linux_old1/drivers/net/usb/dm9601.c

691 lines
16 KiB
C
Raw Normal View History

/*
* Davicom DM9601 USB 1.1 10/100Mbps ethernet devices
*
* Peter Korsgaard <jacmet@sunsite.dk>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
//#define DEBUG
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/stddef.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/usb/usbnet.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
/* datasheet:
http://ptm2.cc.utu.fi/ftp/network/cards/DM9601/From_NET/DM9601-DS-P01-930914.pdf
*/
/* control requests */
#define DM_READ_REGS 0x00
#define DM_WRITE_REGS 0x01
#define DM_READ_MEMS 0x02
#define DM_WRITE_REG 0x03
#define DM_WRITE_MEMS 0x05
#define DM_WRITE_MEM 0x07
/* registers */
#define DM_NET_CTRL 0x00
#define DM_RX_CTRL 0x05
#define DM_SHARED_CTRL 0x0b
#define DM_SHARED_ADDR 0x0c
#define DM_SHARED_DATA 0x0d /* low + high */
#define DM_PHY_ADDR 0x10 /* 6 bytes */
#define DM_MCAST_ADDR 0x16 /* 8 bytes */
#define DM_GPR_CTRL 0x1e
#define DM_GPR_DATA 0x1f
#define DM_MAX_MCAST 64
#define DM_MCAST_SIZE 8
#define DM_EEPROM_LEN 256
#define DM_TX_OVERHEAD 2 /* 2 byte header */
#define DM_RX_OVERHEAD 7 /* 3 byte header + 4 byte crc tail */
#define DM_TIMEOUT 1000
static int dm_read(struct usbnet *dev, u8 reg, u16 length, void *data)
{
void *buf;
int err = -ENOMEM;
netdev_dbg(dev->net, "dm_read() reg=0x%02x length=%d\n", reg, length);
buf = kmalloc(length, GFP_KERNEL);
if (!buf)
goto out;
err = usb_control_msg(dev->udev,
usb_rcvctrlpipe(dev->udev, 0),
DM_READ_REGS,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, reg, buf, length, USB_CTRL_SET_TIMEOUT);
if (err == length)
memcpy(data, buf, length);
else if (err >= 0)
err = -EINVAL;
kfree(buf);
out:
return err;
}
static int dm_read_reg(struct usbnet *dev, u8 reg, u8 *value)
{
return dm_read(dev, reg, 1, value);
}
static int dm_write(struct usbnet *dev, u8 reg, u16 length, void *data)
{
void *buf = NULL;
int err = -ENOMEM;
netdev_dbg(dev->net, "dm_write() reg=0x%02x, length=%d\n", reg, length);
if (data) {
buf = kmemdup(data, length, GFP_KERNEL);
if (!buf)
goto out;
}
err = usb_control_msg(dev->udev,
usb_sndctrlpipe(dev->udev, 0),
DM_WRITE_REGS,
USB_DIR_OUT | USB_TYPE_VENDOR |USB_RECIP_DEVICE,
0, reg, buf, length, USB_CTRL_SET_TIMEOUT);
kfree(buf);
if (err >= 0 && err < length)
err = -EINVAL;
out:
return err;
}
static int dm_write_reg(struct usbnet *dev, u8 reg, u8 value)
{
netdev_dbg(dev->net, "dm_write_reg() reg=0x%02x, value=0x%02x\n",
reg, value);
return usb_control_msg(dev->udev,
usb_sndctrlpipe(dev->udev, 0),
DM_WRITE_REG,
USB_DIR_OUT | USB_TYPE_VENDOR |USB_RECIP_DEVICE,
value, reg, NULL, 0, USB_CTRL_SET_TIMEOUT);
}
static void dm_write_async_callback(struct urb *urb)
{
struct usb_ctrlrequest *req = (struct usb_ctrlrequest *)urb->context;
int status = urb->status;
if (status < 0)
printk(KERN_DEBUG "dm_write_async_callback() failed with %d\n",
status);
kfree(req);
usb_free_urb(urb);
}
static void dm_write_async_helper(struct usbnet *dev, u8 reg, u8 value,
u16 length, void *data)
{
struct usb_ctrlrequest *req;
struct urb *urb;
int status;
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb) {
netdev_err(dev->net, "Error allocating URB in dm_write_async_helper!\n");
return;
}
req = kmalloc(sizeof(struct usb_ctrlrequest), GFP_ATOMIC);
if (!req) {
netdev_err(dev->net, "Failed to allocate memory for control request\n");
usb_free_urb(urb);
return;
}
req->bRequestType = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
req->bRequest = length ? DM_WRITE_REGS : DM_WRITE_REG;
req->wValue = cpu_to_le16(value);
req->wIndex = cpu_to_le16(reg);
req->wLength = cpu_to_le16(length);
usb_fill_control_urb(urb, dev->udev,
usb_sndctrlpipe(dev->udev, 0),
(void *)req, data, length,
dm_write_async_callback, req);
status = usb_submit_urb(urb, GFP_ATOMIC);
if (status < 0) {
netdev_err(dev->net, "Error submitting the control message: status=%d\n",
status);
kfree(req);
usb_free_urb(urb);
}
}
static void dm_write_async(struct usbnet *dev, u8 reg, u16 length, void *data)
{
netdev_dbg(dev->net, "dm_write_async() reg=0x%02x length=%d\n", reg, length);
dm_write_async_helper(dev, reg, 0, length, data);
}
static void dm_write_reg_async(struct usbnet *dev, u8 reg, u8 value)
{
netdev_dbg(dev->net, "dm_write_reg_async() reg=0x%02x value=0x%02x\n",
reg, value);
dm_write_async_helper(dev, reg, value, 0, NULL);
}
static int dm_read_shared_word(struct usbnet *dev, int phy, u8 reg, __le16 *value)
{
int ret, i;
mutex_lock(&dev->phy_mutex);
dm_write_reg(dev, DM_SHARED_ADDR, phy ? (reg | 0x40) : reg);
dm_write_reg(dev, DM_SHARED_CTRL, phy ? 0xc : 0x4);
for (i = 0; i < DM_TIMEOUT; i++) {
u8 tmp;
udelay(1);
ret = dm_read_reg(dev, DM_SHARED_CTRL, &tmp);
if (ret < 0)
goto out;
/* ready */
if ((tmp & 1) == 0)
break;
}
if (i == DM_TIMEOUT) {
netdev_err(dev->net, "%s read timed out!\n", phy ? "phy" : "eeprom");
ret = -EIO;
goto out;
}
dm_write_reg(dev, DM_SHARED_CTRL, 0x0);
ret = dm_read(dev, DM_SHARED_DATA, 2, value);
netdev_dbg(dev->net, "read shared %d 0x%02x returned 0x%04x, %d\n",
phy, reg, *value, ret);
out:
mutex_unlock(&dev->phy_mutex);
return ret;
}
static int dm_write_shared_word(struct usbnet *dev, int phy, u8 reg, __le16 value)
{
int ret, i;
mutex_lock(&dev->phy_mutex);
ret = dm_write(dev, DM_SHARED_DATA, 2, &value);
if (ret < 0)
goto out;
dm_write_reg(dev, DM_SHARED_ADDR, phy ? (reg | 0x40) : reg);
dm_write_reg(dev, DM_SHARED_CTRL, phy ? 0x1a : 0x12);
for (i = 0; i < DM_TIMEOUT; i++) {
u8 tmp;
udelay(1);
ret = dm_read_reg(dev, DM_SHARED_CTRL, &tmp);
if (ret < 0)
goto out;
/* ready */
if ((tmp & 1) == 0)
break;
}
if (i == DM_TIMEOUT) {
netdev_err(dev->net, "%s write timed out!\n", phy ? "phy" : "eeprom");
ret = -EIO;
goto out;
}
dm_write_reg(dev, DM_SHARED_CTRL, 0x0);
out:
mutex_unlock(&dev->phy_mutex);
return ret;
}
static int dm_read_eeprom_word(struct usbnet *dev, u8 offset, void *value)
{
return dm_read_shared_word(dev, 0, offset, value);
}
static int dm9601_get_eeprom_len(struct net_device *dev)
{
return DM_EEPROM_LEN;
}
static int dm9601_get_eeprom(struct net_device *net,
struct ethtool_eeprom *eeprom, u8 * data)
{
struct usbnet *dev = netdev_priv(net);
__le16 *ebuf = (__le16 *) data;
int i;
/* access is 16bit */
if ((eeprom->offset % 2) || (eeprom->len % 2))
return -EINVAL;
for (i = 0; i < eeprom->len / 2; i++) {
if (dm_read_eeprom_word(dev, eeprom->offset / 2 + i,
&ebuf[i]) < 0)
return -EINVAL;
}
return 0;
}
static int dm9601_mdio_read(struct net_device *netdev, int phy_id, int loc)
{
struct usbnet *dev = netdev_priv(netdev);
__le16 res;
if (phy_id) {
netdev_dbg(dev->net, "Only internal phy supported\n");
return 0;
}
dm_read_shared_word(dev, 1, loc, &res);
netdev_dbg(dev->net,
"dm9601_mdio_read() phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n",
phy_id, loc, le16_to_cpu(res));
return le16_to_cpu(res);
}
static void dm9601_mdio_write(struct net_device *netdev, int phy_id, int loc,
int val)
{
struct usbnet *dev = netdev_priv(netdev);
__le16 res = cpu_to_le16(val);
if (phy_id) {
netdev_dbg(dev->net, "Only internal phy supported\n");
return;
}
netdev_dbg(dev->net, "dm9601_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x\n",
phy_id, loc, val);
dm_write_shared_word(dev, 1, loc, res);
}
static void dm9601_get_drvinfo(struct net_device *net,
struct ethtool_drvinfo *info)
{
/* Inherit standard device info */
usbnet_get_drvinfo(net, info);
info->eedump_len = DM_EEPROM_LEN;
}
static u32 dm9601_get_link(struct net_device *net)
{
struct usbnet *dev = netdev_priv(net);
return mii_link_ok(&dev->mii);
}
static int dm9601_ioctl(struct net_device *net, struct ifreq *rq, int cmd)
{
struct usbnet *dev = netdev_priv(net);
return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL);
}
static const struct ethtool_ops dm9601_ethtool_ops = {
.get_drvinfo = dm9601_get_drvinfo,
.get_link = dm9601_get_link,
.get_msglevel = usbnet_get_msglevel,
.set_msglevel = usbnet_set_msglevel,
.get_eeprom_len = dm9601_get_eeprom_len,
.get_eeprom = dm9601_get_eeprom,
.get_settings = usbnet_get_settings,
.set_settings = usbnet_set_settings,
.nway_reset = usbnet_nway_reset,
};
static void dm9601_set_multicast(struct net_device *net)
{
struct usbnet *dev = netdev_priv(net);
/* We use the 20 byte dev->data for our 8 byte filter buffer
* to avoid allocating memory that is tricky to free later */
u8 *hashes = (u8 *) & dev->data;
u8 rx_ctl = 0x31;
memset(hashes, 0x00, DM_MCAST_SIZE);
hashes[DM_MCAST_SIZE - 1] |= 0x80; /* broadcast address */
if (net->flags & IFF_PROMISC) {
rx_ctl |= 0x02;
} else if (net->flags & IFF_ALLMULTI ||
netdev_mc_count(net) > DM_MAX_MCAST) {
rx_ctl |= 0x04;
} else if (!netdev_mc_empty(net)) {
struct netdev_hw_addr *ha;
netdev_for_each_mc_addr(ha, net) {
u32 crc = ether_crc(ETH_ALEN, ha->addr) >> 26;
hashes[crc >> 3] |= 1 << (crc & 0x7);
}
}
dm_write_async(dev, DM_MCAST_ADDR, DM_MCAST_SIZE, hashes);
dm_write_reg_async(dev, DM_RX_CTRL, rx_ctl);
}
static void __dm9601_set_mac_address(struct usbnet *dev)
{
dm_write_async(dev, DM_PHY_ADDR, ETH_ALEN, dev->net->dev_addr);
}
static int dm9601_set_mac_address(struct net_device *net, void *p)
{
struct sockaddr *addr = p;
struct usbnet *dev = netdev_priv(net);
if (!is_valid_ether_addr(addr->sa_data)) {
dev_err(&net->dev, "not setting invalid mac address %pM\n",
addr->sa_data);
return -EINVAL;
}
memcpy(net->dev_addr, addr->sa_data, net->addr_len);
__dm9601_set_mac_address(dev);
return 0;
}
static const struct net_device_ops dm9601_netdev_ops = {
.ndo_open = usbnet_open,
.ndo_stop = usbnet_stop,
.ndo_start_xmit = usbnet_start_xmit,
.ndo_tx_timeout = usbnet_tx_timeout,
.ndo_change_mtu = usbnet_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = dm9601_ioctl,
.ndo_set_rx_mode = dm9601_set_multicast,
.ndo_set_mac_address = dm9601_set_mac_address,
};
static int dm9601_bind(struct usbnet *dev, struct usb_interface *intf)
{
int ret;
u8 mac[ETH_ALEN];
ret = usbnet_get_endpoints(dev, intf);
if (ret)
goto out;
dev->net->netdev_ops = &dm9601_netdev_ops;
dev->net->ethtool_ops = &dm9601_ethtool_ops;
dev->net->hard_header_len += DM_TX_OVERHEAD;
dev->hard_mtu = dev->net->mtu + dev->net->hard_header_len;
dev->rx_urb_size = dev->net->mtu + ETH_HLEN + DM_RX_OVERHEAD;
dev->mii.dev = dev->net;
dev->mii.mdio_read = dm9601_mdio_read;
dev->mii.mdio_write = dm9601_mdio_write;
dev->mii.phy_id_mask = 0x1f;
dev->mii.reg_num_mask = 0x1f;
/* reset */
dm_write_reg(dev, DM_NET_CTRL, 1);
udelay(20);
/* read MAC */
if (dm_read(dev, DM_PHY_ADDR, ETH_ALEN, mac) < 0) {
printk(KERN_ERR "Error reading MAC address\n");
ret = -ENODEV;
goto out;
}
/*
* Overwrite the auto-generated address only with good ones.
*/
if (is_valid_ether_addr(mac))
memcpy(dev->net->dev_addr, mac, ETH_ALEN);
else {
printk(KERN_WARNING
"dm9601: No valid MAC address in EEPROM, using %pM\n",
dev->net->dev_addr);
__dm9601_set_mac_address(dev);
}
/* power up phy */
dm_write_reg(dev, DM_GPR_CTRL, 1);
dm_write_reg(dev, DM_GPR_DATA, 0);
/* receive broadcast packets */
dm9601_set_multicast(dev->net);
dm9601_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET);
dm9601_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP);
mii_nway_restart(&dev->mii);
out:
return ret;
}
static int dm9601_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
u8 status;
int len;
/* format:
b1: rx status
b2: packet length (incl crc) low
b3: packet length (incl crc) high
b4..n-4: packet data
bn-3..bn: ethernet crc
*/
if (unlikely(skb->len < DM_RX_OVERHEAD)) {
dev_err(&dev->udev->dev, "unexpected tiny rx frame\n");
return 0;
}
status = skb->data[0];
len = (skb->data[1] | (skb->data[2] << 8)) - 4;
if (unlikely(status & 0xbf)) {
if (status & 0x01) dev->net->stats.rx_fifo_errors++;
if (status & 0x02) dev->net->stats.rx_crc_errors++;
if (status & 0x04) dev->net->stats.rx_frame_errors++;
if (status & 0x20) dev->net->stats.rx_missed_errors++;
if (status & 0x90) dev->net->stats.rx_length_errors++;
return 0;
}
skb_pull(skb, 3);
skb_trim(skb, len);
return 1;
}
static struct sk_buff *dm9601_tx_fixup(struct usbnet *dev, struct sk_buff *skb,
gfp_t flags)
{
int len;
/* format:
b1: packet length low
b2: packet length high
b3..n: packet data
*/
len = skb->len;
if (skb_headroom(skb) < DM_TX_OVERHEAD) {
struct sk_buff *skb2;
skb2 = skb_copy_expand(skb, DM_TX_OVERHEAD, 0, flags);
dev_kfree_skb_any(skb);
skb = skb2;
if (!skb)
return NULL;
}
__skb_push(skb, DM_TX_OVERHEAD);
/* usbnet adds padding if length is a multiple of packet size
if so, adjust length value in header */
if ((skb->len % dev->maxpacket) == 0)
len++;
skb->data[0] = len;
skb->data[1] = len >> 8;
return skb;
}
static void dm9601_status(struct usbnet *dev, struct urb *urb)
{
int link;
u8 *buf;
/* format:
b0: net status
b1: tx status 1
b2: tx status 2
b3: rx status
b4: rx overflow
b5: rx count
b6: tx count
b7: gpr
*/
if (urb->actual_length < 8)
return;
buf = urb->transfer_buffer;
link = !!(buf[0] & 0x40);
if (netif_carrier_ok(dev->net) != link) {
if (link) {
netif_carrier_on(dev->net);
usbnet_defer_kevent (dev, EVENT_LINK_RESET);
}
else
netif_carrier_off(dev->net);
netdev_dbg(dev->net, "Link Status is: %d\n", link);
}
}
static int dm9601_link_reset(struct usbnet *dev)
{
struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET };
mii_check_media(&dev->mii, 1, 1);
mii_ethtool_gset(&dev->mii, &ecmd);
netdev_dbg(dev->net, "link_reset() speed: %u duplex: %d\n",
ethtool_cmd_speed(&ecmd), ecmd.duplex);
return 0;
}
static const struct driver_info dm9601_info = {
.description = "Davicom DM9601 USB Ethernet",
.flags = FLAG_ETHER | FLAG_LINK_INTR,
.bind = dm9601_bind,
.rx_fixup = dm9601_rx_fixup,
.tx_fixup = dm9601_tx_fixup,
.status = dm9601_status,
.link_reset = dm9601_link_reset,
.reset = dm9601_link_reset,
};
static const struct usb_device_id products[] = {
{
USB_DEVICE(0x07aa, 0x9601), /* Corega FEther USB-TXC */
.driver_info = (unsigned long)&dm9601_info,
},
{
USB_DEVICE(0x0a46, 0x9601), /* Davicom USB-100 */
.driver_info = (unsigned long)&dm9601_info,
},
{
USB_DEVICE(0x0a46, 0x6688), /* ZT6688 USB NIC */
.driver_info = (unsigned long)&dm9601_info,
},
{
USB_DEVICE(0x0a46, 0x0268), /* ShanTou ST268 USB NIC */
.driver_info = (unsigned long)&dm9601_info,
},
{
USB_DEVICE(0x0a46, 0x8515), /* ADMtek ADM8515 USB NIC */
.driver_info = (unsigned long)&dm9601_info,
},
{
USB_DEVICE(0x0a47, 0x9601), /* Hirose USB-100 */
.driver_info = (unsigned long)&dm9601_info,
},
{
USB_DEVICE(0x0fe6, 0x8101), /* DM9601 USB to Fast Ethernet Adapter */
.driver_info = (unsigned long)&dm9601_info,
},
{
USB_DEVICE(0x0fe6, 0x9700), /* DM9601 USB to Fast Ethernet Adapter */
.driver_info = (unsigned long)&dm9601_info,
},
{
USB_DEVICE(0x0a46, 0x9000), /* DM9000E */
.driver_info = (unsigned long)&dm9601_info,
},
{}, // END
};
MODULE_DEVICE_TABLE(usb, products);
static struct usb_driver dm9601_driver = {
.name = "dm9601",
.id_table = products,
.probe = usbnet_probe,
.disconnect = usbnet_disconnect,
.suspend = usbnet_suspend,
.resume = usbnet_resume,
};
static int __init dm9601_init(void)
{
return usb_register(&dm9601_driver);
}
static void __exit dm9601_exit(void)
{
usb_deregister(&dm9601_driver);
}
module_init(dm9601_init);
module_exit(dm9601_exit);
MODULE_AUTHOR("Peter Korsgaard <jacmet@sunsite.dk>");
MODULE_DESCRIPTION("Davicom DM9601 USB 1.1 ethernet devices");
MODULE_LICENSE("GPL");