linux_old1/net/openvswitch/flow_netlink.h

79 lines
2.7 KiB
C
Raw Normal View History

/*
* Copyright (c) 2007-2013 Nicira, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*/
#ifndef FLOW_NETLINK_H
#define FLOW_NETLINK_H 1
#include <linux/kernel.h>
#include <linux/netlink.h>
#include <linux/openvswitch.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/rcupdate.h>
#include <linux/if_ether.h>
#include <linux/in6.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/flex_array.h>
#include <net/inet_ecn.h>
#include <net/ip_tunnels.h>
#include "flow.h"
size_t ovs_tun_key_attr_size(void);
size_t ovs_key_attr_size(void);
void ovs_match_init(struct sw_flow_match *match,
struct sw_flow_key *key, struct sw_flow_mask *mask);
int ovs_nla_put_key(const struct sw_flow_key *, const struct sw_flow_key *,
int attr, bool is_mask, struct sk_buff *);
int ovs_nla_get_flow_metadata(struct net *, const struct nlattr *,
struct sw_flow_key *, bool log);
int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb);
int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb);
int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb);
int ovs_nla_get_match(struct net *, struct sw_flow_match *,
const struct nlattr *key, const struct nlattr *mask,
bool log);
int ovs_nla_put_egress_tunnel_key(struct sk_buff *,
const struct ip_tunnel_info *,
const void *egress_tun_opts);
bool ovs_nla_get_ufid(struct sw_flow_id *, const struct nlattr *, bool log);
int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
const struct sw_flow_key *key, bool log);
u32 ovs_nla_get_ufid_flags(const struct nlattr *attr);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-27 02:31:48 +08:00
int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
const struct sw_flow_key *key,
struct sw_flow_actions **sfa, bool log);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-27 02:31:48 +08:00
int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype,
void *data, int len, bool log);
int ovs_nla_put_actions(const struct nlattr *attr,
int len, struct sk_buff *skb);
void ovs_nla_free_flow_actions(struct sw_flow_actions *);
void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *);
#endif /* flow_netlink.h */