rx(void)
{
mutex_lock(&mpc8xxx_dummy_rx_lock);
if (!mpc8xxx_dummy_rx)
mpc8xxx_dummy_rx = kmalloc(SPI_MRBLR, GFP_KERNEL);
if (mpc8xxx_dummy_rx)
mpc8xxx_dummy_rx_refcnt++;
mutex_unlock(&mpc8xxx_dummy_rx_lock);
return mpc8xxx_dummy_rx;
}
static void mpc8xxx_spi_free_dummy_rx(void)
{
mutex_lock(&mpc8xxx_dummy_rx_lock);
switch (mpc8xxx_dummy_rx_refcnt) {
case 0:
WARN_ON(1);
break;
case 1:
kfree(mpc8xxx_dummy_rx);
mpc8xxx_dummy_rx = NULL;
/* fall through */
default:
mpc8xxx_dummy_rx_refcnt--;
break;
}
mutex_unlock(&mpc8xxx_dummy_rx_lock);
}
static unsigned long mpc8xxx_spi_cpm_get_pram(struct mpc8xxx_spi *mspi)
{
struct device *dev = mspi->dev;
struct device_node *np = dev->of_node;
const u32 *iprop;
int size;
unsigned long spi_base_ofs;
unsigned long pram_ofs = -ENOMEM;
/* Can't use of_address_to_resource(), QE muram isn't at 0. */
iprop = of_get_property(np, "reg", &size);
/* QE with a fixed pram location? */
if (mspi->flags & SPI_QE && iprop && size == sizeof(*iprop) * 4)
return cpm_muram_alloc_fixed(iprop[2], SPI_PRAM_SIZE);
/* QE but with a dynamic pram location? */
if (mspi->flags & SPI_QE) {
pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, mspi->subblock,
QE_CR_PROTOCOL_UNSPECIFIED, pram_ofs);
return pram_ofs;
}
/* CPM1 and CPM2 pram must be at a fixed addr. */
if (!iprop || size != sizeof(*iprop) * 4)
return -ENOMEM;
spi_base_ofs = cpm_muram_alloc_fixed(iprop[2], 2);
if (IS_ERR_VALUE(spi_base_ofs))
return -ENOMEM;
if (mspi->flags & SPI_CPM2) {
pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
if (!IS_ERR_VALUE(pram_ofs)) {
u16 __iomem *spi_base = cpm_muram_addr(spi_base_ofs);
out_be16(spi_base, pram_ofs);
}
} else {
struct spi_pram __iomem *pram = cpm_muram_addr(spi_base_ofs);
u16 rpbase = in_be16(&pram->rpbase);
/* Microcode relocation patch applied? */
if (rpbase)
pram_ofs = rpbase;
else
return spi_base_ofs;
}
cpm_muram_free(spi_base_ofs);
return pram_ofs;
}
static int mpc8xxx_spi_cpm_init(struct mpc8xxx_spi *mspi)
{
struct device *dev = mspi->dev;
struct device_node *np = dev->of_node;
const u32 *iprop;
int size;
unsigned long pram_ofs;
unsigned long bds_ofs;
if (!(mspi->flags & SPI_CPM_MODE))
return 0;
if (!mpc8xxx_spi_alloc_dummy_rx())
return -ENOMEM;
if (mspi->flags & SPI_QE) {
iprop = of_get_property(np, "cell-index", &size);
if (iprop && size == sizeof(*iprop))
mspi->subblock = *iprop;
switch (mspi->subblock) {
default:
dev_warn(dev, "cell-index unspecified, assuming SPI1");
/* fall through */
case 0:
mspi->subblock = QE_CR_SUBBLOCK_SPI1;
break;
case 1:
mspi->subblock = QE_CR_SUBBLOCK_SPI2;
break;
}
}
pram_ofs = mpc8xxx_spi_cpm_get_pram(mspi);
if (IS_ERR_VALUE(pram_ofs)) {
dev_err(dev, "can't allocate spi parameter ram\n");
goto err_pram;
}
bds_ofs = cpm_muram_alloc(sizeof(*mspi->tx_bd) +
sizeof(*mspi->rx_bd), 8);
if (IS_ERR_VALUE(bds_ofs)) {
dev_err(dev, "can't allocate bds\n");
goto err_bds;
}
mspi->dma_dummy_tx = dma_map_single(dev, empty_zero_page, PAGE_SIZE,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, mspi->dma_dummy_tx)) {
dev_err(dev, "unable to map dummy tx buffer\n");
goto err_dummy_tx;
}
mspi->dma_dummy_rx = dma_map_single(dev, mpc8xxx_dummy_rx, SPI_MRBLR,
DMA_FROM_DEVICE);
if (dma_mapping_error(dev, mspi->dma_dummy_rx)) {
dev_err(dev, "unable to map dummy rx buffer\n");
goto err_dummy_rx;
}
mspi->pram = cpm_muram_addr(pram_ofs);
mspi->tx_bd = cpm_muram_addr(bds_ofs);
mspi->rx_bd = cpm_muram_addr(bds_ofs + sizeof(*mspi->tx_bd));
/* Initialize parameter ram. */
out_be16(&mspi->pram->tbase, cpm_muram_offset(mspi->tx_bd));
out_be16(&mspi->pram->rbase, cpm_muram_offset(mspi->rx_bd));
out_8(&mspi->pram->tfcr, CPMFCR_EB | CPMFCR_GBL);
out_8(&mspi->pram->rfcr, CPMFCR_EB | CPMFCR_GBL);
out_be16(&mspi->pram->mrblr, SPI_MRBLR);
out_be32(&mspi->pram->rstate, 0);
out_be32(&mspi->pram->rdp, 0);
out_be16(&mspi->pram->rbptr, 0);
out_be16(&mspi->pram->rbc, 0);
out_be32(&mspi->pram->rxtmp, 0);
out_be32(&mspi->pram->tstate, 0);
out_be32(&mspi->pram->tdp, 0);
out_be16(&mspi->pram->tbptr, 0);
out_be16(&mspi->pram->tbc, 0);
out_be32(&mspi->pram->txtmp, 0);
return 0;
err_dummy_rx:
dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
err_dummy_tx:
cpm_muram_free(bds_ofs);
err_bds:
cpm_muram_free(pram_ofs);
err_pram:
mpc8xxx_spi_free_dummy_rx();
return -ENOMEM;
}
static void mpc8xxx_spi_cpm_free(struct mpc8xxx_spi *mspi)
{
struct device *dev = mspi->dev;
dma_unmap_single(dev, mspi->dma_dummy_rx, SPI_MRBLR, DMA_FROM_DEVICE);
dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
cpm_muram_free(cpm_muram_offset(mspi->tx_bd));
cpm_muram_free(cpm_muram_offset(mspi->pram));
mpc8xxx_spi_free_dummy_rx();
}
static const char *mpc8xxx_spi_strmode(unsigned int flags)
{
if (flags & SPI_QE_CPU_MODE) {
return "QE CPU";
} else if (flags & SPI_CPM_MODE) {
if (flags & SPI_QE)
return "QE";
else if (flags & SPI_CPM2)
return "CPM2";
else
return "CPM1";
}
return "CPU";
}
static struct spi_master * __devinit
mpc8xxx_spi_probe(struct device *dev, struct resource *mem, unsigned int irq)
{
struct fsl_spi_platform_data *pdata = dev->platform_data;
struct spi_master *master;
struct mpc8xxx_spi *mpc8xxx_spi;
u32 regval;
int ret = 0;
master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
if (master == NULL) {
ret = -ENOMEM;
goto err;
}
dev_set_drvdata(dev, master);
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH
| SPI_LSB_FIRST | SPI_LOOP;
master->setup = mpc8xxx_spi_setup;
master->transfer = mpc8xxx_spi_transfer;
master->cleanup = mpc8xxx_spi_cleanup;
master->dev.of_node = dev->of_node;
mpc8xxx_spi = spi_master_get_devdata(master);
mpc8xxx_spi->dev = dev;
mpc8xxx_spi->get_rx = mpc8xxx_spi_rx_buf_u8;
mpc8xxx_spi->get_tx = mpc8xxx_spi_tx_buf_u8;
mpc8xxx_spi->flags = pdata->flags;
mpc8xxx_spi->spibrg = pdata->sysclk;
ret = mpc8xxx_spi_cpm_init(mpc8xxx_spi);
if (ret)
goto err_cpm_init;
mpc8xxx_spi->rx_shift = 0;
mpc8xxx_spi->tx_shift = 0;
if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
mpc8xxx_spi->rx_shift = 16;
mpc8xxx_spi->tx_shift = 24;
}
init_completion(&mpc8xxx_spi->done);
mpc8xxx_spi->base = ioremap(mem->start, resource_size(mem));
if (mpc8xxx_spi->base == NULL) {
ret = -ENOMEM;
goto err_ioremap;
}
mpc8xxx_spi->irq = irq;
/* Register for SPI Interrupt */
ret = request_irq(mpc8xxx_spi->irq, mpc8xxx_spi_irq,
0, "mpc8xxx_spi", mpc8xxx_spi);
if (ret != 0)
goto unmap_io;
master->bus_num = pdata->bus_num;
master->num_chipselect = pdata->max_chipselect;
/* SPI controller initializations */
mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mode, 0);
mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, 0);
mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->command, 0);
mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->event, 0xffffffff);
/* Enable SPI interface */
regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE)
regval |= SPMODE_OP;
mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mode, regval);
spin_lock_init(&mpc8xxx_spi->lock);
init_completion(&mpc8xxx_spi->done);
INIT_WORK(&mpc8xxx_spi->work, mpc8xxx_spi_work);
INIT_LIST_HEAD(&mpc8xxx_spi->queue);
mpc8xxx_spi->workqueue = create_singlethread_workqueue(
dev_name(master->dev.parent));
if (mpc8xxx_spi->workqueue == NULL) {
ret = -EBUSY;
goto free_irq;
}
ret = spi_register_master(master);
if (ret < 0)
goto unreg_master;
dev_info(dev, "at 0x%p (irq = %d), %s mode\n", mpc8xxx_spi->base,
mpc8xxx_spi->irq, mpc8xxx_spi_strmode(mpc8xxx_spi->flags));
return master;
unreg_master:
destroy_workqueue(mpc8xxx_spi->workqueue);
free_irq:
free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
unmap_io:
iounmap(mpc8xxx_spi->base);
err_ioremap:
mpc8xxx_spi_cpm_free(mpc8xxx_spi);
err_cpm_init:
spi_master_put(master);
err:
return ERR_PTR(ret);
}
static int __devexit mpc8xxx_spi_remove(struct device *dev)
{
struct mpc8xxx_spi *mpc8xxx_spi;
struct spi_master *master;
master = dev_get_drvdata(dev);
mpc8xxx_spi = spi_master_get_devdata(master);
flush_workqueue(mpc8xxx_spi->workqueue);
destroy_workqueue(mpc8xxx_spi->workqueue);
spi_unregister_master(master);
free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
iounmap(mpc8xxx_spi->base);
mpc8xxx_spi_cpm_free(mpc8xxx_spi);
return 0;
}
struct mpc8xxx_spi_probe_info {
struct fsl_spi_platform_data pdata;
int *gpios;
bool *alow_flags;
};
static struct mpc8xxx_spi_probe_info *
to_of_pinfo(struct fsl_spi_platform_data *pdata)
{
return container_of(pdata, struct mpc8xxx_spi_probe_info, pdata);
}
static void mpc8xxx_spi_cs_control(struct spi_device *spi, bool on)
{
struct device *dev = spi->dev.parent;
struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(dev->platform_data);
u16 cs = spi->chip_select;
int gpio = pinfo->gpios[cs];
bool alow = pinfo->alow_flags[cs];
gpio_set_value(gpio, on ^ alow);
}
static int of_mpc8xxx_spi_get_chipselects(struct device *dev)
{
struct device_node *np = dev->of_node;
struct fsl_spi_platform_data *pdata = dev->platform_data;
struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
unsigned int ngpios;
int i = 0;
int ret;
ngpios = of_gpio_count(np);
if (!ngpios) {
/*
* SPI w/o chip-select line. One SPI device is still permitted
* though.
*/
pdata->max_chipselect = 1;
return 0;
}
pinfo->gpios = kmalloc(ngpios * sizeof(*pinfo->gpios), GFP_KERNEL);
if (!pinfo->gpios)
return -ENOMEM;
memset(pinfo->gpios, -1, ngpios * sizeof(*pinfo->gpios));
pinfo->alow_flags = kzalloc(ngpios * sizeof(*pinfo->alow_flags),
GFP_KERNEL);
if (!pinfo->alow_flags) {
ret = -ENOMEM;
goto err_alloc_flags;
}
for (; i < ngpios; i++) {
int gpio;
enum of_gpio_flags flags;
gpio = of_get_gpio_flags(np, i, &flags);
if (!gpio_is_valid(gpio)) {
dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
ret = gpio;
goto err_loop;
}
ret = gpio_request(gpio, dev_name(dev));
if (ret) {
dev_err(dev, "can't request gpio #%d: %d\n", i, ret);
goto err_loop;
}
pinfo->gpios[i] = gpio;
pinfo->alow_flags[i] = flags & OF_GPIO_ACTIVE_LOW;
ret = gpio_direction_output(pinfo->gpios[i],
pinfo->alow_flags[i]);
if (ret) {
dev_err(dev, "can't set output direction for gpio "
"#%d: %d\n", i, ret);
goto err_loop;
}
}
pdata->max_chipselect = ngpios;
pdata->cs_control = mpc8xxx_spi_cs_control;
return 0;
err_loop:
while (i >= 0) {
if (gpio_is_valid(pinfo->gpios[i]))
gpio_free(pinfo->gpios[i]);
i--;
}
kfree(pinfo->alow_flags);
pinfo->alow_flags = NULL;
err_alloc_flags:
kfree(pinfo->gpios);
pinfo->gpios = NULL;
return ret;
}
static int of_mpc8xxx_spi_free_chipselects(struct device *dev)
{
struct fsl_spi_platform_data *pdata = dev->platform_data;
struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
int i;
if (!pinfo->gpios)
return 0;
for (i = 0; i < pdata->max_chipselect; i++) {
if (gpio_is_valid(pinfo->gpios[i]))
gpio_free(pinfo->gpios[i]);
}
kfree(pinfo->gpios);
kfree(pinfo->alow_flags);
return 0;
}
static int __devinit of_mpc8xxx_spi_probe(struct platform_device *ofdev,
const struct of_device_id *ofid)
{
struct device *dev = &ofdev->dev;
struct device_node *np = ofdev->dev.of_node;
struct mpc8xxx_spi_probe_info *pinfo;
struct fsl_spi_platform_data *pdata;
struct spi_master *master;
struct resource mem;
struct resource irq;
const void *prop;
int ret = -ENOMEM;
pinfo = kzalloc(sizeof(*pinfo), GFP_KERNEL);
if (!pinfo)
return -ENOMEM;
pdata = &pinfo->pdata;
dev->platform_data = pdata;
/* Allocate bus num dynamically. */
pdata->bus_num = -1;
/* SPI controller is either clocked from QE or SoC clock. */
pdata->sysclk = get_brgfreq();
if (pdata->sysclk == -1) {
pdata->sysclk = fsl_get_sys_freq();
if (pdata->sysclk == -1) {
ret = -ENODEV;
goto err_clk;
}
}
prop = of_get_property(np, "mode", NULL);
if (prop && !strcmp(prop, "cpu-qe"))
pdata->flags = SPI_QE_CPU_MODE;
else if (prop && !strcmp(prop, "qe"))
pdata->flags = SPI_CPM_MODE | SPI_QE;
else if (of_device_is_compatible(np, "fsl,cpm2-spi"))
pdata->flags = SPI_CPM_MODE | SPI_CPM2;
else if (of_device_is_compatible(np, "fsl,cpm1-spi"))
pdata->flags = SPI_CPM_MODE | SPI_CPM1;
ret = of_mpc8xxx_spi_get_chipselects(dev);
if (ret)
goto err;
ret = of_address_to_resource(np, 0, &mem);
if (ret)
goto err;
ret = of_irq_to_resource(np, 0, &irq);
if (!ret) {
ret = -EINVAL;
goto err;
}
master = mpc8xxx_spi_probe(dev, &mem, irq.start);
if (IS_ERR(master)) {
ret = PTR_ERR(master);
goto err;
}
return 0;
err:
of_mpc8xxx_spi_free_chipselects(dev);
err_clk:
kfree(pinfo);
return ret;
}
static int __devexit of_mpc8xxx_spi_remove(struct platform_device *ofdev)
{
int ret;
ret = mpc8xxx_spi_remove(&ofdev->dev);
if (ret)
return ret;
of_mpc8xxx_spi_free_chipselects(&ofdev->dev);
return 0;
}
static const struct of_device_id of_mpc8xxx_spi_match[] = {
{ .compatible = "fsl,spi" },
{},
};
MODULE_DEVICE_TABLE(of, of_mpc8xxx_spi_match);
static struct of_platform_driver of_mpc8xxx_spi_driver = {
.driver = {
.name = "mpc8xxx_spi",
.owner = THIS_MODULE,
.of_match_table = of_mpc8xxx_spi_match,
},
.probe = of_mpc8xxx_spi_probe,
.remove = __devexit_p(of_mpc8xxx_spi_remove),
};
#ifdef CONFIG_MPC832x_RDB
/*
* XXX XXX XXX
* This is "legacy" platform driver, was used by the MPC8323E-RDB boards
* only. The driver should go away soon, since newer MPC8323E-RDB's device
* tree can work with OpenFirmware driver. But for now we support old trees
* as well.
*/
static int __devinit plat_mpc8xxx_spi_probe(struct platform_device *pdev)
{
struct resource *mem;
int irq;
struct spi_master *master;
if (!pdev->dev.platform_data)
return -EINVAL;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem)
return -EINVAL;
irq = platform_get_irq(pdev, 0);
if (irq <= 0)
return -EINVAL;
master = mpc8xxx_spi_probe(&pdev->dev, mem, irq);
if (IS_ERR(master))
return PTR_ERR(master);
return 0;
}
static int __devexit plat_mpc8xxx_spi_remove(struct platform_device *pdev)
{
return mpc8xxx_spi_remove(&pdev->dev);
}
MODULE_ALIAS("platform:mpc8xxx_spi");
static struct platform_driver mpc8xxx_spi_driver = {
.probe = plat_mpc8xxx_spi_probe,
.remove = __devexit_p(plat_mpc8xxx_spi_remove),
.driver = {
.name = "mpc8xxx_spi",
.owner = THIS_MODULE,
},
};
static bool legacy_driver_failed;
static void __init legacy_driver_register(void)
{
legacy_driver_failed = platform_driver_register(&mpc8xxx_spi_driver);
}
static void __exit legacy_driver_unregister(void)
{
if (legacy_driver_failed)
return;
platform_driver_unregister(&mpc8xxx_spi_driver);
}
#else
static void __init legacy_driver_register(void) {}
static void __exit legacy_driver_unregister(void) {}
#endif /* CONFIG_MPC832x_RDB */
static int __init mpc8xxx_spi_init(void)
{
legacy_driver_register();
return of_register_platform_driver(&of_mpc8xxx_spi_driver);
}
static void __exit mpc8xxx_spi_exit(void)
{
of_unregister_platform_driver(&of_mpc8xxx_spi_driver);
legacy_driver_unregister();
}
module_init(mpc8xxx_spi_init);
module_exit(mpc8xxx_spi_exit);
MODULE_AUTHOR("Kumar Gala");
MODULE_DESCRIPTION("Simple MPC8xxx SPI Driver");
MODULE_LICENSE("GPL");