linux_old1/drivers/power/bq27x00_battery.c

1047 lines
25 KiB
C
Raw Normal View History

/*
* BQ27x00 battery driver
*
* Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it>
* Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it>
* Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de>
* Copyright (C) 2011 Pali Rohár <pali.rohar@gmail.com>
*
* Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*/
/*
* Datasheets:
* http://focus.ti.com/docs/prod/folders/print/bq27000.html
* http://focus.ti.com/docs/prod/folders/print/bq27500.html
* http://www.ti.com/product/bq27425-g1
*/
#include <linux/module.h>
#include <linux/param.h>
#include <linux/jiffies.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/idr.h>
#include <linux/i2c.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <asm/unaligned.h>
#include <linux/power/bq27x00_battery.h>
#define DRIVER_VERSION "1.2.0"
#define BQ27x00_REG_TEMP 0x06
#define BQ27x00_REG_VOLT 0x08
#define BQ27x00_REG_AI 0x14
#define BQ27x00_REG_FLAGS 0x0A
#define BQ27x00_REG_TTE 0x16
#define BQ27x00_REG_TTF 0x18
#define BQ27x00_REG_TTECP 0x26
#define BQ27x00_REG_NAC 0x0C /* Nominal available capacity */
#define BQ27x00_REG_LMD 0x12 /* Last measured discharge */
#define BQ27x00_REG_CYCT 0x2A /* Cycle count total */
#define BQ27x00_REG_AE 0x22 /* Available energy */
#define BQ27x00_POWER_AVG 0x24
#define BQ27000_REG_RSOC 0x0B /* Relative State-of-Charge */
#define BQ27000_REG_ILMD 0x76 /* Initial last measured discharge */
#define BQ27000_FLAG_EDVF BIT(0) /* Final End-of-Discharge-Voltage flag */
#define BQ27000_FLAG_EDV1 BIT(1) /* First End-of-Discharge-Voltage flag */
#define BQ27000_FLAG_CI BIT(4) /* Capacity Inaccurate flag */
#define BQ27000_FLAG_FC BIT(5)
#define BQ27000_FLAG_CHGS BIT(7) /* Charge state flag */
#define BQ27500_REG_SOC 0x2C
#define BQ27500_REG_DCAP 0x3C /* Design capacity */
#define BQ27500_FLAG_DSC BIT(0)
#define BQ27500_FLAG_SOCF BIT(1) /* State-of-Charge threshold final */
#define BQ27500_FLAG_SOC1 BIT(2) /* State-of-Charge threshold 1 */
#define BQ27500_FLAG_FC BIT(9)
#define BQ27500_FLAG_OTC BIT(15)
/* bq27425 register addresses are same as bq27x00 addresses minus 4 */
#define BQ27425_REG_OFFSET 0x04
#define BQ27425_REG_SOC 0x18 /* Register address plus offset */
#define BQ27000_RS 20 /* Resistor sense */
#define BQ27x00_POWER_CONSTANT (256 * 29200 / 1000)
struct bq27x00_device_info;
struct bq27x00_access_methods {
int (*read)(struct bq27x00_device_info *di, u8 reg, bool single);
};
enum bq27x00_chip { BQ27000, BQ27500, BQ27425};
struct bq27x00_reg_cache {
int temperature;
int time_to_empty;
int time_to_empty_avg;
int time_to_full;
int charge_full;
int cycle_count;
int capacity;
int energy;
int flags;
int power_avg;
int health;
};
struct bq27x00_device_info {
struct device *dev;
int id;
enum bq27x00_chip chip;
struct bq27x00_reg_cache cache;
int charge_design_full;
unsigned long last_update;
struct delayed_work work;
struct power_supply bat;
struct bq27x00_access_methods bus;
struct mutex lock;
};
static enum power_supply_property bq27x00_battery_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_POWER_AVG,
POWER_SUPPLY_PROP_HEALTH,
};
static enum power_supply_property bq27425_battery_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
};
static unsigned int poll_interval = 360;
module_param(poll_interval, uint, 0644);
MODULE_PARM_DESC(poll_interval, "battery poll interval in seconds - " \
"0 disables polling");
/*
* Common code for BQ27x00 devices
*/
static inline int bq27x00_read(struct bq27x00_device_info *di, u8 reg,
bool single)
{
if (di->chip == BQ27425)
return di->bus.read(di, reg - BQ27425_REG_OFFSET, single);
return di->bus.read(di, reg, single);
}
/*
* Higher versions of the chip like BQ27425 and BQ27500
* differ from BQ27000 and BQ27200 in calculation of certain
* parameters. Hence we need to check for the chip type.
*/
static bool bq27xxx_is_chip_version_higher(struct bq27x00_device_info *di)
{
if (di->chip == BQ27425 || di->chip == BQ27500)
return true;
return false;
}
/*
* Return the battery Relative State-of-Charge
* Or < 0 if something fails.
*/
static int bq27x00_battery_read_rsoc(struct bq27x00_device_info *di)
{
int rsoc;
if (di->chip == BQ27500)
rsoc = bq27x00_read(di, BQ27500_REG_SOC, false);
else if (di->chip == BQ27425)
rsoc = bq27x00_read(di, BQ27425_REG_SOC, false);
else
rsoc = bq27x00_read(di, BQ27000_REG_RSOC, true);
if (rsoc < 0)
dev_dbg(di->dev, "error reading relative State-of-Charge\n");
return rsoc;
}
/*
* Return a battery charge value in µAh
* Or < 0 if something fails.
*/
static int bq27x00_battery_read_charge(struct bq27x00_device_info *di, u8 reg)
{
int charge;
charge = bq27x00_read(di, reg, false);
if (charge < 0) {
dev_dbg(di->dev, "error reading charge register %02x: %d\n",
reg, charge);
return charge;
}
if (bq27xxx_is_chip_version_higher(di))
charge *= 1000;
else
charge = charge * 3570 / BQ27000_RS;
return charge;
}
/*
* Return the battery Nominal available capaciy in µAh
* Or < 0 if something fails.
*/
static inline int bq27x00_battery_read_nac(struct bq27x00_device_info *di)
{
int flags;
bool is_bq27500 = di->chip == BQ27500;
bool is_higher = bq27xxx_is_chip_version_higher(di);
flags = bq27x00_read(di, BQ27x00_REG_FLAGS, !is_bq27500);
if (flags >= 0 && !is_higher && (flags & BQ27000_FLAG_CI))
return -ENODATA;
return bq27x00_battery_read_charge(di, BQ27x00_REG_NAC);
}
/*
* Return the battery Last measured discharge in µAh
* Or < 0 if something fails.
*/
static inline int bq27x00_battery_read_lmd(struct bq27x00_device_info *di)
{
return bq27x00_battery_read_charge(di, BQ27x00_REG_LMD);
}
/*
* Return the battery Initial last measured discharge in µAh
* Or < 0 if something fails.
*/
static int bq27x00_battery_read_ilmd(struct bq27x00_device_info *di)
{
int ilmd;
if (bq27xxx_is_chip_version_higher(di))
ilmd = bq27x00_read(di, BQ27500_REG_DCAP, false);
else
ilmd = bq27x00_read(di, BQ27000_REG_ILMD, true);
if (ilmd < 0) {
dev_dbg(di->dev, "error reading initial last measured discharge\n");
return ilmd;
}
if (bq27xxx_is_chip_version_higher(di))
ilmd *= 1000;
else
ilmd = ilmd * 256 * 3570 / BQ27000_RS;
return ilmd;
}
/*
* Return the battery Available energy in µWh
* Or < 0 if something fails.
*/
static int bq27x00_battery_read_energy(struct bq27x00_device_info *di)
{
int ae;
ae = bq27x00_read(di, BQ27x00_REG_AE, false);
if (ae < 0) {
dev_dbg(di->dev, "error reading available energy\n");
return ae;
}
if (di->chip == BQ27500)
ae *= 1000;
else
ae = ae * 29200 / BQ27000_RS;
return ae;
}
/*
* Return the battery temperature in tenths of degree Kelvin
* Or < 0 if something fails.
*/
static int bq27x00_battery_read_temperature(struct bq27x00_device_info *di)
{
int temp;
temp = bq27x00_read(di, BQ27x00_REG_TEMP, false);
if (temp < 0) {
dev_err(di->dev, "error reading temperature\n");
return temp;
}
if (!bq27xxx_is_chip_version_higher(di))
temp = 5 * temp / 2;
return temp;
}
/*
* Return the battery Cycle count total
* Or < 0 if something fails.
*/
static int bq27x00_battery_read_cyct(struct bq27x00_device_info *di)
{
int cyct;
cyct = bq27x00_read(di, BQ27x00_REG_CYCT, false);
if (cyct < 0)
dev_err(di->dev, "error reading cycle count total\n");
return cyct;
}
/*
* Read a time register.
* Return < 0 if something fails.
*/
static int bq27x00_battery_read_time(struct bq27x00_device_info *di, u8 reg)
{
int tval;
tval = bq27x00_read(di, reg, false);
if (tval < 0) {
dev_dbg(di->dev, "error reading time register %02x: %d\n",
reg, tval);
return tval;
}
if (tval == 65535)
return -ENODATA;
return tval * 60;
}
/*
* Read a power avg register.
* Return < 0 if something fails.
*/
static int bq27x00_battery_read_pwr_avg(struct bq27x00_device_info *di, u8 reg)
{
int tval;
tval = bq27x00_read(di, reg, false);
if (tval < 0) {
dev_err(di->dev, "error reading power avg rgister %02x: %d\n",
reg, tval);
return tval;
}
if (di->chip == BQ27500)
return tval;
else
return (tval * BQ27x00_POWER_CONSTANT) / BQ27000_RS;
}
/*
* Read flag register.
* Return < 0 if something fails.
*/
static int bq27x00_battery_read_health(struct bq27x00_device_info *di)
{
int tval;
tval = bq27x00_read(di, BQ27x00_REG_FLAGS, false);
if (tval < 0) {
dev_err(di->dev, "error reading flag register:%d\n", tval);
return tval;
}
if ((di->chip == BQ27500)) {
if (tval & BQ27500_FLAG_SOCF)
tval = POWER_SUPPLY_HEALTH_DEAD;
else if (tval & BQ27500_FLAG_OTC)
tval = POWER_SUPPLY_HEALTH_OVERHEAT;
else
tval = POWER_SUPPLY_HEALTH_GOOD;
return tval;
} else {
if (tval & BQ27000_FLAG_EDV1)
tval = POWER_SUPPLY_HEALTH_DEAD;
else
tval = POWER_SUPPLY_HEALTH_GOOD;
return tval;
}
return -1;
}
static void bq27x00_update(struct bq27x00_device_info *di)
{
struct bq27x00_reg_cache cache = {0, };
bool is_bq27500 = di->chip == BQ27500;
bool is_bq27425 = di->chip == BQ27425;
cache.flags = bq27x00_read(di, BQ27x00_REG_FLAGS, !is_bq27500);
if (cache.flags >= 0) {
if (!is_bq27500 && !is_bq27425
&& (cache.flags & BQ27000_FLAG_CI)) {
dev_info(di->dev, "battery is not calibrated! ignoring capacity values\n");
cache.capacity = -ENODATA;
cache.energy = -ENODATA;
cache.time_to_empty = -ENODATA;
cache.time_to_empty_avg = -ENODATA;
cache.time_to_full = -ENODATA;
cache.charge_full = -ENODATA;
cache.health = -ENODATA;
} else {
cache.capacity = bq27x00_battery_read_rsoc(di);
if (!is_bq27425) {
cache.energy = bq27x00_battery_read_energy(di);
cache.time_to_empty =
bq27x00_battery_read_time(di,
BQ27x00_REG_TTE);
cache.time_to_empty_avg =
bq27x00_battery_read_time(di,
BQ27x00_REG_TTECP);
cache.time_to_full =
bq27x00_battery_read_time(di,
BQ27x00_REG_TTF);
}
cache.charge_full = bq27x00_battery_read_lmd(di);
cache.health = bq27x00_battery_read_health(di);
}
cache.temperature = bq27x00_battery_read_temperature(di);
if (!is_bq27425)
cache.cycle_count = bq27x00_battery_read_cyct(di);
cache.power_avg =
bq27x00_battery_read_pwr_avg(di, BQ27x00_POWER_AVG);
/* We only have to read charge design full once */
if (di->charge_design_full <= 0)
di->charge_design_full = bq27x00_battery_read_ilmd(di);
}
if (memcmp(&di->cache, &cache, sizeof(cache)) != 0) {
di->cache = cache;
power_supply_changed(&di->bat);
}
di->last_update = jiffies;
}
static void bq27x00_battery_poll(struct work_struct *work)
{
struct bq27x00_device_info *di =
container_of(work, struct bq27x00_device_info, work.work);
bq27x00_update(di);
if (poll_interval > 0) {
/* The timer does not have to be accurate. */
set_timer_slack(&di->work.timer, poll_interval * HZ / 4);
schedule_delayed_work(&di->work, poll_interval * HZ);
}
}
/*
* Return the battery average current in µA
* Note that current can be negative signed as well
* Or 0 if something fails.
*/
static int bq27x00_battery_current(struct bq27x00_device_info *di,
union power_supply_propval *val)
{
int curr;
int flags;
curr = bq27x00_read(di, BQ27x00_REG_AI, false);
if (curr < 0) {
dev_err(di->dev, "error reading current\n");
return curr;
}
if (bq27xxx_is_chip_version_higher(di)) {
/* bq27500 returns signed value */
val->intval = (int)((s16)curr) * 1000;
} else {
flags = bq27x00_read(di, BQ27x00_REG_FLAGS, false);
if (flags & BQ27000_FLAG_CHGS) {
dev_dbg(di->dev, "negative current!\n");
curr = -curr;
}
val->intval = curr * 3570 / BQ27000_RS;
}
return 0;
}
static int bq27x00_battery_status(struct bq27x00_device_info *di,
union power_supply_propval *val)
{
int status;
if (bq27xxx_is_chip_version_higher(di)) {
if (di->cache.flags & BQ27500_FLAG_FC)
status = POWER_SUPPLY_STATUS_FULL;
else if (di->cache.flags & BQ27500_FLAG_DSC)
status = POWER_SUPPLY_STATUS_DISCHARGING;
else
status = POWER_SUPPLY_STATUS_CHARGING;
} else {
if (di->cache.flags & BQ27000_FLAG_FC)
status = POWER_SUPPLY_STATUS_FULL;
else if (di->cache.flags & BQ27000_FLAG_CHGS)
status = POWER_SUPPLY_STATUS_CHARGING;
else if (power_supply_am_i_supplied(&di->bat))
status = POWER_SUPPLY_STATUS_NOT_CHARGING;
else
status = POWER_SUPPLY_STATUS_DISCHARGING;
}
val->intval = status;
return 0;
}
static int bq27x00_battery_capacity_level(struct bq27x00_device_info *di,
union power_supply_propval *val)
{
int level;
if (bq27xxx_is_chip_version_higher(di)) {
if (di->cache.flags & BQ27500_FLAG_FC)
level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
else if (di->cache.flags & BQ27500_FLAG_SOC1)
level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
else if (di->cache.flags & BQ27500_FLAG_SOCF)
level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
else
level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
} else {
if (di->cache.flags & BQ27000_FLAG_FC)
level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
else if (di->cache.flags & BQ27000_FLAG_EDV1)
level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
else if (di->cache.flags & BQ27000_FLAG_EDVF)
level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
else
level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
}
val->intval = level;
return 0;
}
/*
* Return the battery Voltage in millivolts
* Or < 0 if something fails.
*/
static int bq27x00_battery_voltage(struct bq27x00_device_info *di,
union power_supply_propval *val)
{
int volt;
volt = bq27x00_read(di, BQ27x00_REG_VOLT, false);
if (volt < 0) {
dev_err(di->dev, "error reading voltage\n");
return volt;
}
val->intval = volt * 1000;
return 0;
}
static int bq27x00_simple_value(int value,
union power_supply_propval *val)
{
if (value < 0)
return value;
val->intval = value;
return 0;
}
#define to_bq27x00_device_info(x) container_of((x), \
struct bq27x00_device_info, bat);
static int bq27x00_battery_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int ret = 0;
struct bq27x00_device_info *di = to_bq27x00_device_info(psy);
mutex_lock(&di->lock);
if (time_is_before_jiffies(di->last_update + 5 * HZ)) {
cancel_delayed_work_sync(&di->work);
bq27x00_battery_poll(&di->work.work);
}
mutex_unlock(&di->lock);
if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0)
return -ENODEV;
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
ret = bq27x00_battery_status(di, val);
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
ret = bq27x00_battery_voltage(di, val);
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = di->cache.flags < 0 ? 0 : 1;
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
ret = bq27x00_battery_current(di, val);
break;
case POWER_SUPPLY_PROP_CAPACITY:
ret = bq27x00_simple_value(di->cache.capacity, val);
break;
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
ret = bq27x00_battery_capacity_level(di, val);
break;
case POWER_SUPPLY_PROP_TEMP:
ret = bq27x00_simple_value(di->cache.temperature, val);
if (ret == 0)
val->intval -= 2731;
break;
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
ret = bq27x00_simple_value(di->cache.time_to_empty, val);
break;
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
ret = bq27x00_simple_value(di->cache.time_to_empty_avg, val);
break;
case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
ret = bq27x00_simple_value(di->cache.time_to_full, val);
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
break;
case POWER_SUPPLY_PROP_CHARGE_NOW:
ret = bq27x00_simple_value(bq27x00_battery_read_nac(di), val);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
ret = bq27x00_simple_value(di->cache.charge_full, val);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
ret = bq27x00_simple_value(di->charge_design_full, val);
break;
case POWER_SUPPLY_PROP_CYCLE_COUNT:
ret = bq27x00_simple_value(di->cache.cycle_count, val);
break;
case POWER_SUPPLY_PROP_ENERGY_NOW:
ret = bq27x00_simple_value(di->cache.energy, val);
break;
case POWER_SUPPLY_PROP_POWER_AVG:
ret = bq27x00_simple_value(di->cache.power_avg, val);
break;
case POWER_SUPPLY_PROP_HEALTH:
ret = bq27x00_simple_value(di->cache.health, val);
break;
default:
return -EINVAL;
}
return ret;
}
static void bq27x00_external_power_changed(struct power_supply *psy)
{
struct bq27x00_device_info *di = to_bq27x00_device_info(psy);
cancel_delayed_work_sync(&di->work);
schedule_delayed_work(&di->work, 0);
}
static int bq27x00_powersupply_init(struct bq27x00_device_info *di)
{
int ret;
di->bat.type = POWER_SUPPLY_TYPE_BATTERY;
if (di->chip == BQ27425) {
di->bat.properties = bq27425_battery_props;
di->bat.num_properties = ARRAY_SIZE(bq27425_battery_props);
} else {
di->bat.properties = bq27x00_battery_props;
di->bat.num_properties = ARRAY_SIZE(bq27x00_battery_props);
}
di->bat.get_property = bq27x00_battery_get_property;
di->bat.external_power_changed = bq27x00_external_power_changed;
INIT_DELAYED_WORK(&di->work, bq27x00_battery_poll);
mutex_init(&di->lock);
ret = power_supply_register(di->dev, &di->bat);
if (ret) {
dev_err(di->dev, "failed to register battery: %d\n", ret);
return ret;
}
dev_info(di->dev, "support ver. %s enabled\n", DRIVER_VERSION);
bq27x00_update(di);
return 0;
}
static void bq27x00_powersupply_unregister(struct bq27x00_device_info *di)
{
/*
* power_supply_unregister call bq27x00_battery_get_property which
* call bq27x00_battery_poll.
* Make sure that bq27x00_battery_poll will not call
* schedule_delayed_work again after unregister (which cause OOPS).
*/
poll_interval = 0;
cancel_delayed_work_sync(&di->work);
power_supply_unregister(&di->bat);
mutex_destroy(&di->lock);
}
/* i2c specific code */
#ifdef CONFIG_BATTERY_BQ27X00_I2C
/* If the system has several batteries we need a different name for each
* of them...
*/
static DEFINE_IDR(battery_id);
static DEFINE_MUTEX(battery_mutex);
static int bq27x00_read_i2c(struct bq27x00_device_info *di, u8 reg, bool single)
{
struct i2c_client *client = to_i2c_client(di->dev);
struct i2c_msg msg[2];
unsigned char data[2];
int ret;
if (!client->adapter)
return -ENODEV;
msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].buf = &reg;
msg[0].len = sizeof(reg);
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = data;
if (single)
msg[1].len = 1;
else
msg[1].len = 2;
ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg));
if (ret < 0)
return ret;
if (!single)
ret = get_unaligned_le16(data);
else
ret = data[0];
return ret;
}
static int bq27x00_battery_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
char *name;
struct bq27x00_device_info *di;
int num;
int retval = 0;
/* Get new ID for the new battery device */
mutex_lock(&battery_mutex);
num = idr_alloc(&battery_id, client, 0, 0, GFP_KERNEL);
mutex_unlock(&battery_mutex);
if (num < 0)
return num;
name = kasprintf(GFP_KERNEL, "%s-%d", id->name, num);
if (!name) {
dev_err(&client->dev, "failed to allocate device name\n");
retval = -ENOMEM;
goto batt_failed_1;
}
di = kzalloc(sizeof(*di), GFP_KERNEL);
if (!di) {
dev_err(&client->dev, "failed to allocate device info data\n");
retval = -ENOMEM;
goto batt_failed_2;
}
di->id = num;
di->dev = &client->dev;
di->chip = id->driver_data;
di->bat.name = name;
di->bus.read = &bq27x00_read_i2c;
retval = bq27x00_powersupply_init(di);
if (retval)
goto batt_failed_3;
i2c_set_clientdata(client, di);
return 0;
batt_failed_3:
kfree(di);
batt_failed_2:
kfree(name);
batt_failed_1:
mutex_lock(&battery_mutex);
idr_remove(&battery_id, num);
mutex_unlock(&battery_mutex);
return retval;
}
static int bq27x00_battery_remove(struct i2c_client *client)
{
struct bq27x00_device_info *di = i2c_get_clientdata(client);
bq27x00_powersupply_unregister(di);
kfree(di->bat.name);
mutex_lock(&battery_mutex);
idr_remove(&battery_id, di->id);
mutex_unlock(&battery_mutex);
kfree(di);
return 0;
}
static const struct i2c_device_id bq27x00_id[] = {
{ "bq27200", BQ27000 }, /* bq27200 is same as bq27000, but with i2c */
{ "bq27500", BQ27500 },
{ "bq27425", BQ27425 },
{},
};
MODULE_DEVICE_TABLE(i2c, bq27x00_id);
static struct i2c_driver bq27x00_battery_driver = {
.driver = {
.name = "bq27x00-battery",
},
.probe = bq27x00_battery_probe,
.remove = bq27x00_battery_remove,
.id_table = bq27x00_id,
};
static inline int bq27x00_battery_i2c_init(void)
{
int ret = i2c_add_driver(&bq27x00_battery_driver);
if (ret)
printk(KERN_ERR "Unable to register BQ27x00 i2c driver\n");
return ret;
}
static inline void bq27x00_battery_i2c_exit(void)
{
i2c_del_driver(&bq27x00_battery_driver);
}
#else
static inline int bq27x00_battery_i2c_init(void) { return 0; }
static inline void bq27x00_battery_i2c_exit(void) {};
#endif
/* platform specific code */
#ifdef CONFIG_BATTERY_BQ27X00_PLATFORM
static int bq27000_read_platform(struct bq27x00_device_info *di, u8 reg,
bool single)
{
struct device *dev = di->dev;
struct bq27000_platform_data *pdata = dev->platform_data;
unsigned int timeout = 3;
int upper, lower;
int temp;
if (!single) {
/* Make sure the value has not changed in between reading the
* lower and the upper part */
upper = pdata->read(dev, reg + 1);
do {
temp = upper;
if (upper < 0)
return upper;
lower = pdata->read(dev, reg);
if (lower < 0)
return lower;
upper = pdata->read(dev, reg + 1);
} while (temp != upper && --timeout);
if (timeout == 0)
return -EIO;
return (upper << 8) | lower;
}
return pdata->read(dev, reg);
}
static int bq27000_battery_probe(struct platform_device *pdev)
{
struct bq27x00_device_info *di;
struct bq27000_platform_data *pdata = pdev->dev.platform_data;
int ret;
if (!pdata) {
dev_err(&pdev->dev, "no platform_data supplied\n");
return -EINVAL;
}
if (!pdata->read) {
dev_err(&pdev->dev, "no hdq read callback supplied\n");
return -EINVAL;
}
di = kzalloc(sizeof(*di), GFP_KERNEL);
if (!di) {
dev_err(&pdev->dev, "failed to allocate device info data\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, di);
di->dev = &pdev->dev;
di->chip = BQ27000;
di->bat.name = pdata->name ?: dev_name(&pdev->dev);
di->bus.read = &bq27000_read_platform;
ret = bq27x00_powersupply_init(di);
if (ret)
goto err_free;
return 0;
err_free:
platform_set_drvdata(pdev, NULL);
kfree(di);
return ret;
}
static int bq27000_battery_remove(struct platform_device *pdev)
{
struct bq27x00_device_info *di = platform_get_drvdata(pdev);
bq27x00_powersupply_unregister(di);
platform_set_drvdata(pdev, NULL);
kfree(di);
return 0;
}
static struct platform_driver bq27000_battery_driver = {
.probe = bq27000_battery_probe,
.remove = bq27000_battery_remove,
.driver = {
.name = "bq27000-battery",
.owner = THIS_MODULE,
},
};
static inline int bq27x00_battery_platform_init(void)
{
int ret = platform_driver_register(&bq27000_battery_driver);
if (ret)
printk(KERN_ERR "Unable to register BQ27000 platform driver\n");
return ret;
}
static inline void bq27x00_battery_platform_exit(void)
{
platform_driver_unregister(&bq27000_battery_driver);
}
#else
static inline int bq27x00_battery_platform_init(void) { return 0; }
static inline void bq27x00_battery_platform_exit(void) {};
#endif
/*
* Module stuff
*/
static int __init bq27x00_battery_init(void)
{
int ret;
ret = bq27x00_battery_i2c_init();
if (ret)
return ret;
ret = bq27x00_battery_platform_init();
if (ret)
bq27x00_battery_i2c_exit();
return ret;
}
module_init(bq27x00_battery_init);
static void __exit bq27x00_battery_exit(void)
{
bq27x00_battery_platform_exit();
bq27x00_battery_i2c_exit();
}
module_exit(bq27x00_battery_exit);
MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
MODULE_DESCRIPTION("BQ27x00 battery monitor driver");
MODULE_LICENSE("GPL");