linux_old1/sound/usb/line6/pcm.c

528 lines
13 KiB
C
Raw Normal View History

/*
* Line6 Linux USB driver - 0.9.1beta
*
* Copyright (C) 2004-2010 Markus Grabner (grabner@icg.tugraz.at)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, version 2.
*
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "audio.h"
#include "capture.h"
#include "driver.h"
#include "playback.h"
#include "pod.h"
#ifdef CONFIG_LINE6_USB_IMPULSE_RESPONSE
static struct snd_line6_pcm *dev2pcm(struct device *dev)
{
struct usb_interface *interface = to_usb_interface(dev);
struct usb_line6 *line6 = usb_get_intfdata(interface);
struct snd_line6_pcm *line6pcm = line6->line6pcm;
return line6pcm;
}
/*
"read" request on "impulse_volume" special file.
*/
static ssize_t impulse_volume_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", dev2pcm(dev)->impulse_volume);
}
/*
"write" request on "impulse_volume" special file.
*/
static ssize_t impulse_volume_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct snd_line6_pcm *line6pcm = dev2pcm(dev);
int value;
int ret;
ret = kstrtoint(buf, 10, &value);
if (ret < 0)
return ret;
line6pcm->impulse_volume = value;
if (value > 0)
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
line6_pcm_acquire(line6pcm, LINE6_BITS_PCM_IMPULSE);
else
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
line6_pcm_release(line6pcm, LINE6_BITS_PCM_IMPULSE);
return count;
}
static DEVICE_ATTR_RW(impulse_volume);
/*
"read" request on "impulse_period" special file.
*/
static ssize_t impulse_period_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", dev2pcm(dev)->impulse_period);
}
/*
"write" request on "impulse_period" special file.
*/
static ssize_t impulse_period_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int value;
int ret;
ret = kstrtoint(buf, 10, &value);
if (ret < 0)
return ret;
dev2pcm(dev)->impulse_period = value;
return count;
}
static DEVICE_ATTR_RW(impulse_period);
#endif
static bool test_flags(unsigned long flags0, unsigned long flags1,
unsigned long mask)
{
return ((flags0 & mask) == 0) && ((flags1 & mask) != 0);
}
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
int line6_pcm_acquire(struct snd_line6_pcm *line6pcm, int channels)
{
unsigned long flags_old, flags_new, flags_final;
int err;
do {
flags_old = ACCESS_ONCE(line6pcm->flags);
flags_new = flags_old | channels;
} while (cmpxchg(&line6pcm->flags, flags_old, flags_new) != flags_old);
flags_final = flags_old;
line6pcm->prev_fbuf = NULL;
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
if (test_flags(flags_old, flags_new, LINE6_BITS_CAPTURE_BUFFER)) {
/* Invoked multiple times in a row so allocate once only */
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
if (!line6pcm->buffer_in) {
line6pcm->buffer_in =
kmalloc(LINE6_ISO_BUFFERS * LINE6_ISO_PACKETS *
line6pcm->max_packet_size, GFP_KERNEL);
if (!line6pcm->buffer_in) {
err = -ENOMEM;
goto pcm_acquire_error;
}
flags_final |= channels & LINE6_BITS_CAPTURE_BUFFER;
}
}
if (test_flags(flags_old, flags_new, LINE6_BITS_CAPTURE_STREAM)) {
/*
Waiting for completion of active URBs in the stop handler is
a bug, we therefore report an error if capturing is restarted
too soon.
*/
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
if (line6pcm->active_urb_in | line6pcm->unlink_urb_in) {
dev_err(line6pcm->line6->ifcdev, "Device not yet ready\n");
return -EBUSY;
}
line6pcm->count_in = 0;
line6pcm->prev_fsize = 0;
err = line6_submit_audio_in_all_urbs(line6pcm);
if (err < 0)
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
goto pcm_acquire_error;
flags_final |= channels & LINE6_BITS_CAPTURE_STREAM;
}
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
if (test_flags(flags_old, flags_new, LINE6_BITS_PLAYBACK_BUFFER)) {
/* Invoked multiple times in a row so allocate once only */
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
if (!line6pcm->buffer_out) {
line6pcm->buffer_out =
kmalloc(LINE6_ISO_BUFFERS * LINE6_ISO_PACKETS *
line6pcm->max_packet_size, GFP_KERNEL);
if (!line6pcm->buffer_out) {
err = -ENOMEM;
goto pcm_acquire_error;
}
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
flags_final |= channels & LINE6_BITS_PLAYBACK_BUFFER;
}
}
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
if (test_flags(flags_old, flags_new, LINE6_BITS_PLAYBACK_STREAM)) {
/*
See comment above regarding PCM restart.
*/
if (line6pcm->active_urb_out | line6pcm->unlink_urb_out) {
dev_err(line6pcm->line6->ifcdev, "Device not yet ready\n");
return -EBUSY;
}
line6pcm->count_out = 0;
err = line6_submit_audio_out_all_urbs(line6pcm);
if (err < 0)
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
goto pcm_acquire_error;
flags_final |= channels & LINE6_BITS_PLAYBACK_STREAM;
}
return 0;
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
pcm_acquire_error:
/*
If not all requested resources/streams could be obtained, release
those which were successfully obtained (if any).
*/
line6_pcm_release(line6pcm, flags_final & channels);
return err;
}
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
int line6_pcm_release(struct snd_line6_pcm *line6pcm, int channels)
{
unsigned long flags_old, flags_new;
do {
flags_old = ACCESS_ONCE(line6pcm->flags);
flags_new = flags_old & ~channels;
} while (cmpxchg(&line6pcm->flags, flags_old, flags_new) != flags_old);
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
if (test_flags(flags_new, flags_old, LINE6_BITS_CAPTURE_STREAM))
line6_unlink_audio_in_urbs(line6pcm);
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
if (test_flags(flags_new, flags_old, LINE6_BITS_CAPTURE_BUFFER)) {
line6_wait_clear_audio_in_urbs(line6pcm);
line6_free_capture_buffer(line6pcm);
}
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
if (test_flags(flags_new, flags_old, LINE6_BITS_PLAYBACK_STREAM))
line6_unlink_audio_out_urbs(line6pcm);
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
if (test_flags(flags_new, flags_old, LINE6_BITS_PLAYBACK_BUFFER)) {
line6_wait_clear_audio_out_urbs(line6pcm);
line6_free_playback_buffer(line6pcm);
}
return 0;
}
/* trigger callback */
int snd_line6_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_line6_pcm *line6pcm = snd_pcm_substream_chip(substream);
struct snd_pcm_substream *s;
int err;
unsigned long flags;
spin_lock_irqsave(&line6pcm->lock_trigger, flags);
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
clear_bit(LINE6_INDEX_PREPARED, &line6pcm->flags);
snd_pcm_group_for_each_entry(s, substream) {
switch (s->stream) {
case SNDRV_PCM_STREAM_PLAYBACK:
err = snd_line6_playback_trigger(line6pcm, cmd);
if (err < 0) {
spin_unlock_irqrestore(&line6pcm->lock_trigger,
flags);
return err;
}
break;
case SNDRV_PCM_STREAM_CAPTURE:
err = snd_line6_capture_trigger(line6pcm, cmd);
if (err < 0) {
spin_unlock_irqrestore(&line6pcm->lock_trigger,
flags);
return err;
}
break;
default:
dev_err(line6pcm->line6->ifcdev,
"Unknown stream direction %d\n", s->stream);
}
}
spin_unlock_irqrestore(&line6pcm->lock_trigger, flags);
return 0;
}
/* control info callback */
static int snd_line6_control_playback_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 256;
return 0;
}
/* control get callback */
static int snd_line6_control_playback_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int i;
struct snd_line6_pcm *line6pcm = snd_kcontrol_chip(kcontrol);
for (i = 2; i--;)
ucontrol->value.integer.value[i] = line6pcm->volume_playback[i];
return 0;
}
/* control put callback */
static int snd_line6_control_playback_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int i, changed = 0;
struct snd_line6_pcm *line6pcm = snd_kcontrol_chip(kcontrol);
for (i = 2; i--;)
if (line6pcm->volume_playback[i] !=
ucontrol->value.integer.value[i]) {
line6pcm->volume_playback[i] =
ucontrol->value.integer.value[i];
changed = 1;
}
return changed;
}
/* control definition */
static struct snd_kcontrol_new line6_control_playback = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Playback Volume",
.index = 0,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = snd_line6_control_playback_info,
.get = snd_line6_control_playback_get,
.put = snd_line6_control_playback_put
};
/*
Cleanup the PCM device.
*/
static void line6_cleanup_pcm(struct snd_pcm *pcm)
{
int i;
struct snd_line6_pcm *line6pcm = snd_pcm_chip(pcm);
#ifdef CONFIG_LINE6_USB_IMPULSE_RESPONSE
device_remove_file(line6pcm->line6->ifcdev, &dev_attr_impulse_volume);
device_remove_file(line6pcm->line6->ifcdev, &dev_attr_impulse_period);
#endif
for (i = LINE6_ISO_BUFFERS; i--;) {
if (line6pcm->urb_audio_out[i]) {
usb_kill_urb(line6pcm->urb_audio_out[i]);
usb_free_urb(line6pcm->urb_audio_out[i]);
}
if (line6pcm->urb_audio_in[i]) {
usb_kill_urb(line6pcm->urb_audio_in[i]);
usb_free_urb(line6pcm->urb_audio_in[i]);
}
}
}
/* create a PCM device */
static int snd_line6_new_pcm(struct snd_line6_pcm *line6pcm)
{
struct snd_pcm *pcm;
int err;
err = snd_pcm_new(line6pcm->line6->card,
(char *)line6pcm->line6->properties->name,
0, 1, 1, &pcm);
if (err < 0)
return err;
pcm->private_data = line6pcm;
pcm->private_free = line6_cleanup_pcm;
line6pcm->pcm = pcm;
strcpy(pcm->name, line6pcm->line6->properties->name);
/* set operators */
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_line6_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_line6_capture_ops);
/* pre-allocation of buffers */
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data
(GFP_KERNEL), 64 * 1024,
128 * 1024);
return 0;
}
/* PCM device destructor */
static int snd_line6_pcm_free(struct snd_device *device)
{
return 0;
}
/*
Stop substream if still running.
*/
static void pcm_disconnect_substream(struct snd_pcm_substream *substream)
{
if (substream->runtime && snd_pcm_running(substream)) {
snd_pcm_stream_lock_irq(substream);
snd_pcm_stop(substream, SNDRV_PCM_STATE_DISCONNECTED);
snd_pcm_stream_unlock_irq(substream);
}
}
/*
Stop PCM stream.
*/
void line6_pcm_disconnect(struct snd_line6_pcm *line6pcm)
{
pcm_disconnect_substream(get_substream
(line6pcm, SNDRV_PCM_STREAM_CAPTURE));
pcm_disconnect_substream(get_substream
(line6pcm, SNDRV_PCM_STREAM_PLAYBACK));
line6_unlink_wait_clear_audio_out_urbs(line6pcm);
line6_unlink_wait_clear_audio_in_urbs(line6pcm);
}
/*
Create and register the PCM device and mixer entries.
Create URBs for playback and capture.
*/
int line6_init_pcm(struct usb_line6 *line6,
struct line6_pcm_properties *properties)
{
static struct snd_device_ops pcm_ops = {
.dev_free = snd_line6_pcm_free,
};
int err;
unsigned ep_read = line6->properties->ep_audio_r;
unsigned ep_write = line6->properties->ep_audio_w;
struct snd_line6_pcm *line6pcm;
if (!(line6->properties->capabilities & LINE6_CAP_PCM))
return 0; /* skip PCM initialization and report success */
line6pcm = kzalloc(sizeof(*line6pcm), GFP_KERNEL);
if (line6pcm == NULL)
return -ENOMEM;
line6pcm->volume_playback[0] = line6pcm->volume_playback[1] = 255;
line6pcm->volume_monitor = 255;
line6pcm->line6 = line6;
/* Read and write buffers are sized identically, so choose minimum */
line6pcm->max_packet_size = min(
usb_maxpacket(line6->usbdev,
usb_rcvisocpipe(line6->usbdev, ep_read), 0),
usb_maxpacket(line6->usbdev,
usb_sndisocpipe(line6->usbdev, ep_write), 1));
line6pcm->properties = properties;
line6->line6pcm = line6pcm;
/* PCM device: */
err = snd_device_new(line6->card, SNDRV_DEV_PCM, line6, &pcm_ops);
if (err < 0)
return err;
err = snd_line6_new_pcm(line6pcm);
if (err < 0)
return err;
spin_lock_init(&line6pcm->lock_audio_out);
spin_lock_init(&line6pcm->lock_audio_in);
spin_lock_init(&line6pcm->lock_trigger);
err = line6_create_audio_out_urbs(line6pcm);
if (err < 0)
return err;
err = line6_create_audio_in_urbs(line6pcm);
if (err < 0)
return err;
/* mixer: */
err =
snd_ctl_add(line6->card,
snd_ctl_new1(&line6_control_playback, line6pcm));
if (err < 0)
return err;
#ifdef CONFIG_LINE6_USB_IMPULSE_RESPONSE
/* impulse response test: */
err = device_create_file(line6->ifcdev, &dev_attr_impulse_volume);
if (err < 0)
return err;
err = device_create_file(line6->ifcdev, &dev_attr_impulse_period);
if (err < 0)
return err;
line6pcm->impulse_period = LINE6_IMPULSE_DEFAULT_PERIOD;
#endif
return 0;
}
/* prepare pcm callback */
int snd_line6_prepare(struct snd_pcm_substream *substream)
{
struct snd_line6_pcm *line6pcm = snd_pcm_substream_chip(substream);
switch (substream->stream) {
case SNDRV_PCM_STREAM_PLAYBACK:
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
if ((line6pcm->flags & LINE6_BITS_PLAYBACK_STREAM) == 0)
line6_unlink_wait_clear_audio_out_urbs(line6pcm);
break;
case SNDRV_PCM_STREAM_CAPTURE:
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
if ((line6pcm->flags & LINE6_BITS_CAPTURE_STREAM) == 0)
line6_unlink_wait_clear_audio_in_urbs(line6pcm);
break;
default:
MISSING_CASE;
}
staging: line6: separate handling of buffer allocation and stream startup There are several features of the Line6 USB driver which require PCM data to be exchanged with the device: *) PCM playback and capture via ALSA *) software monitoring (for devices without hardware monitoring) *) optional impulse response measurement However, from the device's point of view, there is just a single capture and playback stream, which must be shared between these subsystems. It is therefore necessary to maintain the state of the subsystems with respect to PCM usage. We define several constants of the form LINE6_BIT_PCM_<subsystem>_<direction>_<resource> with the following meanings: *) <subsystem> is one of -) ALSA: PCM playback and capture via ALSA -) MONITOR: software monitoring -) IMPULSE: optional impulse response measurement *) <direction> is one of -) PLAYBACK: audio output (from host to device) -) CAPTURE: audio input (from device to host) *) <resource> is one of -) BUFFER: buffer required by PCM data stream -) STREAM: actual PCM data stream The subsystems call line6_pcm_acquire() to acquire the (shared) resources needed for a particular operation (e.g., allocate the buffer for ALSA playback or start the capture stream for software monitoring). When a resource is no longer needed, it is released by calling line6_pcm_release(). Buffer allocation and stream startup are handled separately to allow the ALSA kernel driver to perform them at appropriate places (since the callback which starts a PCM stream is not allowed to sleep). Signed-off-by: Markus Grabner <grabner@icg.tugraz.at> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-01-20 07:09:09 +08:00
if (!test_and_set_bit(LINE6_INDEX_PREPARED, &line6pcm->flags)) {
line6pcm->count_out = 0;
line6pcm->pos_out = 0;
line6pcm->pos_out_done = 0;
line6pcm->bytes_out = 0;
line6pcm->count_in = 0;
line6pcm->pos_in_done = 0;
line6pcm->bytes_in = 0;
}
return 0;
}