linux_old1/drivers/mfd/rtsx_pcr.c

1369 lines
31 KiB
C
Raw Normal View History

/* Driver for Realtek PCI-Express card reader
*
* Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*
* Author:
* Wei WANG <wei_wang@realsil.com.cn>
*/
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include <linux/highmem.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/idr.h>
#include <linux/platform_device.h>
#include <linux/mfd/core.h>
#include <linux/mfd/rtsx_pci.h>
#include <asm/unaligned.h>
#include "rtsx_pcr.h"
static bool msi_en = true;
module_param(msi_en, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(msi_en, "Enable MSI");
static DEFINE_IDR(rtsx_pci_idr);
static DEFINE_SPINLOCK(rtsx_pci_lock);
static struct mfd_cell rtsx_pcr_cells[] = {
[RTSX_SD_CARD] = {
.name = DRV_NAME_RTSX_PCI_SDMMC,
},
[RTSX_MS_CARD] = {
.name = DRV_NAME_RTSX_PCI_MS,
},
};
static const struct pci_device_id rtsx_pci_ids[] = {
{ PCI_DEVICE(0x10EC, 0x5209), PCI_CLASS_OTHERS << 16, 0xFF0000 },
{ PCI_DEVICE(0x10EC, 0x5229), PCI_CLASS_OTHERS << 16, 0xFF0000 },
{ PCI_DEVICE(0x10EC, 0x5289), PCI_CLASS_OTHERS << 16, 0xFF0000 },
{ PCI_DEVICE(0x10EC, 0x5227), PCI_CLASS_OTHERS << 16, 0xFF0000 },
{ PCI_DEVICE(0x10EC, 0x5249), PCI_CLASS_OTHERS << 16, 0xFF0000 },
{ PCI_DEVICE(0x10EC, 0x5287), PCI_CLASS_OTHERS << 16, 0xFF0000 },
{ PCI_DEVICE(0x10EC, 0x5286), PCI_CLASS_OTHERS << 16, 0xFF0000 },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, rtsx_pci_ids);
void rtsx_pci_start_run(struct rtsx_pcr *pcr)
{
/* If pci device removed, don't queue idle work any more */
if (pcr->remove_pci)
return;
if (pcr->state != PDEV_STAT_RUN) {
pcr->state = PDEV_STAT_RUN;
if (pcr->ops->enable_auto_blink)
pcr->ops->enable_auto_blink(pcr);
if (pcr->aspm_en)
rtsx_pci_write_config_byte(pcr, LCTLR, 0);
}
mod_delayed_work(system_wq, &pcr->idle_work, msecs_to_jiffies(200));
}
EXPORT_SYMBOL_GPL(rtsx_pci_start_run);
int rtsx_pci_write_register(struct rtsx_pcr *pcr, u16 addr, u8 mask, u8 data)
{
int i;
u32 val = HAIMR_WRITE_START;
val |= (u32)(addr & 0x3FFF) << 16;
val |= (u32)mask << 8;
val |= (u32)data;
rtsx_pci_writel(pcr, RTSX_HAIMR, val);
for (i = 0; i < MAX_RW_REG_CNT; i++) {
val = rtsx_pci_readl(pcr, RTSX_HAIMR);
if ((val & HAIMR_TRANS_END) == 0) {
if (data != (u8)val)
return -EIO;
return 0;
}
}
return -ETIMEDOUT;
}
EXPORT_SYMBOL_GPL(rtsx_pci_write_register);
int rtsx_pci_read_register(struct rtsx_pcr *pcr, u16 addr, u8 *data)
{
u32 val = HAIMR_READ_START;
int i;
val |= (u32)(addr & 0x3FFF) << 16;
rtsx_pci_writel(pcr, RTSX_HAIMR, val);
for (i = 0; i < MAX_RW_REG_CNT; i++) {
val = rtsx_pci_readl(pcr, RTSX_HAIMR);
if ((val & HAIMR_TRANS_END) == 0)
break;
}
if (i >= MAX_RW_REG_CNT)
return -ETIMEDOUT;
if (data)
*data = (u8)(val & 0xFF);
return 0;
}
EXPORT_SYMBOL_GPL(rtsx_pci_read_register);
int rtsx_pci_write_phy_register(struct rtsx_pcr *pcr, u8 addr, u16 val)
{
int err, i, finished = 0;
u8 tmp;
rtsx_pci_init_cmd(pcr);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PHYDATA0, 0xFF, (u8)val);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PHYDATA1, 0xFF, (u8)(val >> 8));
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PHYADDR, 0xFF, addr);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PHYRWCTL, 0xFF, 0x81);
err = rtsx_pci_send_cmd(pcr, 100);
if (err < 0)
return err;
for (i = 0; i < 100000; i++) {
err = rtsx_pci_read_register(pcr, PHYRWCTL, &tmp);
if (err < 0)
return err;
if (!(tmp & 0x80)) {
finished = 1;
break;
}
}
if (!finished)
return -ETIMEDOUT;
return 0;
}
EXPORT_SYMBOL_GPL(rtsx_pci_write_phy_register);
int rtsx_pci_read_phy_register(struct rtsx_pcr *pcr, u8 addr, u16 *val)
{
int err, i, finished = 0;
u16 data;
u8 *ptr, tmp;
rtsx_pci_init_cmd(pcr);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PHYADDR, 0xFF, addr);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PHYRWCTL, 0xFF, 0x80);
err = rtsx_pci_send_cmd(pcr, 100);
if (err < 0)
return err;
for (i = 0; i < 100000; i++) {
err = rtsx_pci_read_register(pcr, PHYRWCTL, &tmp);
if (err < 0)
return err;
if (!(tmp & 0x80)) {
finished = 1;
break;
}
}
if (!finished)
return -ETIMEDOUT;
rtsx_pci_init_cmd(pcr);
rtsx_pci_add_cmd(pcr, READ_REG_CMD, PHYDATA0, 0, 0);
rtsx_pci_add_cmd(pcr, READ_REG_CMD, PHYDATA1, 0, 0);
err = rtsx_pci_send_cmd(pcr, 100);
if (err < 0)
return err;
ptr = rtsx_pci_get_cmd_data(pcr);
data = ((u16)ptr[1] << 8) | ptr[0];
if (val)
*val = data;
return 0;
}
EXPORT_SYMBOL_GPL(rtsx_pci_read_phy_register);
void rtsx_pci_stop_cmd(struct rtsx_pcr *pcr)
{
rtsx_pci_writel(pcr, RTSX_HCBCTLR, STOP_CMD);
rtsx_pci_writel(pcr, RTSX_HDBCTLR, STOP_DMA);
rtsx_pci_write_register(pcr, DMACTL, 0x80, 0x80);
rtsx_pci_write_register(pcr, RBCTL, 0x80, 0x80);
}
EXPORT_SYMBOL_GPL(rtsx_pci_stop_cmd);
void rtsx_pci_add_cmd(struct rtsx_pcr *pcr,
u8 cmd_type, u16 reg_addr, u8 mask, u8 data)
{
unsigned long flags;
u32 val = 0;
u32 *ptr = (u32 *)(pcr->host_cmds_ptr);
val |= (u32)(cmd_type & 0x03) << 30;
val |= (u32)(reg_addr & 0x3FFF) << 16;
val |= (u32)mask << 8;
val |= (u32)data;
spin_lock_irqsave(&pcr->lock, flags);
ptr += pcr->ci;
if (pcr->ci < (HOST_CMDS_BUF_LEN / 4)) {
put_unaligned_le32(val, ptr);
ptr++;
pcr->ci++;
}
spin_unlock_irqrestore(&pcr->lock, flags);
}
EXPORT_SYMBOL_GPL(rtsx_pci_add_cmd);
void rtsx_pci_send_cmd_no_wait(struct rtsx_pcr *pcr)
{
u32 val = 1 << 31;
rtsx_pci_writel(pcr, RTSX_HCBAR, pcr->host_cmds_addr);
val |= (u32)(pcr->ci * 4) & 0x00FFFFFF;
/* Hardware Auto Response */
val |= 0x40000000;
rtsx_pci_writel(pcr, RTSX_HCBCTLR, val);
}
EXPORT_SYMBOL_GPL(rtsx_pci_send_cmd_no_wait);
int rtsx_pci_send_cmd(struct rtsx_pcr *pcr, int timeout)
{
struct completion trans_done;
u32 val = 1 << 31;
long timeleft;
unsigned long flags;
int err = 0;
spin_lock_irqsave(&pcr->lock, flags);
/* set up data structures for the wakeup system */
pcr->done = &trans_done;
pcr->trans_result = TRANS_NOT_READY;
init_completion(&trans_done);
rtsx_pci_writel(pcr, RTSX_HCBAR, pcr->host_cmds_addr);
val |= (u32)(pcr->ci * 4) & 0x00FFFFFF;
/* Hardware Auto Response */
val |= 0x40000000;
rtsx_pci_writel(pcr, RTSX_HCBCTLR, val);
spin_unlock_irqrestore(&pcr->lock, flags);
/* Wait for TRANS_OK_INT */
timeleft = wait_for_completion_interruptible_timeout(
&trans_done, msecs_to_jiffies(timeout));
if (timeleft <= 0) {
dev_dbg(&(pcr->pci->dev), "Timeout (%s %d)\n",
__func__, __LINE__);
err = -ETIMEDOUT;
goto finish_send_cmd;
}
spin_lock_irqsave(&pcr->lock, flags);
if (pcr->trans_result == TRANS_RESULT_FAIL)
err = -EINVAL;
else if (pcr->trans_result == TRANS_RESULT_OK)
err = 0;
else if (pcr->trans_result == TRANS_NO_DEVICE)
err = -ENODEV;
spin_unlock_irqrestore(&pcr->lock, flags);
finish_send_cmd:
spin_lock_irqsave(&pcr->lock, flags);
pcr->done = NULL;
spin_unlock_irqrestore(&pcr->lock, flags);
if ((err < 0) && (err != -ENODEV))
rtsx_pci_stop_cmd(pcr);
if (pcr->finish_me)
complete(pcr->finish_me);
return err;
}
EXPORT_SYMBOL_GPL(rtsx_pci_send_cmd);
static void rtsx_pci_add_sg_tbl(struct rtsx_pcr *pcr,
dma_addr_t addr, unsigned int len, int end)
{
u64 *ptr = (u64 *)(pcr->host_sg_tbl_ptr) + pcr->sgi;
u64 val;
u8 option = SG_VALID | SG_TRANS_DATA;
dev_dbg(&(pcr->pci->dev), "DMA addr: 0x%x, Len: 0x%x\n",
(unsigned int)addr, len);
if (end)
option |= SG_END;
val = ((u64)addr << 32) | ((u64)len << 12) | option;
put_unaligned_le64(val, ptr);
pcr->sgi++;
}
int rtsx_pci_transfer_data(struct rtsx_pcr *pcr, struct scatterlist *sglist,
int num_sg, bool read, int timeout)
{
struct completion trans_done;
u8 dir;
int err = 0, i, count;
long timeleft;
unsigned long flags;
struct scatterlist *sg;
enum dma_data_direction dma_dir;
u32 val;
dma_addr_t addr;
unsigned int len;
dev_dbg(&(pcr->pci->dev), "--> %s: num_sg = %d\n", __func__, num_sg);
/* don't transfer data during abort processing */
if (pcr->remove_pci)
return -EINVAL;
if ((sglist == NULL) || (num_sg <= 0))
return -EINVAL;
if (read) {
dir = DEVICE_TO_HOST;
dma_dir = DMA_FROM_DEVICE;
} else {
dir = HOST_TO_DEVICE;
dma_dir = DMA_TO_DEVICE;
}
count = dma_map_sg(&(pcr->pci->dev), sglist, num_sg, dma_dir);
if (count < 1) {
dev_err(&(pcr->pci->dev), "scatterlist map failed\n");
return -EINVAL;
}
dev_dbg(&(pcr->pci->dev), "DMA mapping count: %d\n", count);
val = ((u32)(dir & 0x01) << 29) | TRIG_DMA | ADMA_MODE;
pcr->sgi = 0;
for_each_sg(sglist, sg, count, i) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
rtsx_pci_add_sg_tbl(pcr, addr, len, i == count - 1);
}
spin_lock_irqsave(&pcr->lock, flags);
pcr->done = &trans_done;
pcr->trans_result = TRANS_NOT_READY;
init_completion(&trans_done);
rtsx_pci_writel(pcr, RTSX_HDBAR, pcr->host_sg_tbl_addr);
rtsx_pci_writel(pcr, RTSX_HDBCTLR, val);
spin_unlock_irqrestore(&pcr->lock, flags);
timeleft = wait_for_completion_interruptible_timeout(
&trans_done, msecs_to_jiffies(timeout));
if (timeleft <= 0) {
dev_dbg(&(pcr->pci->dev), "Timeout (%s %d)\n",
__func__, __LINE__);
err = -ETIMEDOUT;
goto out;
}
spin_lock_irqsave(&pcr->lock, flags);
if (pcr->trans_result == TRANS_RESULT_FAIL)
err = -EINVAL;
else if (pcr->trans_result == TRANS_NO_DEVICE)
err = -ENODEV;
spin_unlock_irqrestore(&pcr->lock, flags);
out:
spin_lock_irqsave(&pcr->lock, flags);
pcr->done = NULL;
spin_unlock_irqrestore(&pcr->lock, flags);
dma_unmap_sg(&(pcr->pci->dev), sglist, num_sg, dma_dir);
if ((err < 0) && (err != -ENODEV))
rtsx_pci_stop_cmd(pcr);
if (pcr->finish_me)
complete(pcr->finish_me);
return err;
}
EXPORT_SYMBOL_GPL(rtsx_pci_transfer_data);
int rtsx_pci_read_ppbuf(struct rtsx_pcr *pcr, u8 *buf, int buf_len)
{
int err;
int i, j;
u16 reg;
u8 *ptr;
if (buf_len > 512)
buf_len = 512;
ptr = buf;
reg = PPBUF_BASE2;
for (i = 0; i < buf_len / 256; i++) {
rtsx_pci_init_cmd(pcr);
for (j = 0; j < 256; j++)
rtsx_pci_add_cmd(pcr, READ_REG_CMD, reg++, 0, 0);
err = rtsx_pci_send_cmd(pcr, 250);
if (err < 0)
return err;
memcpy(ptr, rtsx_pci_get_cmd_data(pcr), 256);
ptr += 256;
}
if (buf_len % 256) {
rtsx_pci_init_cmd(pcr);
for (j = 0; j < buf_len % 256; j++)
rtsx_pci_add_cmd(pcr, READ_REG_CMD, reg++, 0, 0);
err = rtsx_pci_send_cmd(pcr, 250);
if (err < 0)
return err;
}
memcpy(ptr, rtsx_pci_get_cmd_data(pcr), buf_len % 256);
return 0;
}
EXPORT_SYMBOL_GPL(rtsx_pci_read_ppbuf);
int rtsx_pci_write_ppbuf(struct rtsx_pcr *pcr, u8 *buf, int buf_len)
{
int err;
int i, j;
u16 reg;
u8 *ptr;
if (buf_len > 512)
buf_len = 512;
ptr = buf;
reg = PPBUF_BASE2;
for (i = 0; i < buf_len / 256; i++) {
rtsx_pci_init_cmd(pcr);
for (j = 0; j < 256; j++) {
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD,
reg++, 0xFF, *ptr);
ptr++;
}
err = rtsx_pci_send_cmd(pcr, 250);
if (err < 0)
return err;
}
if (buf_len % 256) {
rtsx_pci_init_cmd(pcr);
for (j = 0; j < buf_len % 256; j++) {
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD,
reg++, 0xFF, *ptr);
ptr++;
}
err = rtsx_pci_send_cmd(pcr, 250);
if (err < 0)
return err;
}
return 0;
}
EXPORT_SYMBOL_GPL(rtsx_pci_write_ppbuf);
static int rtsx_pci_set_pull_ctl(struct rtsx_pcr *pcr, const u32 *tbl)
{
int err;
rtsx_pci_init_cmd(pcr);
while (*tbl & 0xFFFF0000) {
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD,
(u16)(*tbl >> 16), 0xFF, (u8)(*tbl));
tbl++;
}
err = rtsx_pci_send_cmd(pcr, 100);
if (err < 0)
return err;
return 0;
}
int rtsx_pci_card_pull_ctl_enable(struct rtsx_pcr *pcr, int card)
{
const u32 *tbl;
if (card == RTSX_SD_CARD)
tbl = pcr->sd_pull_ctl_enable_tbl;
else if (card == RTSX_MS_CARD)
tbl = pcr->ms_pull_ctl_enable_tbl;
else
return -EINVAL;
return rtsx_pci_set_pull_ctl(pcr, tbl);
}
EXPORT_SYMBOL_GPL(rtsx_pci_card_pull_ctl_enable);
int rtsx_pci_card_pull_ctl_disable(struct rtsx_pcr *pcr, int card)
{
const u32 *tbl;
if (card == RTSX_SD_CARD)
tbl = pcr->sd_pull_ctl_disable_tbl;
else if (card == RTSX_MS_CARD)
tbl = pcr->ms_pull_ctl_disable_tbl;
else
return -EINVAL;
return rtsx_pci_set_pull_ctl(pcr, tbl);
}
EXPORT_SYMBOL_GPL(rtsx_pci_card_pull_ctl_disable);
static void rtsx_pci_enable_bus_int(struct rtsx_pcr *pcr)
{
pcr->bier = TRANS_OK_INT_EN | TRANS_FAIL_INT_EN | SD_INT_EN;
if (pcr->num_slots > 1)
pcr->bier |= MS_INT_EN;
/* Enable Bus Interrupt */
rtsx_pci_writel(pcr, RTSX_BIER, pcr->bier);
dev_dbg(&(pcr->pci->dev), "RTSX_BIER: 0x%08x\n", pcr->bier);
}
static inline u8 double_ssc_depth(u8 depth)
{
return ((depth > 1) ? (depth - 1) : depth);
}
static u8 revise_ssc_depth(u8 ssc_depth, u8 div)
{
if (div > CLK_DIV_1) {
if (ssc_depth > (div - 1))
ssc_depth -= (div - 1);
else
ssc_depth = SSC_DEPTH_4M;
}
return ssc_depth;
}
int rtsx_pci_switch_clock(struct rtsx_pcr *pcr, unsigned int card_clock,
u8 ssc_depth, bool initial_mode, bool double_clk, bool vpclk)
{
int err, clk;
u8 n, clk_divider, mcu_cnt, div;
u8 depth[] = {
[RTSX_SSC_DEPTH_4M] = SSC_DEPTH_4M,
[RTSX_SSC_DEPTH_2M] = SSC_DEPTH_2M,
[RTSX_SSC_DEPTH_1M] = SSC_DEPTH_1M,
[RTSX_SSC_DEPTH_500K] = SSC_DEPTH_500K,
[RTSX_SSC_DEPTH_250K] = SSC_DEPTH_250K,
};
if (initial_mode) {
/* We use 250k(around) here, in initial stage */
clk_divider = SD_CLK_DIVIDE_128;
card_clock = 30000000;
} else {
clk_divider = SD_CLK_DIVIDE_0;
}
err = rtsx_pci_write_register(pcr, SD_CFG1,
SD_CLK_DIVIDE_MASK, clk_divider);
if (err < 0)
return err;
card_clock /= 1000000;
dev_dbg(&(pcr->pci->dev), "Switch card clock to %dMHz\n", card_clock);
clk = card_clock;
if (!initial_mode && double_clk)
clk = card_clock * 2;
dev_dbg(&(pcr->pci->dev),
"Internal SSC clock: %dMHz (cur_clock = %d)\n",
clk, pcr->cur_clock);
if (clk == pcr->cur_clock)
return 0;
if (pcr->ops->conv_clk_and_div_n)
n = (u8)pcr->ops->conv_clk_and_div_n(clk, CLK_TO_DIV_N);
else
n = (u8)(clk - 2);
if ((clk <= 2) || (n > MAX_DIV_N_PCR))
return -EINVAL;
mcu_cnt = (u8)(125/clk + 3);
if (mcu_cnt > 15)
mcu_cnt = 15;
/* Make sure that the SSC clock div_n is not less than MIN_DIV_N_PCR */
div = CLK_DIV_1;
while ((n < MIN_DIV_N_PCR) && (div < CLK_DIV_8)) {
if (pcr->ops->conv_clk_and_div_n) {
int dbl_clk = pcr->ops->conv_clk_and_div_n(n,
DIV_N_TO_CLK) * 2;
n = (u8)pcr->ops->conv_clk_and_div_n(dbl_clk,
CLK_TO_DIV_N);
} else {
n = (n + 2) * 2 - 2;
}
div++;
}
dev_dbg(&(pcr->pci->dev), "n = %d, div = %d\n", n, div);
ssc_depth = depth[ssc_depth];
if (double_clk)
ssc_depth = double_ssc_depth(ssc_depth);
ssc_depth = revise_ssc_depth(ssc_depth, div);
dev_dbg(&(pcr->pci->dev), "ssc_depth = %d\n", ssc_depth);
rtsx_pci_init_cmd(pcr);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_CTL,
CLK_LOW_FREQ, CLK_LOW_FREQ);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_DIV,
0xFF, (div << 4) | mcu_cnt);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SSC_CTL1, SSC_RSTB, 0);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SSC_CTL2,
SSC_DEPTH_MASK, ssc_depth);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SSC_DIV_N_0, 0xFF, n);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SSC_CTL1, SSC_RSTB, SSC_RSTB);
if (vpclk) {
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_VPCLK0_CTL,
PHASE_NOT_RESET, 0);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_VPCLK0_CTL,
PHASE_NOT_RESET, PHASE_NOT_RESET);
}
err = rtsx_pci_send_cmd(pcr, 2000);
if (err < 0)
return err;
/* Wait SSC clock stable */
udelay(10);
err = rtsx_pci_write_register(pcr, CLK_CTL, CLK_LOW_FREQ, 0);
if (err < 0)
return err;
pcr->cur_clock = clk;
return 0;
}
EXPORT_SYMBOL_GPL(rtsx_pci_switch_clock);
int rtsx_pci_card_power_on(struct rtsx_pcr *pcr, int card)
{
if (pcr->ops->card_power_on)
return pcr->ops->card_power_on(pcr, card);
return 0;
}
EXPORT_SYMBOL_GPL(rtsx_pci_card_power_on);
int rtsx_pci_card_power_off(struct rtsx_pcr *pcr, int card)
{
if (pcr->ops->card_power_off)
return pcr->ops->card_power_off(pcr, card);
return 0;
}
EXPORT_SYMBOL_GPL(rtsx_pci_card_power_off);
int rtsx_pci_card_exclusive_check(struct rtsx_pcr *pcr, int card)
{
unsigned int cd_mask[] = {
[RTSX_SD_CARD] = SD_EXIST,
[RTSX_MS_CARD] = MS_EXIST
};
if (!(pcr->flags & PCR_MS_PMOS)) {
/* When using single PMOS, accessing card is not permitted
* if the existing card is not the designated one.
*/
if (pcr->card_exist & (~cd_mask[card]))
return -EIO;
}
return 0;
}
EXPORT_SYMBOL_GPL(rtsx_pci_card_exclusive_check);
int rtsx_pci_switch_output_voltage(struct rtsx_pcr *pcr, u8 voltage)
{
if (pcr->ops->switch_output_voltage)
return pcr->ops->switch_output_voltage(pcr, voltage);
return 0;
}
EXPORT_SYMBOL_GPL(rtsx_pci_switch_output_voltage);
unsigned int rtsx_pci_card_exist(struct rtsx_pcr *pcr)
{
unsigned int val;
val = rtsx_pci_readl(pcr, RTSX_BIPR);
if (pcr->ops->cd_deglitch)
val = pcr->ops->cd_deglitch(pcr);
return val;
}
EXPORT_SYMBOL_GPL(rtsx_pci_card_exist);
void rtsx_pci_complete_unfinished_transfer(struct rtsx_pcr *pcr)
{
struct completion finish;
pcr->finish_me = &finish;
init_completion(&finish);
if (pcr->done)
complete(pcr->done);
if (!pcr->remove_pci)
rtsx_pci_stop_cmd(pcr);
wait_for_completion_interruptible_timeout(&finish,
msecs_to_jiffies(2));
pcr->finish_me = NULL;
}
EXPORT_SYMBOL_GPL(rtsx_pci_complete_unfinished_transfer);
static void rtsx_pci_card_detect(struct work_struct *work)
{
struct delayed_work *dwork;
struct rtsx_pcr *pcr;
unsigned long flags;
unsigned int card_detect = 0, card_inserted, card_removed;
u32 irq_status;
dwork = to_delayed_work(work);
pcr = container_of(dwork, struct rtsx_pcr, carddet_work);
dev_dbg(&(pcr->pci->dev), "--> %s\n", __func__);
mutex_lock(&pcr->pcr_mutex);
spin_lock_irqsave(&pcr->lock, flags);
irq_status = rtsx_pci_readl(pcr, RTSX_BIPR);
dev_dbg(&(pcr->pci->dev), "irq_status: 0x%08x\n", irq_status);
irq_status &= CARD_EXIST;
card_inserted = pcr->card_inserted & irq_status;
card_removed = pcr->card_removed;
pcr->card_inserted = 0;
pcr->card_removed = 0;
spin_unlock_irqrestore(&pcr->lock, flags);
if (card_inserted || card_removed) {
dev_dbg(&(pcr->pci->dev),
"card_inserted: 0x%x, card_removed: 0x%x\n",
card_inserted, card_removed);
if (pcr->ops->cd_deglitch)
card_inserted = pcr->ops->cd_deglitch(pcr);
card_detect = card_inserted | card_removed;
pcr->card_exist |= card_inserted;
pcr->card_exist &= ~card_removed;
}
mutex_unlock(&pcr->pcr_mutex);
if ((card_detect & SD_EXIST) && pcr->slots[RTSX_SD_CARD].card_event)
pcr->slots[RTSX_SD_CARD].card_event(
pcr->slots[RTSX_SD_CARD].p_dev);
if ((card_detect & MS_EXIST) && pcr->slots[RTSX_MS_CARD].card_event)
pcr->slots[RTSX_MS_CARD].card_event(
pcr->slots[RTSX_MS_CARD].p_dev);
}
static irqreturn_t rtsx_pci_isr(int irq, void *dev_id)
{
struct rtsx_pcr *pcr = dev_id;
u32 int_reg;
if (!pcr)
return IRQ_NONE;
spin_lock(&pcr->lock);
int_reg = rtsx_pci_readl(pcr, RTSX_BIPR);
/* Clear interrupt flag */
rtsx_pci_writel(pcr, RTSX_BIPR, int_reg);
if ((int_reg & pcr->bier) == 0) {
spin_unlock(&pcr->lock);
return IRQ_NONE;
}
if (int_reg == 0xFFFFFFFF) {
spin_unlock(&pcr->lock);
return IRQ_HANDLED;
}
int_reg &= (pcr->bier | 0x7FFFFF);
if (int_reg & SD_INT) {
if (int_reg & SD_EXIST) {
pcr->card_inserted |= SD_EXIST;
} else {
pcr->card_removed |= SD_EXIST;
pcr->card_inserted &= ~SD_EXIST;
}
}
if (int_reg & MS_INT) {
if (int_reg & MS_EXIST) {
pcr->card_inserted |= MS_EXIST;
} else {
pcr->card_removed |= MS_EXIST;
pcr->card_inserted &= ~MS_EXIST;
}
}
if (int_reg & (NEED_COMPLETE_INT | DELINK_INT)) {
if (int_reg & (TRANS_FAIL_INT | DELINK_INT)) {
pcr->trans_result = TRANS_RESULT_FAIL;
if (pcr->done)
complete(pcr->done);
} else if (int_reg & TRANS_OK_INT) {
pcr->trans_result = TRANS_RESULT_OK;
if (pcr->done)
complete(pcr->done);
}
}
if (pcr->card_inserted || pcr->card_removed)
schedule_delayed_work(&pcr->carddet_work,
msecs_to_jiffies(200));
spin_unlock(&pcr->lock);
return IRQ_HANDLED;
}
static int rtsx_pci_acquire_irq(struct rtsx_pcr *pcr)
{
dev_info(&(pcr->pci->dev), "%s: pcr->msi_en = %d, pci->irq = %d\n",
__func__, pcr->msi_en, pcr->pci->irq);
if (request_irq(pcr->pci->irq, rtsx_pci_isr,
pcr->msi_en ? 0 : IRQF_SHARED,
DRV_NAME_RTSX_PCI, pcr)) {
dev_err(&(pcr->pci->dev),
"rtsx_sdmmc: unable to grab IRQ %d, disabling device\n",
pcr->pci->irq);
return -1;
}
pcr->irq = pcr->pci->irq;
pci_intx(pcr->pci, !pcr->msi_en);
return 0;
}
static void rtsx_pci_idle_work(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct rtsx_pcr *pcr = container_of(dwork, struct rtsx_pcr, idle_work);
dev_dbg(&(pcr->pci->dev), "--> %s\n", __func__);
mutex_lock(&pcr->pcr_mutex);
pcr->state = PDEV_STAT_IDLE;
if (pcr->ops->disable_auto_blink)
pcr->ops->disable_auto_blink(pcr);
if (pcr->ops->turn_off_led)
pcr->ops->turn_off_led(pcr);
if (pcr->aspm_en)
rtsx_pci_write_config_byte(pcr, LCTLR, pcr->aspm_en);
mutex_unlock(&pcr->pcr_mutex);
}
static void rtsx_pci_power_off(struct rtsx_pcr *pcr, u8 pm_state)
{
if (pcr->ops->turn_off_led)
pcr->ops->turn_off_led(pcr);
rtsx_pci_writel(pcr, RTSX_BIER, 0);
pcr->bier = 0;
rtsx_pci_write_register(pcr, PETXCFG, 0x08, 0x08);
rtsx_pci_write_register(pcr, HOST_SLEEP_STATE, 0x03, pm_state);
if (pcr->ops->force_power_down)
pcr->ops->force_power_down(pcr, pm_state);
}
static int rtsx_pci_init_hw(struct rtsx_pcr *pcr)
{
int err;
rtsx_pci_writel(pcr, RTSX_HCBAR, pcr->host_cmds_addr);
rtsx_pci_enable_bus_int(pcr);
/* Power on SSC */
err = rtsx_pci_write_register(pcr, FPDCTL, SSC_POWER_DOWN, 0);
if (err < 0)
return err;
/* Wait SSC power stable */
udelay(200);
if (pcr->ops->optimize_phy) {
err = pcr->ops->optimize_phy(pcr);
if (err < 0)
return err;
}
rtsx_pci_init_cmd(pcr);
/* Set mcu_cnt to 7 to ensure data can be sampled properly */
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_DIV, 0x07, 0x07);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, HOST_SLEEP_STATE, 0x03, 0x00);
/* Disable card clock */
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_CLK_EN, 0x1E, 0);
/* Reset delink mode */
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CHANGE_LINK_STATE, 0x0A, 0);
/* Card driving select */
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_DRIVE_SEL,
0xFF, pcr->card_drive_sel);
/* Enable SSC Clock */
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SSC_CTL1,
0xFF, SSC_8X_EN | SSC_SEL_4M);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SSC_CTL2, 0xFF, 0x12);
/* Disable cd_pwr_save */
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CHANGE_LINK_STATE, 0x16, 0x10);
/* Clear Link Ready Interrupt */
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, IRQSTAT0,
LINK_RDY_INT, LINK_RDY_INT);
/* Enlarge the estimation window of PERST# glitch
* to reduce the chance of invalid card interrupt
*/
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, PERST_GLITCH_WIDTH, 0xFF, 0x80);
/* Update RC oscillator to 400k
* bit[0] F_HIGH: for RC oscillator, Rst_value is 1'b1
* 1: 2M 0: 400k
*/
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, RCCTL, 0x01, 0x00);
/* Set interrupt write clear
* bit 1: U_elbi_if_rd_clr_en
* 1: Enable ELBI interrupt[31:22] & [7:0] flag read clear
* 0: ELBI interrupt flag[31:22] & [7:0] only can be write clear
*/
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, NFTS_TX_CTRL, 0x02, 0);
err = rtsx_pci_send_cmd(pcr, 100);
if (err < 0)
return err;
rtsx_pci_write_config_byte(pcr, LCTLR, 0);
/* Enable clk_request_n to enable clock power management */
rtsx_pci_write_config_byte(pcr, 0x81, 1);
/* Enter L1 when host tx idle */
rtsx_pci_write_config_byte(pcr, 0x70F, 0x5B);
if (pcr->ops->extra_init_hw) {
err = pcr->ops->extra_init_hw(pcr);
if (err < 0)
return err;
}
/* No CD interrupt if probing driver with card inserted.
* So we need to initialize pcr->card_exist here.
*/
if (pcr->ops->cd_deglitch)
pcr->card_exist = pcr->ops->cd_deglitch(pcr);
else
pcr->card_exist = rtsx_pci_readl(pcr, RTSX_BIPR) & CARD_EXIST;
return 0;
}
static int rtsx_pci_init_chip(struct rtsx_pcr *pcr)
{
int err;
spin_lock_init(&pcr->lock);
mutex_init(&pcr->pcr_mutex);
switch (PCI_PID(pcr)) {
default:
case 0x5209:
rts5209_init_params(pcr);
break;
case 0x5229:
rts5229_init_params(pcr);
break;
case 0x5289:
rtl8411_init_params(pcr);
break;
case 0x5227:
rts5227_init_params(pcr);
break;
case 0x5249:
rts5249_init_params(pcr);
break;
case 0x5287:
rtl8411b_init_params(pcr);
break;
case 0x5286:
rtl8402_init_params(pcr);
break;
}
dev_dbg(&(pcr->pci->dev), "PID: 0x%04x, IC version: 0x%02x\n",
PCI_PID(pcr), pcr->ic_version);
pcr->slots = kcalloc(pcr->num_slots, sizeof(struct rtsx_slot),
GFP_KERNEL);
if (!pcr->slots)
return -ENOMEM;
if (pcr->ops->fetch_vendor_settings)
pcr->ops->fetch_vendor_settings(pcr);
dev_dbg(&(pcr->pci->dev), "pcr->aspm_en = 0x%x\n", pcr->aspm_en);
dev_dbg(&(pcr->pci->dev), "pcr->sd30_drive_sel_1v8 = 0x%x\n",
pcr->sd30_drive_sel_1v8);
dev_dbg(&(pcr->pci->dev), "pcr->sd30_drive_sel_3v3 = 0x%x\n",
pcr->sd30_drive_sel_3v3);
dev_dbg(&(pcr->pci->dev), "pcr->card_drive_sel = 0x%x\n",
pcr->card_drive_sel);
dev_dbg(&(pcr->pci->dev), "pcr->flags = 0x%x\n", pcr->flags);
pcr->state = PDEV_STAT_IDLE;
err = rtsx_pci_init_hw(pcr);
if (err < 0) {
kfree(pcr->slots);
return err;
}
return 0;
}
static int rtsx_pci_probe(struct pci_dev *pcidev,
const struct pci_device_id *id)
{
struct rtsx_pcr *pcr;
struct pcr_handle *handle;
u32 base, len;
int ret, i;
dev_dbg(&(pcidev->dev),
": Realtek PCI-E Card Reader found at %s [%04x:%04x] (rev %x)\n",
pci_name(pcidev), (int)pcidev->vendor, (int)pcidev->device,
(int)pcidev->revision);
ret = pci_set_dma_mask(pcidev, DMA_BIT_MASK(32));
if (ret < 0)
return ret;
ret = pci_enable_device(pcidev);
if (ret)
return ret;
ret = pci_request_regions(pcidev, DRV_NAME_RTSX_PCI);
if (ret)
goto disable;
pcr = kzalloc(sizeof(*pcr), GFP_KERNEL);
if (!pcr) {
ret = -ENOMEM;
goto release_pci;
}
handle = kzalloc(sizeof(*handle), GFP_KERNEL);
if (!handle) {
ret = -ENOMEM;
goto free_pcr;
}
handle->pcr = pcr;
idr_preload(GFP_KERNEL);
spin_lock(&rtsx_pci_lock);
ret = idr_alloc(&rtsx_pci_idr, pcr, 0, 0, GFP_NOWAIT);
if (ret >= 0)
pcr->id = ret;
spin_unlock(&rtsx_pci_lock);
idr_preload_end();
if (ret < 0)
goto free_handle;
pcr->pci = pcidev;
dev_set_drvdata(&pcidev->dev, handle);
len = pci_resource_len(pcidev, 0);
base = pci_resource_start(pcidev, 0);
pcr->remap_addr = ioremap_nocache(base, len);
if (!pcr->remap_addr) {
ret = -ENOMEM;
goto free_handle;
}
pcr->rtsx_resv_buf = dma_alloc_coherent(&(pcidev->dev),
RTSX_RESV_BUF_LEN, &(pcr->rtsx_resv_buf_addr),
GFP_KERNEL);
if (pcr->rtsx_resv_buf == NULL) {
ret = -ENXIO;
goto unmap;
}
pcr->host_cmds_ptr = pcr->rtsx_resv_buf;
pcr->host_cmds_addr = pcr->rtsx_resv_buf_addr;
pcr->host_sg_tbl_ptr = pcr->rtsx_resv_buf + HOST_CMDS_BUF_LEN;
pcr->host_sg_tbl_addr = pcr->rtsx_resv_buf_addr + HOST_CMDS_BUF_LEN;
pcr->card_inserted = 0;
pcr->card_removed = 0;
INIT_DELAYED_WORK(&pcr->carddet_work, rtsx_pci_card_detect);
INIT_DELAYED_WORK(&pcr->idle_work, rtsx_pci_idle_work);
pcr->msi_en = msi_en;
if (pcr->msi_en) {
ret = pci_enable_msi(pcidev);
if (ret < 0)
pcr->msi_en = false;
}
ret = rtsx_pci_acquire_irq(pcr);
if (ret < 0)
goto disable_msi;
pci_set_master(pcidev);
synchronize_irq(pcr->irq);
ret = rtsx_pci_init_chip(pcr);
if (ret < 0)
goto disable_irq;
for (i = 0; i < ARRAY_SIZE(rtsx_pcr_cells); i++) {
rtsx_pcr_cells[i].platform_data = handle;
rtsx_pcr_cells[i].pdata_size = sizeof(*handle);
}
ret = mfd_add_devices(&pcidev->dev, pcr->id, rtsx_pcr_cells,
ARRAY_SIZE(rtsx_pcr_cells), NULL, 0, NULL);
if (ret < 0)
goto disable_irq;
schedule_delayed_work(&pcr->idle_work, msecs_to_jiffies(200));
return 0;
disable_irq:
free_irq(pcr->irq, (void *)pcr);
disable_msi:
if (pcr->msi_en)
pci_disable_msi(pcr->pci);
dma_free_coherent(&(pcr->pci->dev), RTSX_RESV_BUF_LEN,
pcr->rtsx_resv_buf, pcr->rtsx_resv_buf_addr);
unmap:
iounmap(pcr->remap_addr);
free_handle:
kfree(handle);
free_pcr:
kfree(pcr);
release_pci:
pci_release_regions(pcidev);
disable:
pci_disable_device(pcidev);
return ret;
}
static void rtsx_pci_remove(struct pci_dev *pcidev)
{
struct pcr_handle *handle = pci_get_drvdata(pcidev);
struct rtsx_pcr *pcr = handle->pcr;
pcr->remove_pci = true;
/* Disable interrupts at the pcr level */
spin_lock_irq(&pcr->lock);
rtsx_pci_writel(pcr, RTSX_BIER, 0);
pcr->bier = 0;
spin_unlock_irq(&pcr->lock);
cancel_delayed_work_sync(&pcr->carddet_work);
cancel_delayed_work_sync(&pcr->idle_work);
mfd_remove_devices(&pcidev->dev);
dma_free_coherent(&(pcr->pci->dev), RTSX_RESV_BUF_LEN,
pcr->rtsx_resv_buf, pcr->rtsx_resv_buf_addr);
free_irq(pcr->irq, (void *)pcr);
if (pcr->msi_en)
pci_disable_msi(pcr->pci);
iounmap(pcr->remap_addr);
pci_release_regions(pcidev);
pci_disable_device(pcidev);
spin_lock(&rtsx_pci_lock);
idr_remove(&rtsx_pci_idr, pcr->id);
spin_unlock(&rtsx_pci_lock);
kfree(pcr->slots);
kfree(pcr);
kfree(handle);
dev_dbg(&(pcidev->dev),
": Realtek PCI-E Card Reader at %s [%04x:%04x] has been removed\n",
pci_name(pcidev), (int)pcidev->vendor, (int)pcidev->device);
}
#ifdef CONFIG_PM
static int rtsx_pci_suspend(struct pci_dev *pcidev, pm_message_t state)
{
struct pcr_handle *handle;
struct rtsx_pcr *pcr;
dev_dbg(&(pcidev->dev), "--> %s\n", __func__);
handle = pci_get_drvdata(pcidev);
pcr = handle->pcr;
cancel_delayed_work(&pcr->carddet_work);
cancel_delayed_work(&pcr->idle_work);
mutex_lock(&pcr->pcr_mutex);
rtsx_pci_power_off(pcr, HOST_ENTER_S3);
pci_save_state(pcidev);
pci_enable_wake(pcidev, pci_choose_state(pcidev, state), 0);
pci_disable_device(pcidev);
pci_set_power_state(pcidev, pci_choose_state(pcidev, state));
mutex_unlock(&pcr->pcr_mutex);
return 0;
}
static int rtsx_pci_resume(struct pci_dev *pcidev)
{
struct pcr_handle *handle;
struct rtsx_pcr *pcr;
int ret = 0;
dev_dbg(&(pcidev->dev), "--> %s\n", __func__);
handle = pci_get_drvdata(pcidev);
pcr = handle->pcr;
mutex_lock(&pcr->pcr_mutex);
pci_set_power_state(pcidev, PCI_D0);
pci_restore_state(pcidev);
ret = pci_enable_device(pcidev);
if (ret)
goto out;
pci_set_master(pcidev);
ret = rtsx_pci_write_register(pcr, HOST_SLEEP_STATE, 0x03, 0x00);
if (ret)
goto out;
ret = rtsx_pci_init_hw(pcr);
if (ret)
goto out;
schedule_delayed_work(&pcr->idle_work, msecs_to_jiffies(200));
out:
mutex_unlock(&pcr->pcr_mutex);
return ret;
}
static void rtsx_pci_shutdown(struct pci_dev *pcidev)
{
struct pcr_handle *handle;
struct rtsx_pcr *pcr;
dev_dbg(&(pcidev->dev), "--> %s\n", __func__);
handle = pci_get_drvdata(pcidev);
pcr = handle->pcr;
rtsx_pci_power_off(pcr, HOST_ENTER_S1);
pci_disable_device(pcidev);
}
#else /* CONFIG_PM */
#define rtsx_pci_suspend NULL
#define rtsx_pci_resume NULL
#define rtsx_pci_shutdown NULL
#endif /* CONFIG_PM */
static struct pci_driver rtsx_pci_driver = {
.name = DRV_NAME_RTSX_PCI,
.id_table = rtsx_pci_ids,
.probe = rtsx_pci_probe,
.remove = rtsx_pci_remove,
.suspend = rtsx_pci_suspend,
.resume = rtsx_pci_resume,
.shutdown = rtsx_pci_shutdown,
};
module_pci_driver(rtsx_pci_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Wei WANG <wei_wang@realsil.com.cn>");
MODULE_DESCRIPTION("Realtek PCI-E Card Reader Driver");